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Rare event simulation: methods and simulations

e Estimation of the probability of a rare event (such as the failure of a
complex system).

e Standard methods (quadrature, Monte Carlo, reliability).

e Advanced Monte Carlo methods (different variance reduction techniques:
importance sampling, control variates, with adaptive versions).

e Interacting particle systems (IPS with mutation-selection-resampling,
multilevel splitting).
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Uncertainty propagation

e Context: numerical code (black box) or experiment
Y =f(X)

with
Y = scalar output
X = random input parameters, with known distribution (with pdf p(x))
f = deterministic function R? — R (computationally expensive).

e Goal: estimation of a quantity of the form

Elg(Y)]

with an “error bar" and the minimal number of simulations.

Examples (for a real-valued output Y):

e g(y) =y — mean of Y, E[Y]

e g(y) = y? — variance of Y, Var(Y) = E[(Y —E[Y])?] = E[Y?] - E[Y]?
o g(y) =1, )(y) — probability P(Y > y).
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Analytic method

e The quantity to be estimated is a d-dimensional integral:
I = Elg(V)] = EINX)] = | h(a)p(z)dz
where p(x) is the pdf of X and h(x) = g(f(x)).
e In simple cases (when the pdf p and the function h have explicit

expressions), one can sometimes evaluate the integral exactly (exceptional
situation).
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Quadrature method
e The quantity to be estimated is a d-dimensional integral:

I = Elg(Y)] = E[h(X)] = /R h(@)p(z)de

where p(x) is the pdf of X and h(x) = g(f(x)).
o If p(x) = H;j:l po(x;), then it is possible to apply Gaussian quadrature
with a tensorized grid with n? points:

/_Z ZIOJI p.ld 5117""51'(1)

=1 jg=1

with the weights (pj)j=1,..,» and the points (§;)j=1, . associated to the
quadrature with weighting function pg.

e There exist quadrature methods with sparse grids (cf Smolyak).

e Quadrature methods are efficient when:

- the function  — h(x) is smooth (and not only f),

- the dimension d is “small” (even with sparse grids).

They require many calls.
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Monte Carlo method

e Principle: replace the statistical expectation
I'=E[g(Y)] = E[h(X)]

by an empirical mean.
e There are different probabilistic representations, that give different
simulation methods.
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Monte Carlo method
For a given y; we want to estimate

Ps = P(f(X) > }/s)
The quantity of interest is an expectation:

ps = E[1p, o) (F(X))]

e Monte Carlo method:
1) Let (X())7_, be a n-sample of X.
2) Compute
720 =1, o (F(X™X))

3) Define the empirical estimator of ps:

k=

[y
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e Empirical estimator of pq:

e The estimator is unbiased:
1 n
E|P,| =E|=Y zK
P -3

e The law of large numbers shows that the estimator is convergent:

- > E[zW] = E[zM]= p,
n
k=1

n
Py = % > ZWSE[ZW] = p,
k=1

because the Z()'s are independent and identically distributed (i.i.d.).
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e Empirical estimator of ps:

e Mean square error:
5 2 5 — Lyar(z)
E [(Pn —p) ] = Var(Py) = —Vax(2)
1
= —(ps— )

e The relative error is therefore:

\/Var(FA’,,) B \/Var(FA’,,) 1 l . Pl 1

E[P,] ps  n\lps T T J/nps

— If py < 1, then we need nps > 1 so that the relative error is smaller
than 1 (not surprising) !

Error =
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e Question: The estimator P, gives an approximate value of pg, all the
better as n is larger. How to quantify the error ?

e Answer. We build a confidence interval at the level 0.95, i.e. an
empirical interval [4,, b,] such that

P (ps € [4n, Bn]) > 0.95

Construction based on Central Limit Theorem:
\f(P —ps) = ( ZZ(")— S) 3 N(0, ps — p2) in distribution

Therefore
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A — p2 . _ 12
Ppoe|P,—1.06YP P p 196V P\ ) Lo0s5
Vvn Vvn

The unknown parameter p; is still in the bounds of the interval !
Two solutions:

- ps € [0,1], therefore \/ps — p2 < 1/2 and
P(pe|Pr—098 1 B, 1098 |)>005
Ps n . ﬁ, n . \/ﬁ = V.

