Part 3: Some recent advances on Approximate Bayesian Computation

Jean-Michel Marin
Université de Montpellier
Institut Montpelliérain Alexander Grothendieck (IMAG)

September, 22-27, Fréjus, France

Thanks

Numerous colleagues participated to parts of this work

Thanks

Numerous colleagues participated to parts of this work

- Pierre Pudlo (Marseille)

Louis Raynal (PhD student Montpellier, postdoc Harvard) Arnaud Estoup (molecular ecologist, Montpellier)

Thanks

Numerous colleagues participated to parts of this work

- Pierre Pudlo (Marseille)
- Louis Raynal (PhD student Montpellier, postdoc Harvard)

Arnaud Estoup (molecular ecologist, Montpellier) Christian Robert (Paris and Warwick)

Thanks

Numerous colleagues participated to parts of this work

- Pierre Pudlo (Marseille)
- Louis Raynal (PhD student Montpellier, postdoc Harvard)
- Arnaud Estoup (molecular ecologist, Montpellier)

Judith, Natesh, ...

Thanks

Numerous colleagues participated to parts of this work

- Pierre Pudlo (Marseille)
- Louis Raynal (PhD student Montpellier, postdoc Harvard)
- Arnaud Estoup (molecular ecologist, Montpellier)
- Christian Robert (Paris and Warwick)

Thanks

Numerous colleagues participated to parts of this work

- Pierre Pudlo (Marseille)
- Louis Raynal (PhD student Montpellier, postdoc Harvard)
- Arnaud Estoup (molecular ecologist, Montpellier)
- Christian Robert (Paris and Warwick)
- Judith, Natesh, ...

Introduction

Bayesian parametric paradigm

Likelihood function $f(\mathbf{y} \mid \boldsymbol{\theta})$ expensive or impossible to calculate

 Extremely difficult to sample from the posterior distribution
Introduction

Bayesian parametric paradigm

Likelihood function $f(\mathbf{y} \mid \boldsymbol{\theta})$ expensive or impossible to calculate

Introduction

Bayesian parametric paradigm
Likelihood function $f(\mathbf{y} \mid \boldsymbol{\theta})$ expensive or impossible to calculate

Extremely difficult to sample from the posterior distribution

$$
\pi(\theta \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \mathrm{f}(\mathbf{y} \mid \boldsymbol{\theta})
$$

Introduction

Two typical situations

Introduction

Two typical situations

- $\mathrm{f}(\mathbf{y} \mid \boldsymbol{\theta})=\int \mathrm{f}(\mathbf{y}, \mathbf{u} \mid \boldsymbol{\theta}) \mu(\mathrm{d} \mathbf{u})$ intractable population genetics models, coalescent process

EM algorithms, Gibbs sampling, pseudo-marginal
MCMC methods, variational approximations
$f(\mathbf{y} \mid \theta)=g(\mathbf{y}, \theta) / Z(\theta)$ and $Z(\theta)$ intractable
Markov random field

Introduction

Two typical situations

- $\mathrm{f}(\mathbf{y} \mid \boldsymbol{\theta})=\int \mathrm{f}(\mathbf{y}, \mathbf{u} \mid \boldsymbol{\theta}) \mu(\mathrm{d} \mathbf{u})$ intractable population genetics models, coalescent process

EM algorithms, Gibbs sampling, pseudo-marginal MCMC methods, variational approximations
$f(\mathbf{y} \mid \theta)=g(\mathbf{y}, \theta) / Z(\theta)$ and $Z(\theta)$ intractable
Markov random field
pseudo-marginal MCMC methods, variational
approximations

Introduction

Two typical situations

- $\mathrm{f}(\mathbf{y} \mid \boldsymbol{\theta})=\int \mathrm{f}(\mathbf{y}, \mathbf{u} \mid \boldsymbol{\theta}) \mu(\mathrm{d} \mathbf{u})$ intractable population genetics models, coalescent process

EM algorithms, Gibbs sampling, pseudo-marginal MCMC methods, variational approximations

- $f(\mathbf{y} \mid \boldsymbol{\theta})=\mathrm{g}(\mathbf{y}, \boldsymbol{\theta}) / \mathrm{Z}(\boldsymbol{\theta})$ and $Z(\theta)$ intractable Markov random field

Introduction

Two typical situations

- $f(\mathbf{y} \mid \boldsymbol{\theta})=\int f(\mathbf{y}, \mathbf{u} \mid \boldsymbol{\theta}) \mu(\mathrm{d} \mathbf{u})$ intractable population genetics models, coalescent process

EM algorithms, Gibbs sampling, pseudo-marginal MCMC methods, variational approximations

- $f(\mathbf{y} \mid \boldsymbol{\theta})=g(\mathbf{y}, \boldsymbol{\theta}) / Z(\theta)$ and $Z(\theta)$ intractable Markov random field
pseudo-marginal MCMC methods, variational approximations

Introduction

$A B C$ is a technique that only requires being able to sample from the likelihood $f(\cdot \mid \theta)$

This technique stemmed from population genetics models, about 15 years ago, and population geneticists still significantly contribute to methodological developments of ABC

If, with Christian, we work on ABC methods, we can be very grateful to our biologist colleagues!

Introduction

$A B C$ is a technique that only requires being able to sample from the likelihood $f(\cdot \mid \theta)$

This technique stemmed from population genetics models, about 15 years ago, and population geneticists still significantly contribute to methodological developments of ABC

Introduction

ABC is a technique that only requires being able to sample from the likelihood $f(\cdot \mid \theta)$

This technique stemmed from population genetics models, about 15 years ago, and population geneticists still significantly contribute to methodological developments of ABC

If, with Christian, we work on ABC methods, we can be very grateful to our biologist colleagues!