- asymptotically, we can replace ps in the bounds by P, (OK if nps > 10
and n(1 — ps) > 10):

) N NI
Plpe|P—196" " B +196 " "| | ~0.095
vn Vn

[Proof: consistency of P, and Slutsky’s theorem].
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Monte Carlo estimation: general model
e Black box model (numerical code)

Y = f(X)
We want to estimate
I =E[g(Y)]
for some function g : R — R.

For instance g(y) = 1|y, o0)(¥)-
e Empirical estimator:

b= 13 elr(x )
k=1

where (X (K))1_ "is a n-sample of X.

This is the empirical mean of a sequence of i.i.d. random variables.
e The estimator /, is unbiased: E[l,] = I.

e The law of large numbers gives the convergence of the estimator:

T n—oo

I, —" | with probability 1
S 1)



e Error: 1
Var(l,) = —Var(g(Y))

Proof: the variance of a sum of i.i.d. random variables is the sum of the
variances.
e Asymptotic confidence interval:

P(le[l—l%\[ f]>20.95

n 1/2
by = (1 S g(F(xX M)y P)
n
k=1

e Advantages of the MC method:

1) no regularity condition for f, g (condition: E[g(f(X))?] < c0).
2) convergence rate 1/4/n in any dimension.
)
)

where

3) can be applied for any quantity that can be expressed as an expectation.
4) embarrassingly parallel.
e One needs to simulate many samples of X and to call many times f.

Josselin Garnier Rare event simulation ETICS 2020 13 / 54



Uncertainty propagation by metamodels

The complex code/experiment f is replaced by a metamodel (reduced
model) . and one of the previous techniques is applied with £, (analytic,
quadrature, Monte Carlo).

— It is possible to call many times the metamodel.

— The choice of the metamodel is critical.

— The error control is not simple.
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Taylor expansions

e The output Y = f(X) is approximated by a Taylor series expansion

Y: = f(X).

e Example (sandwich method):

- We want to estimate E[Y] and Var(Y) for Y = f(X) given pu = E[X]
and C = Cov(X).

- We approximate Y = f(X) by Y; = (X)) = f(p) + VI(p) - (X — p).
We find:

E[Y] ~ E[Y;] = f(p), Var(Y) ~ Var(Y;) = V() TCVF ()

We just need to compute f(u) and V() (evaluation of the gradient by
finite differences, about d + 1 calls to f, or adjoint method).

e Rapid, analytic, allows to evaluate approximately central trends of the
output (mean, variance).

e Suitable for small variations of the input parameters and a smooth
model (that can be linearized).
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Reliability methods

e We consider the output Y = f(X), with X = (X;)?_; a random vector
with known pdf p.

e We want to evaluate

ps=P(Y >y)=P(X €F)= /d 1r(x)p(x)dx = / p(xz)dx,
R F
where
F={xeRY f(x) >y}
is called the failure domain.

e FORM-SORM method (First or Second-Order Reliability Method):
Let us assume that the X;'s are i.i.d. with distribution N'(0, 1) (see the
slides on isoprobabilist transform):

1 x||?
() = Gayar & =

[Cf. O. Ditlevsen et H. O. Madsen, Structural Reliability Methods, Wiley, 1996.]
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Ps = / p(z)dz, F={ze Rd? f(x) > ys}
F

e we find by constrained optimization the design point x, i.e. the point
with the smallest norm s.t. f(xs) = ys (assuming it exists and is unique).

xs = argmin ||z|?
xeF

= T I

e the failure domain F is approximated by a half-space with smooth and
simple boundary F going through x¢, which makes it possible to compute

ﬁsz/ﬁp(w)dw
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ﬁsz/Ap(w)dw

F

e The half-space F is determined by a hyperplane by the FORM method;
it goes through the point x5 and is orthogonal to the vector 5. We get:

ps = (=),
where @ is the cdf of the distribution N(0,1).

5
4 FORM:_ (x)>y,
. .
2
1109y,
0

0 2 i 6

Proof. Introduce an orthonormal basis of RY whose first vector is xs/||xs]|.

Carry out the change of variable ' = Ox, where O is the orthogonal

matrix of basis change. O
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ﬁsz/ﬁp(w)dw

e The half-space F is determined by a quadratic surface by the SORM
method. We get (Breitung formula):

ps = (|

SH)H —_—Te s\m,( Lo, W)

where the k; are the curvatures of the failure surface at s (computed
from the gradient and Hessian of f at x;).

5 éORM;
4 FORM ! f(x)>y,
) -
2
1 f(x)<yS AN
0

0 2 4 6
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Isoprobabilist transform

e Let the distribution of X = (X;)9_; be given.

How do we transform the problem into the “standard” form where X; are
i.i.d. with distribution A/(0,1) ?

e Assume that (X;)9_; are independent with continuous cdf (F;)%_;.

o Let

¢(x) = (P71 (Flx)),..., 7 (Falxd))),

where ® is the cdf of the distribution N(0, 1).
e The vector

X = ¢(X)
has independent coordinates which satisfy
P(X; < x) = P(®7HF(X))) < x) =P(Fi(Xi) < ®(x)) = d(x),

because F;(X;) has distribution ¢/(0, 1).
— The coordinates of X are i.i.d. with distribution N(0,1).
—= p=P(f(X) = y) = P(f(X) > ys) with f = fog~L.
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e The Rosenblatt transform: If X is a random vector with arbitrary pdf,
then there exists a function ¢ : R — RY such that

X = o(X)

has distribution N(0,1).

e In two steps:
¢ = ¢(2) o (]5(1)
where ¢(1) and ¢(? are the functions from R? to R defined by:
1) ¢§1)($) = Fijp,.ica(xilxa, - oxio1), i=1,...,d,
2) pP)(z) = (®7Hz1),..., 97 }(za)).

Here the function Fjj;  j_1(xj|x1,...,Xi—1) is the cdf of the variable X;
given {Xl = X1y ,X,',l = X,',l}.

e The coordinates of ¢(1)(X) are i.i.d. with distribution 2/(0,1).
e The coordinates of $(?) o0 ¢(1)(X) are i.i.d. with distribution A/(0,1).
— Not easy to implement and to interpret (e.g., dependence w.r.t. order).
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Proof.
Let Z = ¢(1(X). We want to show that Z has the distribution /([0, 1]¢).

Let g be a test function (d = 2).
Ble(2)] = Ele(@ (X)) = [[ (6 @)p(a)da

We make the change of variable z = ¢()(z) = (F1(x1), Faj1(x2|x1)),
whose Jacobian is:

J:< OuFi(a)  OuFi(x) >: <p1(x1) 0 >

Ox Fopn(x2lx1)  Ox, Fopi(x2lx1) *  poi(elx)

and the determinant of the Jacobian is:

Det(J) = p1(x1)p2j1(x2[x1) = p(x1, x2)

sis(2) = [[ | s()0z
L]
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Variance reduction techniques

Goal: reduce the variance of the Monte Carlo estimator:
N 1
E[(l,—1)?] = —Var(h(X))

where h(z) = g(f(x)), | = E[A(X)], o = L S0_; h(X ().
e The methods

- Importance sampling

- Control variates

- Stratification

reduce the constant without changing 1/n, stay close to the Monte Carlo
method (parallelizable).

e The methods

- Quasi-Monte Carlo

aim at changing 1/n.

e The methods

- Interacting particle systems

are different from Monte Carlo (sequential).
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Importance sampling

e The goal is to estimate | = E[h(X)] for X a random vector and
h(x) = g(f(x)) a deterministic function.

e Observation: the representation of | as an expectation is not unique:

h(z)p(x) h(X)p(X)
| = E,[h(X)] = / h(z)p(a)da = / R q(w)d = Eq [W]
The choice of the pdf g depends on the user.
e |dea: when we know that h(X) is sensitive to certain values of X,
instead of sampling X (¥) with the original pdf p(z) of X, a biased pdf
q(x) is used that makes more likely the “important” realizations.

e Using the representation

1= B[00 = 2 502

we can propose the estimator:

P 1y (X)) o
- - (k) P2 7) (k)
In = n kzzlh(X )q(X(k))’ XY iid. with pdf g.
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e The estimator is unbiased (provided supp(p) C supp(q)):
i - (k)| = P
Eqlh] ZE X)X =By (X)L ()|

- / () (#)q(x)dw = / h(@)p(@)dz = B, [h(X)] = 1

e The estimator is convergent:

" (k)
= 13K X(k))gg (k); 5 5, () 2] < B (X)) = 1

e The variance of the estimator is:

Var(f,) = ,::Varq<h(X)588) - % (E,, [h(X)ﬂ;gg] —E, [h(X)]2>

By a judicious choice of g the variance can be dramatically reduced.
p(z)

and to
q(zx)

e Critical points: it is necessary to know the likelihood ratio

know how to simulate X with the pdf g.
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e The estimator is asymptotically normal

Vil = 1) "5 20 (0. varg ()25

e It is (in theory) possible to construct asymptotic confidence intervals.
The empirical estimator of the asymptotic variance is

2 (k)
th (i(k)g 2, X0 iid. with pdf g.