Introduction

- some methodological aspects of $A B C$ our ABC random forests proposal a population genetics example

Introduction

- some methodological aspects of ABC
- our ABC random forests proposal
a population genetics example

Introduction

- some methodological aspects of ABC
- our ABC random forests proposal
- a population genetics example
(1) Methodological aspects of $A B C$
- Likelihood-free rejection sampler
- A k-NN approximation
- Two views of the ABC approximation
- More efficient algorithms
- Regression adjustments
- Summary statistics
- ABC model choice procedure
- Sofwares
- Frontline news from population geneticists country
- Use modern machine learning tools
(2) ABC random forests
- Model choice
- Parameter inference
(3) Human populations example

Methodological aspects of ABC Likelihood-free rejection sampler

Methodological aspects of ABC Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics
Tavaré et al. (1997) Genetics
Pritchard et al. (1999) Mol. Biol. Evol.

1) Set $i=1$
2) Generate θ^{\prime} from the prior distribution $\pi($
3) Generate z from the likelihood $f\left(\cdot \mid \theta^{\prime}\right)$

Methodological aspects of ABC Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics
Tavaré et al. (1997) Genetics
Pritchard et al. (1999) Mol. Biol. Evol.

1) Set $i=1$
2) Generate θ^{\prime} from the prior distribution $\pi(\cdot)$

Generate z from the likelihood $\mathrm{f}\left(\cdot \mid \theta^{\prime}\right.$

Methodological aspects of ABC Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics
Tavaré et al. (1997) Genetics
Pritchard et al. (1999) Mol. Biol. Evol.

1) Set $i=1$
2) Generate θ^{\prime} from the prior distribution $\pi(\cdot)$
3) Generate \mathbf{z} from the likelihood $f\left(\cdot \mid \theta^{\prime}\right)$
4) If $i \leqslant N$, return to 2)

Methodological aspects of ABC Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics
 Tavaré et al. (1997) Genetics
 Pritchard et al. (1999) Mol. Biol. Evol.

1) Set $i=1$
2) Generate θ^{\prime} from the prior distribution $\pi(\cdot)$
3) Generate z from the likelihood $f\left(\cdot \mid \theta^{\prime}\right)$
4) If $d(\eta(\mathbf{z}), \eta(\mathbf{y})) \leqslant \epsilon$, set $\theta_{i}=\theta^{\prime}$ and $\mathfrak{i}=\mathfrak{i}+1$

Methodological aspects of ABC Likelihood-free rejection sampler

Rubin (1984) The Annals of Statistics
 Tavaré et al. (1997) Genetics
 Pritchard et al. (1999) Mol. Biol. Evol.

1) Set $i=1$
2) Generate θ^{\prime} from the prior distribution $\pi(\cdot)$
3) Generate z from the likelihood $f\left(\cdot \mid \theta^{\prime}\right)$
4) If $d(\eta(z), \eta(\mathbf{y})) \leqslant \epsilon$, set $\theta_{i}=\theta^{\prime}$ and $i=i+1$
5) If $i \leqslant N$, return to 2)

Methodological aspects of ABC Likelihood-free rejection sampler

ϵ reflects the tension between computability and accuracy

$$
\begin{aligned}
& \text { if } \epsilon \rightarrow \infty \text {, we get simulations from the prior } \\
& \text { if } \epsilon \rightarrow 0 \text {, we get simulations from the posterior }
\end{aligned}
$$

Methodological aspects of ABC Likelihood-free rejection sampler

ϵ reflects the tension between computability and accuracy

- if $\epsilon \rightarrow \infty$, we get simulations from the prior

$$
\text { if } \epsilon \rightarrow 0 \text {, we get simulations from the posterior }
$$

ABC target
$A_{\epsilon, \mathbf{y}}=\{\mathbf{z} \mid \mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y})) \leqslant \epsilon\}$ the acceptance set

Methodological aspects of ABC Likelihood-free rejection sampler

ϵ reflects the tension between computability and accuracy

- if $\epsilon \rightarrow \infty$, we get simulations from the prior
- if $\epsilon \rightarrow 0$, we get simulations from the posterior

$A_{\epsilon, \mathbf{y}}=\{\mathbf{z} \mid \mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y})) \leqslant \epsilon\}$ the acceptance set

Methodological aspects of ABC Likelihood-free rejection sampler

ϵ reflects the tension between computability and accuracy

- if $\epsilon \rightarrow \infty$, we get simulations from the prior
- if $\epsilon \rightarrow 0$, we get simulations from the posterior

ABC target

$$
\begin{gathered}
\pi_{\epsilon}(\theta \mid \mathbf{y})=\frac{\int \pi(\theta) f(\mathbf{z} \mid \theta) \mathbb{I}\left(\mathbf{z} \in A_{\epsilon, \mathbf{y}}\right) \mathrm{d} \mathbf{z}}{\int_{\mathcal{A}_{\epsilon, \mathbf{y}} \times \Theta} \pi(\theta) \mathrm{f}(\mathbf{z} \mid \boldsymbol{\theta}) \mathrm{d} \mathbf{z d} \theta} \\
\mathcal{A}_{\epsilon, \mathbf{y}}=\{\mathbf{z} \mid \mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y})) \leqslant \epsilon\} \text { the acceptance set }
\end{gathered}
$$

Methodological aspects of ABC Likelihood-free rejection sampler

A toy example from Richard Wilkinson (Tutorial on ABC, NIPS 2013)

Methodological aspects of ABC Likelihood-free rejection sampler

A toy example from Richard Wilkinson (Tutorial on ABC, NIPS 2013)
$y \mid \theta \sim \mathscr{N}_{1}\left(2(\theta+2) \theta(\theta-2), 0.1+\theta^{2}\right)$

Methodological aspects of ABC Likelihood-free rejection sampler

A toy example from Richard Wilkinson (Tutorial on ABC, NIPS 2013)
$y \mid \theta \sim \mathscr{N}_{1}\left(2(\theta+2) \theta(\theta-2), 0.1+\theta^{2}\right)$
$\theta \sim \mathscr{U}_{[-10,10]}$