The estimator &2 is consistent (with standard moment conditions) but it
may be strongly fluctuating.

— the construction of confidence interval is not easy.
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e Optimal importance sampling.
The best biased distribution is the one that minimizes Var(/,).
< solution of the minimization problem: find the pdf g(x) minimizing

[h(X)ngﬂ /h(w)2p2(w)dw

q(x)

Solution (when h is nonnegative-valued):

_ ha)pla)
) = Tl (et dor

We then find

ry_ L > P(X) 2\ _ 6
Var(/p) - <IE,, [h(X) qopt(X):| E, [h(X)] > 0!
Pratically: the denominator of gopt(x) is the desired quantity E[h(X)],
which is unknown; we do not know how to sample gop:.
Therefore the optimal IS method cannot be implemented.
But it is the principle for an adaptive method.
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e Example: We want to estimate
I =P(X > 4) =E[h(X)]
with X ~ N(0,1) and h(x) = 1[4 o)(x).

1 e X2 1 4
= m/ loo)(x)e” 2dx = &(—4) = §erfc —) =317 107°

2

Monte Carlo: Let (X(K))7_, be i.i.d. with the original distribution

N(0,1).
N
:EZIX(”>4
k=1

We have Var(/,) = 13171075
Importance Sampling: Let (X(k))z 1 be i.i.d. with the distribution
N(4,1). (x<k>)

- Z Ly k)>4 (0 " Z Lywsqee X e

- 2

We have Var(/,) = %5.53 10~ 8.
IS needs 600 times less simulations then MC to reach the same precision !
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Warning: we should not bias too much.
Importance Sampling: Let (X("))Z_1 be i.i.d. with the distribution

N(M 1) (X(k))

% SRR
- X (k) > X(k) x)—pw2

< Var(l,) = 17 rfc(t%‘) 12, which gives the normalized relative

error \/nE[(I, — )32/

10

™

n'2 relative error
=

OA

If the bias is large, the fluctuations of the likelihood ratios become large.
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e Example: we want to estimate
I'=E[h(X)]
with X ~ N(0,1) and h(x) = exp(x).

\/ﬂ/eex

The large values of X are important.
Importance Sampling: With a sample (X)), —1,...,n With the distribution

N(p,1), p>0.
L R, ]
~ k e 2 k — X(k) B
= h(X( ))W =5 h(X(K))e=nX0+5
k=1 e 2 k=1

" 1
Var(f,) = - (eu2_2u+2 _ e1>
n

Monte Carlo = 0: Var(/,) = % (2 —eh)

n
Optimal importance sampling ;= 1: Var(/,) =0
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e Gaussian random walk X, = X,,_1 + 0,, Xo = 0, where 0, is a sequence
of i.i.d. Gaussian random variables A/(0, 1).

1 &0 x2
ps =P( Xy > ys) = \/W/ exp(—m)dx
Ys

MC: sample n trajectories (Xi(k)),{‘io, k=1,...,n, and estimate
A .1 (1 1/2

IS: sample n trajectories (X,(,k))l’;/’zo, k =1,...,n, with biased distribution
0p ~ N(a/M,1) and estimate:

k=1
1/2
2 2y v (k
1 i > k1 1X(k)> exp (yms _ ﬁx}&))
8, = — > »
n 72
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e Adaptive importance sampling: choice of a family of biased distributions
{qe,0 € © C R9}

e Affine transform

Change of mean gg,(x) = p(x — 0,,)

Change of mean and variance gy, 0, () = | det 0,17 1p(6, (z —6,))
Easy to implement X = 6,X + 0.~ qe,.0, iff X ~p.

Often used with Gaussian distributions.
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e Adaptive importance sampling: choice of 6.
e Variance minimization.
Principle: minimization of the variance of the estimator:

0" € argmin E, h(X)2£(X)]
0 de

Empirically

n

6, ¢ argmin 1Zh(x(’<))2£(X(k)), X ) jid. with pdf p

n
—1 do

Studied with Gaussian distribution and change of mean and variance.
~ Ak

With additional hypotheses, 8, — 6 a.s., with central limit theorem.