Methodological aspects of ABC Likelihood-free rejection sampler

A toy example from Richard Wilkinson (Tutorial on ABC, NIPS 2013)

$$
\begin{aligned}
& y \mid \theta \sim \mathscr{N}_{1}\left(2(\theta+2) \theta(\theta-2), 0.1+\theta^{2}\right) \\
& \theta \sim \mathscr{U}_{[-10,10]} \\
& y=2
\end{aligned}
$$

Methodological aspects of ABC Likelihood-free rejection sampler

A toy example from Richard Wilkinson (Tutorial on ABC, NIPS 2013)
$y \mid \theta \sim \mathscr{N}_{1}\left(2(\theta+2) \theta(\theta-2), 0.1+\theta^{2}\right)$
$\theta \sim \mathscr{U}_{[-10,10]}$
$y=2$
$d(z, y)=|z-y|$

Methodological aspects of ABC Likelihood-free rejection sampler

$\epsilon=5$

Methodological aspects of ABC Likelihood-free rejection sampler

$$
\epsilon=2.5
$$

$\epsilon=1$

Methodological aspects of ABC A k-NN approximation

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $\mathrm{f}\left(\cdot \mid \boldsymbol{\theta}_{\boldsymbol{i}}\right)$

Order the distances $d_{(1}$

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $f\left(\cdot \mid \theta_{i}\right)$
c) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\mathfrak{\eta}(\mathbf{z}), \eta(\mathbf{y}))$

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $f\left(\cdot \mid \theta_{i}\right)$
c) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $f\left(\cdot \mid \theta_{i}\right)$
c) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the θ_{i} 's that correspond to the N -smallest distances

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $f\left(\cdot \mid \theta_{i}\right)$
c) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the θ_{i} 's that correspond to the N-smallest distances
$N=\lfloor\alpha M\rfloor$
ϵ corresponds to a quantile of the distances

Methodological aspects of ABC A k-NN approximation

Practitioners really use

1) For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z} from the model $f\left(\cdot \mid \theta_{i}\right)$
c) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the θ_{i} 's that correspond to the N-smallest distances
$N=\lfloor\alpha M\rfloor$
ϵ corresponds to a quantile of the distances

Methodological aspects of ABC A k-NN approximation

New insights into Approximate Bayesian Computation

Methodological aspects of ABC
 A k-NN approximation

New insights into Approximate Bayesian Computation Biau, Cérou, Guyader (2015) Annales de l'IHP

Methodological aspects of ABC A k-NN approximation

New insights into Approximate Bayesian Computation Biau, Cérou, Guyader (2015) Annales de l'IHP

- intuitive
simple to implement
embarrassingly parallelisable

Methodological aspects of ABC A k-NN approximation

New insights into Approximate Bayesian Computation Biau, Cérou, Guyader (2015) Annales de l'IHP

- intuitive
- simple to implement

embarrassingly parallelisable
 BUT curse of dimensionality: most of the simulations are at
 the boundary of the space as the number of summarv statistics increases

Methodological aspects of ABC A k-NN approximation

New insights into Approximate Bayesian Computation Biau, Cérou, Guyader (2015) Annales de l'IHP

- intuitive
- simple to implement
- embarrassingly parallelisable

Methodological aspects of ABC A k-NN approximation

New insights into Approximate Bayesian Computation Biau, Cérou, Guyader (2015) Annales de l'IHP

- intuitive
- simple to implement
- embarrassingly parallelisable
- BUT curse of dimensionality: most of the simulations are at the boundary of the space as the number of summary statistics increases

Methodological aspects of ABC Two views of the ABC approximation

\qquad
a different model to that intended emphasizes that ABC is a kernel smoothing approximation of the likelihnond function

Methodological aspects of ABC Two views of the ABC approximation

\Longrightarrow Wilkinson (2013) SAGMB shows that ABC is exact but for a different model to that intended
\Longrightarrow Blum (2010) JASA emphasizes that ABC is a kernel smonthing annrovimation of the likalihond function

Methodological aspects of ABC Two views of the ABC approximation

\Longrightarrow Wilkinson (2013) SAGMB shows that ABC is exact but for a different model to that intended
\Longrightarrow Blum (2010) JASA emphasizes that ABC is a kernel smoothing approximation of the likelihood function

$$
\begin{aligned}
& \pi_{\epsilon}(\theta \mid \mathbf{y})=\frac{\int \pi(\theta) f(\mathbf{z} \mid \theta) \mathbb{I}\left(\mathbf{z} \in A_{\epsilon, \mathbf{y}}\right) \mathrm{d} \mathbf{z}}{\int_{\mathcal{A}_{\epsilon, \mathbf{y}} \times \Theta} \pi(\theta) \mathrm{f}(\mathbf{z} \mid \theta) \mathrm{d} \mathbf{z d} \theta} \\
& =\frac{\pi(\theta) \int \mathrm{f}(\mathbf{z} \mid \theta) \mathrm{K}(\mathrm{~d}(\eta(\mathbf{z}), \eta(\mathbf{\eta}))) \mathrm{dz}}{\int \pi(\theta) \mathrm{f}(\mathbf{z} \mid \theta) \mathrm{K}(\mathrm{~d}(\eta(\mathbf{z}), \eta(\mathbf{y}))) \mathrm{dzd} \mathrm{\theta}}
\end{aligned}
$$

Methodological aspects of ABC More efficient algorithms

Simulate all the θ 's particles using the prior distribution

Methodological aspects of ABC More efficient algorithms

Simulate all the θ 's particles using the prior distribution
\Longrightarrow very inefficient
various sequential Monte Carlo algorithms have been con-
structed as an alternative

Methodological aspects of ABC More efficient algorithms

Simulate all the θ 's particles using the prior distribution
\Longrightarrow very inefficient
various sequential Monte Carlo algorithms have been con-
structed as an alternative

Methodological aspects of ABC More efficient algorithms

Simulate all the θ 's particles using the prior distribution
\Longrightarrow very inefficient
various sequential Monte Carlo algorithms have been constructed as an alternative