But: the likelihood ratio is strongly fluctuating.

[B. Jourdain and J. Lelong. Robust adaptive importance sampling for normal
random vectors. Ann. Appl. Probab. 19, 1687-1718, 2009.]
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e Adaptive importance sampling: choice of 6.

e Cross entropy

Let g* be the optimal pdf ¢*(x) = [h((“;z) ]p( x) (here h > 0).

Principle: minimization of the KuIIback Leibleir distance between ¢g* and
de:

0" € argmin D(q", qs), D(q", qo) = Eq- [ log %(X)]

In fact
argmin D(q", qg) = argmin Ep [h(X) log qﬁ(X)]
0
Empirically

0, e argmin th (X)) log — - Px®)  xU iid. with pdf p

With additional hypotheses, 6, — 0" a.s., with central limit theorem.
The log-likelihood ratio is less fluctuating than the likelihood ratio used in

the variance minimization method.
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e Adaptive importance sampling: choice of 6.
e Cross entropy
For any 6g,

argmin D(q", o) = argmin Eq,, [(X)log (7 (X)) 2-(X)]
0

Empirically, if X(®) ii.d. with pdf Ge,. then

A 1 p p
0, € argmin — A(X 8 log (£ (X (K)Y) L (x (K
gpin - 3 HCXW)log (2 (X)) 2 (x )
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e Adaptive importance sampling: choice of 6.
e Recursive cross entropy

Principle: go progressively towards 6*.
Algorithm:

Step 0: Set 6y (e.g. 6y=0, qe, = p).

Step j > 1: Generate X (¥ i.i.d. with pdf d6,_,

h(X(")) Iog( (X (k))) (X("))

0; € argmin
0 1 de q6;_,

with N;_1 large enough, until a stopping criterium is met, e.g.

10j — 01| < 4.

Problem: if h(x) = 1¢(3)>,,, then one needs realizations that achieve
f(X(¥)) > y, during the first step (8o, No).
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e Adaptive importance sampling: choice of 6.

e Adaptive cross entropy

Assume h(z) = 1¢(z)>,,-

Principle: go progressively towards 8* by “increasing” ys.
Algorithm:

Step 0: Set 0y (e.g. 8p =0, g, = p), yo, and a (e.g. a =0.1).
Step j > 1: Generate X(¥) ii.d. with pdf 96,_,

=
\

Z 1f(X(k))>yj,1 log ( (X(k))) (X(k))

0,’ S argmin
0 j—1 do do;
J k=1 j—1

yj = (1 — a)—empirical quantile of (f(X(k)))LV;1

with N;_1 large enough, until y; > y;.
Estimation of / with or without recycling.

[P.T. De Boer, D.P. Kroese, S. Mannor, and R.Y. Rubinstein. A tutorial on the
cross-entropy method, Annals of Operations Research 134, 19-67, 2005.]
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Control variates

e The goal is to estimate | = E[h(X)] for X a random vector and
h(x) = g(f(x)) a deterministic function.
e Assume that we have a reduced model £(X).

e Importance sampling method:

First we evaluate (we approximate) the optimal density
fr .

Gop.o(w) = EEEPEE, with |, = [ g(f(x))p(x)dzx.

Second we use it as a biased density for estimating /.

Dangerous, use conservative version.
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Control variates

e The goal is to estimate | = E[h(X)] for X a random vector and
h(x) = g(f(x)) a deterministic function.
e Assume that we have a reduced model f,(X).

e Control variates method:

We denote h(x) = g(f(x)), h(x) = g(f(x)).
We assume that we know |, = E[h,(X)].

By considering the representation

I'=E[h(X)] =k + E[A(X) — h(X)]

we propose the estimator:
R 1<
=14+ = (k)y _ (k)
p= k= >0 A W) — b (x),
k=1
where (X (K))_ is a n-sample (with the pdf p).
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e Estimator:

~ 1
- il (k)y _ (k)
=+ = 30 A ) — h(X )

k=1
e The estimator is unbiased:
E[l] = hk+= ZE h(X W) — h(XW)] = I + E[A(X)] - E[h:(X)]

= lr—l—IE[h( N—Fh =1
e The estimator is convergent:
I =X L+ E[A(X) - h(X)] =1
e The variance of the estimator is:
Var(l,) = %Var[h(X) — h(X)]

< The use of a reduced model can reduce the variance.
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e Example: we want to estimate
I = E[h(X)]

with X ~ 24(0,1), h(x) = exp(x).
Result: = e —1~1.72.
Monte Carlo.