Methodological aspects of ABC More efficient algorithms

Simulate all the θ 's particles using the prior distribution
\Longrightarrow very inefficient
various sequential Monte Carlo algorithms have been constructed as an alternative

Sisson et al. (2007) PNAS
Beaumont, Cornuet, Marin and Robert (2009) Biometrika Del Moral et al. (2012) Statistics and Computing Marin, Pudlo and Sedki (2012) IEEE Proceedings of WSC Filippi et al. (2013) SAGMB

Methodological aspects of ABC More efficient algorithms

The key idea is to decompose the difficult problem of sampling from $\pi_{\epsilon}(\theta, z \mid y)$ into a series of simpler subproblems

Time 0 sampling from $\pi_{\varepsilon_{0}}(\theta, \mathbf{z} \mid \mathbf{y})$ with large ϵ_{0}
Then simulating from an increasing difficult sequence of target distribution $\pi_{\epsilon_{\mathrm{t}}}(\theta, \mathrm{z} \mid \mathrm{y})$ that is $\epsilon_{\mathrm{t}}<\epsilon_{\mathrm{t}-1}$

Methodological aspects of ABC More efficient algorithms

The key idea is to decompose the difficult problem of sampling from $\pi_{\epsilon}(\theta, z \mid y)$ into a series of simpler subproblems

Time 0 sampling from $\pi_{\epsilon_{0}}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ with large ϵ_{0}
Then simulating from an increasing difficult sequence of target

Likelihood free MCMC sampler

Methodological aspects of ABC More efficient algorithms

The key idea is to decompose the difficult problem of sampling from $\pi_{\epsilon}(\theta, z \mid y)$ into a series of simpler subproblems

Time 0 sampling from $\pi_{\epsilon_{0}}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ with large ϵ_{0}
Then simulating from an increasing difficult sequence of target distribution $\pi_{\epsilon_{\mathrm{t}}}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ that is $\epsilon_{\mathrm{t}}<\epsilon_{\mathrm{t}-1}$

Likelihood free MCMC sampler

Methodological aspects of ABC More efficient algorithms

The key idea is to decompose the difficult problem of sampling from $\pi_{\epsilon}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ into a series of simpler subproblems

Time 0 sampling from $\pi_{\varepsilon_{0}}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ with large ϵ_{0}
Then simulating from an increasing difficult sequence of target distribution $\pi_{\epsilon_{\mathrm{t}}}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})$ that is $\epsilon_{\mathrm{t}}<\epsilon_{\mathrm{t}-1}$

Likelihood free MCMC sampler Majoram et al. (2003) PNAS

Methodological aspects of ABC Regression adjustments

Methodological aspects of ABC Regression adjustments

Beaumont et al. (2002) Genetics
 local linear regression adjustment of the parameter values

heteroscedastic models, feed-forward neural networks

Methodological aspects of ABC Regression adjustments

> Beaumont et al. (2002) Genetics
> local linear regression adjustment of the parameter values

Blum and Francois (2010) Statistics and Computing heteroscedastic models, feed-forward neural networks

Methodological aspects of ABC Summary statistics

Methodological aspects of ABC Summary statistics

Best subset selection

- Joyce and Marjoram (2008) SAGMB, τ-sufficiency
- Nunes and Balding (2010) SAGMB, entropy

Regularization techniques
\qquad
\square

Methodological aspects of ABC Summary statistics

Best subset selection

- Joyce and Marjoram (2008) SAGMB, τ-sufficiency
- Nunes and Balding (2010) SAGMB, entropy

Projection

- Fearnhead and Prangle (2012) JRSS B introduce semi-automatic ABC

Regularization techniques
use ridge regression

Methodological aspects of ABC Summary statistics

Best subset selection

- Joyce and Marjoram (2008) SAGMB, τ-sufficiency
- Nunes and Balding (2010) SAGMB, entropy

Projection

- Fearnhead and Prangle (2012) JRSS B introduce semi-automatic ABC

Regularization techniques

- Blum, Nunes, Prangle and Fearnhead (2013) Statistical Science use ridge regression
- Saulnier, Gascuel, Alizon (2017) Plos Computational Biology use LASSO

Methodological aspects of ABC ABC model choice procedure

Methodological aspects of ABC ABC model choice procedure

1) For $i=1, \ldots, M$

Methodological aspects of ABC ABC model choice procedure

1) For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$

Methodological aspects of ABC $A B C$ model choice procedure

1) For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$
b) Generate $\theta_{m_{i}}^{\prime}$ from the prior $\pi_{\mathfrak{m}_{\mathfrak{i}}}(\cdot)$

Methodological aspects of ABC $A B C$ model choice procedure

1) For $i=1, \ldots, M$
a) Generate $\mathfrak{m}_{\mathfrak{i}}$ from the prior $\pi(\mathscr{M}=\mathfrak{m})$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{m_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\boldsymbol{m}_{\mathfrak{i}}}^{\prime}\right)$

Methodological aspects of ABC ABC model choice procedure

1) For $i=1, \ldots, M$
a) Generate $\mathfrak{m}_{\mathfrak{i}}$ from the prior $\pi(\mathscr{M}=\mathfrak{m})$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{\mathfrak{m}_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$

Order the distances $d_{(}$
Return the m_{i} 's that correspond to the N -smallest
distances

Methodological aspects of ABC $A B C$ model choice procedure

1) For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{\mathfrak{m}_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\boldsymbol{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $d_{i}=d(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$

Return the m_{i} 's that correspond to the N -smallest distances

Methodological aspects of ABC $A B C$ model choice procedure

1) For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{m_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the m_{i} 's that correspond to the N -smallest distances

A k-NN approximation of the posterior probabilities

Methodological aspects of ABC $A B C$ model choice procedure

1) For $i=1, \ldots, M$
a) Generate \mathfrak{m}_{i} from the prior $\pi(\mathscr{M}=\mathfrak{m})$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{m_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the m_{i} 's that correspond to the N -smallest distances
$N=\lfloor\alpha M\rfloor$
A k-NN approximation of the posterior probabilities

Methodological aspects of ABC ABC model choice procedure

1) For $i=1, \ldots, M$
a) Generate \mathfrak{m}_{i} from the prior $\pi(\mathscr{M}=\mathfrak{m})$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{m_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathrm{d}_{\mathrm{i}}=\mathrm{d}(\eta(\mathbf{z}), \eta(\mathbf{y}))$
2) Order the distances $d_{(1)}, \ldots, d_{(M)}$
3) Return the m_{i} 's that correspond to the N -smallest distances
$N=\lfloor\alpha M\rfloor$
A k-NN approximation of the posterior probabilities

Methodological aspects of ABC ABC model choice procedure

If $\eta(\mathbf{y})$ is a sufficient statistics for the model choice problem, this can work pretty well

Methodological aspects of ABC

ABC model choice procedure

If $\eta(\mathbf{y})$ is a sufficient statistics for the model choice problem, this can work pretty well

ABC likelihood-free methods for model choice in Gibbs random fields Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian Analysis

Lack of confidence in approximate Bayesian computation model choice

Methodological aspects of ABC

ABC model choice procedure

If $\eta(\mathbf{y})$ is a sufficient statistics for the model choice problem, this can work pretty well

ABC likelihood-free methods for model choice in Gibbs random fields Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian Analysis

If not...

Lack of confidence in approximate Bayesian computation model choice

Relevant statistics for Bayesian model choice

Methodological aspects of ABC

ABC model choice procedure

If $\eta(\mathbf{y})$ is a sufficient statistics for the model choice problem, this can work pretty well

ABC likelihood-free methods for model choice in Gibbs random fields Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian Analysis

If not...

Lack of confidence in approximate Bayesian computation model choice Robert, Cornuet, Marin, Pillai (2011) PNAS

Relevant statistics for Bayesian model choice

Methodological aspects of ABC

ABC model choice procedure

If $\eta(\mathbf{y})$ is a sufficient statistics for the model choice problem, this can work pretty well

ABC likelihood-free methods for model choice in Gibbs random fields Grelaud, Robert, Marin, Rodolphe and Taly (2009) Bayesian Analysis

If not...

Lack of confidence in approximate Bayesian computation model choice Robert, Cornuet, Marin, Pillai (2011) PNAS

Relevant statistics for Bayesian model choice Marin, Pillai,
Robert, Rousseau (2014) JRSS B

Methodological aspects of ABC $A B C$ model choice procedure

We investigate some $A B C$ model choice techniques that use others machine learning procedures

Estimation of demo-genetic model probabilities with Ap-
proximate Bayesian Computation using linear discriminant analysis on summary statistics

Methodological aspects of ABC $A B C$ model choice procedure

We investigate some $A B C$ model choice techniques that use others machine learning procedures

Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics Estoup, Lombaert, Marin, Guillemaud, Pudlo, Robert, Cornuet (2012) Molecular Ecology

Methodological aspects of ABC Sofwares

abc \mathbf{R} package several ABC algorithms for performing parameter estimation and model selection
abctools \mathbf{R} package tuning ABC analyses https://journal.r-project.org/archive/2015-2/nunes-prangle.pdf
abcrf \mathbf{R} package $A B C$ via random forests
EasyABC R package several algorithms for performing efficient $A B C$ sampling schemes, including 4 sequential sampling schemes and 3 MCMC schemes

Methodological aspects of ABC Sofwares

DIY-ABC software performs parameter estimation and model selection for population genetics models

ABC-SysBio python package parameter inference and model selection for dynamical systems

ABCtoolbox programs various $A B C$ algorithms including rejection sampling, MCMC without likelihood, a particle-based sampler, and ABC-GLM

PopABC software package for inference of the pattern of demographic divergence, coalescent simulation, bayesian model choice

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polvmorphism, DNA sequence and microsatellite data

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Asian ladybug

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Asian ladybug European honey bee

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Asian ladybug European honey bee drosophila suzukii

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Asian ladybug European honey bee drosophila suzukii
Pigmies populations
\qquad

Methodological aspects of ABC Sofwares

Infering population history with DIY ABC: a user-friedly approach Approximate Bayesian Computation Cornuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, Estoup (2008) Bioinformatics

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data Cornuet, Pudlo, Veyssier, Dehne-Garcia, Gautier, Leblois, Marin, Estoup (2014) Bioinformatics

Asian ladybug European honey bee drosophila suzukii
Pigmies populations
Four human populations, to study the out-of-Africa colonization

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations
> simulate from the model can be very computationally intensive, parallelizable algorithms are necessary likelihoods are intractable due to the strono and complex dependence structure of the model

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

- simulate from the model can be very computationally intensive, parallelizable algorithms are necessary
dependence structure of the model
reproducible results

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

- simulate from the model can be very computationally intensive, parallelizable algorithms are necessary
- likelihoods are intractable due to the strong and complex dependence structure of the model
reproducible results
post hoc adjustments ere crucial but they underestimate the amount of uncertainty

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

- simulate from the model can be very computationally intensive, parallelizable algorithms are necessary
- likelihoods are intractable due to the strong and complex dependence structure of the model
- sequential methods are difficult to calibrate and do not give reproducible results
post hoc adjustments are crucial but they underestimate the amount of uncertainty
available techniques to selec the summary statistics do not give reproducible results

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

- simulate from the model can be very computationally intensive, parallelizable algorithms are necessary
- likelihoods are intractable due to the strong and complex dependence structure of the model
- sequential methods are difficult to calibrate and do not give reproducible results
- post hoc adjustments are crucial but they underestimate the amount of uncertainty