= %Z exp[X¥)]
k=1

Variance of the MC estimator= %(2e —1)~ %4.44.
Control Variates. Reduced model: h,(x) =1+ x (here |, = 3). CV

estimator:
n

A 1
Ih=1kL+ = exp[X(¥)] — 1 — x(¥
AN }

Variance of the CV estimator = %(3e — %2 — %) ~ %0.044.

The CV method needs 100 times less simulations to reach the same
precision as MC |
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e Application: estimation of

I'=E[g(f(X))]

We have a reduced model £, of the full code f. The ratio between the
computational cost of one call of ¥ and one call of £, is g > 1.
Estimator

: Zh Wy 4L Zh he(X 10

with n, > n, h(x) = g(f(x)), h(x) = g(fi(x)).
Allocation between calls to the complete code and calls to the reduced
model can be optimized with the contraint n,/q + n(1+ 1/q) = niot:

n q 1
Mot "1 +q 1+ Var(hr(X))
v1+ q \/Var((h—hy)(
Classical trade-off between approximation error and estimation error.

Used when f(X) is the solution of an ODE or PDE with fine grid, while
f(X) is the solution obtained with a coarse grid (MultiLevel Monte Carlo).
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e Optimal control variate
By considering the representation (for a fixed \)

I = E[h(X)] = A + E[h(X) — Ah(X)]
we propose the estimator:
. 1«
I = = (k)y _ (k)
n =M+ — D A(X W) — Ah (X W),
k=1
where (X(K)7_ 'is a n-sample (with the pdf p).
The estimator is unbiased and consistent for any A. The variance is
A 1
Var(lp) = EVar(h(X) — A (X))
The A that minimizes the variance is
B Cov(h(X),hr(X))
B Var(h(X))

and then
Var(l,) = %Var(h(X)) (1-p%),  p=Corr(h(X),h(X))
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e Empirical optimal control variate
PO 1 o N
= Anke + — kzl h(X Y — X, h (X (),

with
S0 (WX R) = 157 (X)) (h(XR) = 1570 p (X (KD))
S (he(XO) = 1570 (X))

The estimator is slightly biased (O(1/n)).
We have the (optimal) asymptotic normality result

Vil = 1) "5 N (0, Var (h(X)) (1 — p?))

j\n:
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Stratification

Principle: The sample (X("))Z:1 is enforced to obey prescribed
proportions in some “strata”.

Method used in polls (representative sample).

Here: we want to estimate E[h(X)], X with values in D.

e Two ingredients:

i) A partition of the state space D = |J"; D;. We know p; = P(X € D).
ii) Total probability formula:

I =E[h(X i E[h(X)|X € D;] P(X € D;)
=1 J pi

e Estimation:
1) Forall i =1,...,m, J; is estimated by MC with n; simulations:

m
2) The estimator is /A,, = Z-/Ai,n,-Pi
i=1
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~ mo - 1 . .
In = ZPiJi,n,-, Jin; = - Z A(x Ry x0R o (XX e D))
i=1 " k=1

The total number of simulations is n =", n;.
e The estimator is unbiased, convergent and its variance is

Var IA Zp?\/ar i) Zp, '., with o7 = Var(h(X)|X € D;)

The user is free to choose the n; (Wlth the constraint . | nj = n).
e Proportional stratification: n; = p;n

=552 Sy <155, x00 - cxix o

i=1 k=1 Ilkl
Then

Var T Z pio

Var(T,,)M fVar Z p,a = Var T)
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Proof: We have

Eh(X)]? = (Zp;E[h(X)\X eD,-])2
i=1

(30) (ipiE[h(X)lX e DJ?)

i=1

IN

— zm: pE[h(X)|X € Dj]?
i=1

Therefore
> pio? = > pi(EINX)IX € D] - E[(X)|X € D)
i=1 i=1

= E[h(X)?] - zm:p,'E[h(XﬂX e D
i=1
< E[h(X)?] - E[A(X)]* = Var(h(X))
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However, the proportional allocation is not optimal !
e The optimal allocation is the one that minimizes the variance