Methodological aspects of ABC Frontline news from population geneticists country

DIYABC (2014) paper has now around 500 citations

- simulate from the model can be very computationally intensive, parallelizable algorithms are necessary
- likelihoods are intractable due to the strong and complex dependence structure of the model
- sequential methods are difficult to calibrate and do not give reproducible results
- post hoc adjustments are crucial but they underestimate the amount of uncertainty
- available techniques to select the summary statistics do not give reproducible results

Methodological aspects of ABC Frontline news from population geneticists country

Despite all these works, two major difficulties
to ensure reliability of the method, the number of
simulations should be large
chnice of the summaries statistics is still a problem

Methodological aspects of ABC Frontline news from population geneticists country

Despite all these works, two major difficulties

- to ensure reliability of the method, the number of simulations should be large
choice of the summaries statistics is still a problem

Methodological aspects of ABC Frontline news from population geneticists country

Despite all these works, two major difficulties

- to ensure reliability of the method, the number of simulations should be large
- choice of the summaries statistics is still a problem

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learnina methods

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learning methods

Some theoretical guarantees for sparse problems

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learning methods

Idea: learn on a huge reference table using random forests

Some theoretical guarantees for sparse problems
Amalysis of a random forest model

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learning methods

Idea: learn on a huge reference table using random forests

Some theoretical guarantees for sparse problems
Analysis of a random forest model

Consistency of random forests

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learning methods

Idea: learn on a huge reference table using random forests

Some theoretical guarantees for sparse problems
Analysis of a random forest model
Biau (2012) JMLR
Consistency of random forests

Methodological aspects of ABC Use modern machine learning tools

Exploiting a large number of summary statistics is not an issue for some machine learning methods

Idea: learn on a huge reference table using random forests

Some theoretical guarantees for sparse problems
Analysis of a random forest model
Biau (2012) JMLR
Consistency of random forests
Scornet, Biau, Vert (2015) The Annals of Statistics

Methodological aspects of ABC Use modern machine learning tools

This work stands at the interface between Bayesian inference and machine learning techniques

Fast e-free Inference of Simulation Models with Bayesian Conditional Density Estimation

Methodological aspects of ABC Use modern machine learning tools

This work stands at the interface between Bayesian inference and machine learning techniques

As an alternative, Papamakarios and Murray (2016) propose to approximate the whole posterior distribution by using Mixture Density Networks (MDN, Bishop, 1994)

Fast e-free Inference of Simulation Models with Bayesian Conditional Density Estimation

Methodological aspects of ABC Use modern machine learning tools

This work stands at the interface between Bayesian inference and machine learning techniques

As an alternative, Papamakarios and Murray (2016) propose to approximate the whole posterior distribution by using Mixture Density Networks (MDN, Bishop, 1994)

Fast e-free Inference of Simulation Models with Bayesian Conditional Density Estimation
Papamakarios and Murray (2016) NIPS

Methodological aspects of ABC Use modern machine learning tools

The MDN strategy consists in using Gaussian mixture models with parameters calibrated thanks to neural networks

The number of mixture components and the number of hidden layers of the networks require calibration

Methodological aspects of ABC Use modern machine learning tools

The MDN strategy consists in using Gaussian mixture models with parameters calibrated thanks to neural networks

Idea: iteratively learn an efficient proposal prior (approximating the posterior distribution), then to use this proposal to train the posterior, both steps making use of MDN

Methodological aspects of ABC Use modern machine learning tools

The MDN strategy consists in using Gaussian mixture models with parameters calibrated thanks to neural networks

Idea: iteratively learn an efficient proposal prior (approximating the posterior distribution), then to use this proposal to train the posterior, both steps making use of MDN

The number of mixture components and the number of hidden layers of the networks require calibration

Methodological aspects of ABC Use modern machine learning tools

Deep Learning for Population Genetic Inference Sheehan and Song (2016) PLOS Computational Biology

Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (hundreds of correlated summary statistics) to the output (population genetic parameters of interest)

Unsupervised pretraining using autoencoders very interesting, but requires a lot of calibration

Methodological aspects of ABC Use modern machine learning tools

Deep Learning for Population Genetic Inference Sheehan and Song (2016) PLOS Computational Biology

Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (hundreds of correlated summary statistics) to the output (population genetic parameters of interest).

Unsupervised pretraining using autoencoders very inter= esting, but requires a lot of calibration

Methodological aspects of ABC Use modern machine learning tools

Deep Learning for Population Genetic Inference Sheehan and Song (2016) PLOS Computational Biology

Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (hundreds of correlated summary statistics) to the output (population genetic parameters of interest).

Unsupervised pretraining using autoencoders very interesting, but requires a lot of calibration

$A B C$ random forests Model choice

Reliable ABC model choice via random forests

Input $A B C$ reference table involving model index and summary statistics, table used as learning set

ABC random forests Model choice

Reliable ABC model choice via random forests Pudlo, Marin, Estoup,
Cornuet, Gauthier and Robert (2016) Bioinformatics
Input $A B C$ reference table involving model index and summary statistics, table used as learning set
possibly large collection of summary statistics: from scientific theory input to machine-learning alternatives

$A B C$ random forests Model choice

Reliable ABC model choice via random forests Pudlo, Marin, Estoup, Cornuet, Gauthier and Robert (2016) Bioinformatics

Input $A B C$ reference table involving model index and summary statistics, table used as learning set
possibly large collection of summary statistics: from scientific theory input to machine-learning alternatives

$A B C$ random forests Model choice

Reliable ABC model choice via random forests Pudlo, Marin, Estoup, Cornuet, Gauthier and Robert (2016) Bioinformatics

Input ABC reference table involving model index and summary statistics, table used as learning set
possibly large collection of summary statistics: from scientific theory input to machine-learning alternatives

Output a random forest classifier to infer model indexes m(n)

$A B C$ random forests Model choice

Reliable ABC model choice via random forests Pudlo, Marin, Estoup, Cornuet, Gauthier and Robert (2016) Bioinformatics

Input ABC reference table involving model index and summary statistics, table used as learning set
possibly large collection of summary statistics: from scientific theory input to machine-learning alternatives

For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$
b) Generate $\theta_{\mathfrak{m}_{\mathfrak{i}}}^{\prime}$ from the prior $\pi_{\mathfrak{m}_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\mathfrak{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\boldsymbol{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathbf{x}_{\mathrm{i}}=\eta\left(\mathbf{z}_{\mathrm{i}}\right)$

$A B C$ random forests Model choice

Reliable ABC model choice via random forests Pudlo, Marin, Estoup,
Cornuet, Gauthier and Robert (2016) Bioinformatics
Input ABC reference table involving model index and summary statistics, table used as learning set
possibly large collection of summary statistics: from scientific theory input to machine-learning alternatives

For $i=1, \ldots, M$
a) Generate m_{i} from the prior $\pi(\mathscr{M}=m)$
b) Generate $\theta_{\mathfrak{m}_{i}}^{\prime}$ from the prior $\pi_{\mathfrak{m}_{i}}(\cdot)$
c) Generate \mathbf{z} from the model $\mathrm{f}_{\boldsymbol{m}_{\mathfrak{i}}}\left(\cdot \mid \boldsymbol{\theta}_{\boldsymbol{m}_{\mathfrak{i}}}^{\prime}\right)$
d) Calculate $\mathbf{x}_{\mathrm{i}}=\eta\left(\mathbf{z}_{\mathrm{i}}\right)$

Output a random forest classifier to infer model indexes $\mathrm{m} \widehat{(\eta(\mathbf{y}))}$

ABC random forests Model choice

Random forest predicts a MAP model index, from the observed dataset
the predictor provided by the forest is good enough to select the most likely model
but not to derive directly the associated posterior probabilities

ABC random forests Model choice

Random forest predicts a MAP model index, from the observed dataset
the predictor provided by the forest is good enough to select the most likely model
but not to derive directly the associated posterior probabilities

ABC random forests Model choice

Random forest predicts a MAP model index, from the observed dataset
the predictor provided by the forest is good enough to select the most likely model
but not to derive directly the associated posterior probabilities

ABC random forests Model choice

Random forest predicts a MAP model index, from the observed dataset
the predictor provided by the forest is good enough to select the most likely model
but not to derive directly the associated posterior probabilities
frequency of trees associated with majority model is no proper substitute to the true posterior probability

ABC random forests Model choice

Estimate of the posterior probability of the selected model

$$
\mathbb{P}[\mathscr{M}=\mathbf{m} \widehat{(\eta(\mathbf{y})}) \mid \eta(\mathbf{y})]
$$

random comes from \mathscr{M} (bayesian)!

ABC random forests
 Model choice

Estimate of the posterior probability of the selected model

$$
\mathbb{P}[\mathscr{M}=\mathbf{m} \widehat{(\eta(\mathbf{y})}) \mid \eta(\mathbf{y})]
$$

random comes from \mathscr{M} (bayesian)!

$$
\mathbb{P}[\mathscr{M}=\mathbf{m} \widehat{(\eta(\mathbf{y})}) \mid \eta(\mathbf{y})]=1-\mathbb{E}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{y})})) \mid \eta(\mathbf{y})]
$$

ABC random forests Model choice

A second random forest in regression

1) compute the value of $\mathbb{I}(\mathscr{M} \neq m \overline{(\eta(z)}))$ for the trained
random forest \hat{m} and for all terms in the $A B C$ reference
table using the out-of-bag classifiers
2) train a RF regression and get $\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq m \overline{m(\eta(z)})) \mid \eta(z)]$

ABC random forests Model choice

A second random forest in regression

1) compute the value of $\mathbb{I}(\mathscr{M} \neq \mathfrak{m} \widehat{\eta(z)})$ for the trained random forest \hat{m} and for all terms in the ABC reference table using the out-of-bag classifiers

$A B C$ random forests Model choice

A second random forest in regression

1) compute the value of $\mathbb{I}(\mathscr{M} \neq m \widehat{(\eta(z)})$ for the trained random forest \hat{m} and for all terms in the ABC reference table using the out-of-bag classifiers
2) train a RF regression and get $\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{z})})) \mid \eta(\mathbf{z})]]$

$A B C$ random forests Model choice

A second random forest in regression

1) compute the value of $\mathbb{I}(\mathscr{M} \neq m \widehat{(\eta(\mathbf{z})})$ for the trained random forest \hat{m} and for all terms in the ABC reference table using the out-of-bag classifiers
2) train a RF regression and get $\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{z})})) \mid \eta(\mathbf{z})]]$
3) return

$$
\widehat{\mathbb{P}}[\mathscr{M}=\mathrm{m} \widehat{(\eta(\mathbf{y})}) \mid \eta(\mathbf{y})]=1-\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{z})})) \mid \eta(\mathbf{z})]]
$$

$A B C$ random forests Model choice

A second random forest in regression

1) compute the value of $\mathbb{I}(\mathscr{M} \neq m \widehat{(\eta(\mathbf{z})})$ for the trained random forest \hat{m} and for all terms in the ABC reference table using the out-of-bag classifiers
2) train a RF regression and get $\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{z})})) \mid \eta(\mathbf{z})]]$
3) return

$$
\widehat{\mathbb{P}}[\mathscr{M}=\mathrm{m} \widehat{(\eta(\mathbf{y})}) \mid \eta(\mathbf{y})]=1-\widehat{\mathbb{E}}[\mathbb{I}(\mathscr{M} \neq \mathrm{m} \widehat{(\eta(\mathbf{z})})) \mid \eta(\mathbf{z})]]
$$

on same reference table out-of-bag magic trick avoid overfitting!