~ m  p0?
Var(l)s = >/, P77
It is the solution of the minimization problem: find (n;)j=1, .. m minimizing

m o2 m
20; . .
E p; n—’l with the constraint E ni=n

i=1 i=1
Solution (optimal allocation, obtained with Lagrange multiplier method):
ni — n_Pi%i
R WRY-TJ

The minimal variance is
—~ 1 ([ 2
Var(ln)so = n Zpio'i >
i=1
We have: N N N
Var(/n)so = Var(/n)sp < Var(ln)/wc
Practically: the o;'s are unknown, therefore the optimal allocation is

unknown (principle of an adaptive method).
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e Example: we want to estimate
E[h(X)]

with X ~ U(—1,1), h(x) = exp(x).
Result: E[exp(X)] = sinh(1) ~ 1.18.
MC. With a sample X@) X ith the distribution Uu-1,1)

Ih= %Z exp[X ()]
k=1

Variance of the estimator = %(% - %2) ~ %0.43.
Proportional stratification. With a sample
- XMW X(7/2) with the distribution U/(—1,0),

- x(/24n) - X(") with the distribution 24(0,1).

n/2 n n
=23 epX O]+ = 3 expX ] = 13 explx ()
n k=1 n k=n/2+1 n k=1

Variance of the PS estimator ~ %0.14.
Here PS needs 3 times less simulations to reach the same precision as MC.
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Nonproportional stratification. With a sample
- XM X(7/4) with the distribution U/(—1,0),
- x(n/4+1) - X(") with the distribution 24(0, 1).

n/4 n
Iy = 2 Zexp[X(k)] + 2i Z exp[X(¥]
"= " =njat

Variance of the estimator ~ %0.048.

The stratification method needs 9 times less simulations to reach the same
precision as MC.

Similar to importance sampling with a stepwise constant biased pdf.
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Antithetic variables

e We want to compute /

MC with a n-sample (X (1), ... X (") with the distribution 2/([0, 1]%):
A1
S (k)
= > h(x1)
k=1
E[(7, - 1] = LVar(h(X)) = 1(/ W (z)dz — 1)
n n [0’1]d

e We consider the representations

I'= / h(l1 — x)dx and | = / h(x) + h(1 — x) o
[0,1]¢

[0,1]d 2
MC with a n/2-sample (X1, ..., X ("/2)) distributed as 4([0, 1]%):
n/2
~ 1
h==Y nx®)+h1-x®
2 HOX) (LX)
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e MC estimator with the sample
(XO, XMy = (x® . x0/2) 1 xO 1 X(/2) that is
not i.i.d.:

. 18 -
= > h(XW)
k=1

The function f is called n times.
e Error:

B[~ 1Y) = > (Var(h(X)) + Cov(h(X), h(1 — X))
1

= = W (x) + h(x)h(1 — x)dx — 21>

(/[Oﬁud()ﬂ)( ) )

n

The variance is reduced if Cov(h(X), h(1 — X)) < 0.
Sufficient condition: h is monotoneous.
Proof: If X, X’ i.i.d.
[A(X) — h(X)])[-h(1 - X)+h(1—-X")] > O0as.
—2E[A(X)h(1 — X)] + 2E[h(X)]* >
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e Example:

1
/=/ 1 dx
0 1+ x

n

Result: [ = In2.
Monte Carlo:

>
S|

1
14 X%

—
3
I

k=1
Var(l,) = %(fol(l +x)2dx —In22) =1 (1 —n22) ~ 11951072
Antithetic variables:
n/2

- 1 1 1
==
n;1+x(k)+2_x(k)

Var() = 2( fo (s + apg) " —n22) = 112103,

The AV method requires 15 times less simulations than MC.
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e More generally: one needs to find a pair (X, X) such that h(X) and
h(X) have the same distribution and Cov(h(X), h(X X)) < 0. )
e Monte Carlo with an i.i.d. sample (XM, X(1)) . (X (/2) X(n/2)))

n/2
Ih= ! > h(x W) + (XK

n
k=1

E[( 1] = - (Var(h(X)) + Cov(h(X), H(X)))

e Recent application: computation of effective tensors in stochastic
homogenization (the effective tensor is the expectation of a functional of
the solution of an elliptic PDE with random coefficients; antithetic pairs of
the realizations of the composite medium are sampled; gain by a factor 3;
in fact, better results with control variates; cf C. Le Bris, F. Legoll).

e Not very useful for the estimation of probabilities of rare events.
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