$A B C$ random forests Parameter inference

ABC random forests for Bayesian parameter inference
 Input $A B C$ reference table involving parameters values and summary statistics, table used as learning set

$A B C$ random forests Parameter inference

ABC random forests for Bayesian parameter inference Raynal, Marin, Pudlo, Ribatet, Robert and Estoup (2017) Preprint reviewed and recommended by Peer Community In Evolutionary Biology

Input $A B C$ reference table involving parameters values and summary statistics, table used as learning set

$A B C$ random forests Parameter inference

ABC random forests for Bayesian parameter inference Raynal, Marin, Pudlo, Ribatet, Robert and Estoup (2017) Preprint reviewed and recommended by Peer Community In Evolutionary Biology

Input $A B C$ reference table involving parameters values and summary statistics, table used as learning set

Output some regression RF predictors to infer posterior expectations, quantiles, variances and covariances

$A B C$ random forests Parameter inference

ABC random forests for Bayesian parameter inference Raynal, Marin, Pudlo, Ribatet, Robert and Estoup (2017) Preprint reviewed and recommended by Peer Community In Evolutionary Biology

Input $A B C$ reference table involving parameters values and summary statistics, table used as learning set

For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate \mathbf{z}_{i} from the model $f\left(\cdot \mid \boldsymbol{\theta}_{i}\right)$
c) Calculate $\mathbf{x}_{i}=\eta\left(\mathbf{z}_{i}\right)$

Output some regression RF predictors to infer posterior expectations, quantiles, variances and covariances

$A B C$ random forests Parameter inference

ABC random forests for Bayesian parameter inference Raynal, Marin, Pudlo, Ribatet, Robert and Estoup (2017) Preprint reviewed and recommended by Peer Community In Evolutionary Biology

Input $A B C$ reference table involving parameters values and summary statistics, table used as learning set

For $i=1, \ldots, M$
a) Generate θ_{i} from the prior $\pi(\cdot)$
b) Generate $\mathbf{z}_{\mathbf{i}}$ from the model $f\left(\cdot \mid \boldsymbol{\theta}_{\boldsymbol{i}}\right)$
c) Calculate $x_{i}=\eta\left(\mathbf{z}_{i}\right)$

Output some regression RF predictors to infer posterior expectations, quantiles, variances and covariances

ABC random forests Parameter inference

Expectations Construct d regression RF, one per dimension

Quantiles very nice trick to estimate the cdf, no new forest
Quantile Regression Forests

Variances use of a out-of-bag trick, no new forest

ABC random forests Parameter inference

Expectations Construct d regression RF, one per dimension
Quantiles very nice trick to estimate the cdf, no new forest Quantile Regression Forests Meinshausen (2006) JMLR

Variances use of a out-of-bag trick, no new forest
Covariances new forests for which the responses variables are the products of out-of-bag errors

$A B C$ random forests Parameter inference

Expectations Construct d regression RF, one per dimension
Quantiles very nice trick to estimate the cdf, no new forest Quantile Regression Forests Meinshausen (2006) JMLR

Variances use of a out-of-bag trick, no new forest

Covariances new forests for which the responses variables are the products of out-of-bag errors

$A B C$ random forests Parameter inference

Expectations Construct d regression RF, one per dimension

Quantiles very nice trick to estimate the cdf, no new forest Quantile Regression Forests Meinshausen (2006) JMLR

Variances use of a out-of-bag trick, no new forest

Covariances new forests for which the responses variables are the products of out-of-bag errors

$A B C$ random forests Parameter inference

We constructed forests able to estimate everywhere in the space of summary statistics but we are interested only in one point, the observed dataset

ABC random forests Parameter inference

We constructed forests able to estimate everywhere in the space of summary statistics but we are interested only in one point, the observed dataset
construct local random forest, thesis of Louis Raynal

Human populations example

50,000 SNP markers genotyped in four Human populations: Yoruba (Africa), Han (East Asia), British (Europe) and American individuals of African Ancestry; 30 individuals per population.

We compared six scenarios of evolution which differ from each other by one ancient and one recent historical events:
A) a single out-of-Africa colonization event giving an ancestral out-of-Africa versus two independent out-of-Africa colonization events;
B) the possibility of a recent genetic admixture of Americans of African origin with their African ancestors and individuals of European or East Asia origins.

Human populations example

Human populations example

Human populations example

Human populations example

$d=112$ summary statistics provided by DIYABC for SNP markers complemented by the five Linear Discriminant Analysis axes

ABC-RF algorithm selects scenario 2

Human populations example

$d=112$ summary statistics provided by DIYABC for SNP markers complemented by the five Linear Discriminant Analysis axes
$M=50,000$
ABC-RF algorithm selects scenario 2

With second regression forest, we got an estimate of the posterior probability of scenario 2 equal to 0.998

Human populations example

$d=112$ summary statistics provided by DIYABC for SNP markers complemented by the five Linear Discriminant Analysis axes
$M=50,000$
ABC-RF algorithm selects scenario 2

With second regression forest, we got an est
rior probability of scenario 2 equal to 0.998

Human populations example

$d=112$ summary statistics provided by DIYABC for SNP markers complemented by the five Linear Discriminant Analysis axes
$M=50,000$

ABC-RF algorithm selects scenario 2
With second regression forest, we got an estimate of the posterior probability of scenario 2 equal to 0.998

Human populations example

Considering previous population genetics studies in the field, it is not surprising we got

a single out-of-Africa colonization event giving an ancestral
out-of- Africa population
a secondarily snlit into one European and one East Asian population lineage

Human populations example

Considering previous population genetics studies in the field, it is not surprising we got

- a single out-of-Africa colonization event giving an ancestral out-of- Africa population
a secondarily split into one European and one East Asian
population lineage
a recent genetic admixture of Americans of African origin
with their African ancestors and European

Human populations example

Considering previous population genetics studies in the field, it is not surprising we got

- a single out-of-Africa colonization event giving an ancestral out-of- Africa population
- a secondarily split into one European and one East Asian population lineage

Human populations example

Considering previous population genetics studies in the field, it is not surprising we got

- a single out-of-Africa colonization event giving an ancestral out-of- Africa population
- a secondarily split into one European and one East Asian population lineage
- a recent genetic admixture of Americans of African origin with their African ancestors and European

