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Rare event simulation: methods and simulations

• Estimation of the probability of a rare event (such as the failure of a
complex system).
• Standard methods (quadrature, Monte Carlo, reliability).
• Advanced Monte Carlo methods (different variance reduction techniques:
importance sampling, control variates, with adaptive versions).
• Interacting particle systems (IPS with mutation-selection-resampling,
multilevel splitting).
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Uncertainty propagation

• Context: numerical code (black box) or experiment

Y = f (X)

with
Y = scalar output
X = random input parameters, with known distribution (with pdf p(x))
f = deterministic function R

d → R (computationally expensive).
• Goal: estimation of a quantity of the form

E[g(Y )]

with an “error bar” and the minimal number of simulations.
Examples (for a real-valued output Y ):
• g(y) = y → mean of Y , E[Y ]
• g(y) = y2 → variance of Y , Var(Y ) = E[(Y −E[Y ])2] = E[Y 2]−E[Y ]2

• g(y) = 1[ys,∞)(y) → probability P(Y ≥ ys).

Josselin Garnier Rare event simulation ETICS 2020 3 / 54



Analytic method

• The quantity to be estimated is a d-dimensional integral:

I = E[g(Y )] = E[h(X)] =

∫

Rd

h(x)p(x)dx

where p(x) is the pdf of X and h(x) = g(f (x)).
• In simple cases (when the pdf p and the function h have explicit
expressions), one can sometimes evaluate the integral exactly (exceptional
situation).
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Quadrature method
• The quantity to be estimated is a d-dimensional integral:

I = E[g(Y )] = E[h(X)] =

∫

Rd

h(x)p(x)dx

where p(x) is the pdf of X and h(x) = g(f (x)).
• If p(x) =

∏d
i=1 p0(xi ), then it is possible to apply Gaussian quadrature

with a tensorized grid with nd points:

Î =
n∑

j1=1

· · ·
n∑

jd=1

ρj1 · · · ρjdh(ξj1 , . . . , ξjd )

with the weights (ρj)j=1,...,n and the points (ξj)j=1,...,n associated to the
quadrature with weighting function p0.
• There exist quadrature methods with sparse grids (cf Smolyak).
• Quadrature methods are efficient when:
- the function x → h(x) is smooth (and not only f ),
- the dimension d is “small” (even with sparse grids).
They require many calls.
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Monte Carlo method

• Principle: replace the statistical expectation

I = E[g(Y )] = E[h(X)]

by an empirical mean.
• There are different probabilistic representations, that give different
simulation methods.
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Monte Carlo method

For a given ys we want to estimate

ps = P(f (X) ≥ ys)

The quantity of interest is an expectation:

ps = E
[
1[ys,∞)(f (X))

]

• Monte Carlo method:
1) Let (X(k))nk=1 be a n-sample of X.
2) Compute

Z (k) = 1[ys,∞)(f (X
(k)))

3) Define the empirical estimator of ps:

P̂n :=
1

n

n∑

k=1

Z (k)
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• Empirical estimator of ps:

P̂n :=
1

n

n∑

k=1

Z (k)

• The estimator is unbiased:

E

[
P̂n

]
= E

[
1

n

n∑

k=1

Z (k)

]
=

1

n

n∑

k=1

E[Z (k)] = E[Z (1)]= ps

• The law of large numbers shows that the estimator is convergent:

P̂n =
1

n

n∑

k=1

Z (k)n→∞−→E[Z (1)] = ps

because the Z (k)’s are independent and identically distributed (i.i.d.).
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• Empirical estimator of ps:

P̂n :=
1

n

n∑

k=1

Z (k)

• Mean square error:

E

[
(P̂n − ps)

2
]
= Var

(
P̂n

)
=

1

n
Var(Z (1))

=
1

n
(ps − p2s )

• The relative error is therefore:

Error =

√
Var(P̂n)

E[P̂n]
=

√
Var(P̂n)

ps
=

1√
n

√
1

ps
− 1

ps≪1≃ 1√
nps

→֒ If ps ≪ 1, then we need nps > 1 so that the relative error is smaller
than 1 (not surprising) !
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• Question: The estimator P̂n gives an approximate value of ps, all the
better as n is larger. How to quantify the error ?
• Answer: We build a confidence interval at the level 0.95, i.e. an
empirical interval [ân, b̂n] such that

P

(
ps ∈ [ân, b̂n]

)
≥ 0.95

Construction based on Central Limit Theorem:

√
n
(
P̂n − ps

)
=

√
n
(1
n

n∑

k=1

Z (k) − ps

)
n→∞−→ N (0, ps − p2s ) in distribution

Therefore

P

(∣∣∣P̂n − ps

∣∣∣ < c

√
ps − p2s√

n

)
n→∞−→ 2√

2π

∫ c

0
e−x2/2dx
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P

(
ps ∈

[
P̂n − 1.96

√
ps − p2s√

n
, P̂n + 1.96

√
ps − p2s√

n

])
≃ 0.95

The unknown parameter ps is still in the bounds of the interval !
Two solutions:
- ps ∈ [0, 1], therefore

√
ps − p2s < 1/2 and

P

(
ps ∈

[
P̂n − 0.98

1√
n
, P̂n + 0.98

1√
n

])
≥ 0.95

- asymptotically, we can replace ps in the bounds by P̂n (OK if nps > 10
and n(1− ps) > 10):

P


ps ∈


P̂n − 1.96

√
P̂n − P̂2

n√
n

, P̂n + 1.96

√
P̂n − P̂2

n√
n




 ≃ 0.95

[Proof: consistency of P̂n and Slutsky’s theorem].
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Monte Carlo estimation: general model
• Black box model (numerical code)

Y = f (X)

We want to estimate
I = E[g(Y )]

for some function g : R → R.
For instance g(y) = 1[ys,∞)(y).
• Empirical estimator:

În =
1

n

n∑

k=1

g(f (X(k)))

where (X(k))nk=1 is a n-sample of X.
This is the empirical mean of a sequence of i.i.d. random variables.
• The estimator În is unbiased: E[În] = I .
• The law of large numbers gives the convergence of the estimator:

În
n→∞−→ I with probability 1
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• Error:

Var(În) =
1

n
Var(g(Y ))

Proof: the variance of a sum of i.i.d. random variables is the sum of the
variances.
• Asymptotic confidence interval:

P

(
I ∈

[
În − 1.96

σ̂n√
n
, În + 1.96

σ̂n√
n

])
≃ 0.95

where

σ̂n =

(
1

n

n∑

k=1

g(f (X(k)))2 − Î 2n

)1/2

• Advantages of the MC method:
1) no regularity condition for f , g (condition: E[g(f (X))2] < ∞).
2) convergence rate 1/

√
n in any dimension.

3) can be applied for any quantity that can be expressed as an expectation.
4) embarrassingly parallel.
• One needs to simulate many samples of X and to call many times f .
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Uncertainty propagation by metamodels

The complex code/experiment f is replaced by a metamodel (reduced
model) fr and one of the previous techniques is applied with fr (analytic,
quadrature, Monte Carlo).
→ It is possible to call many times the metamodel.
→ The choice of the metamodel is critical.
→ The error control is not simple.
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Taylor expansions

• The output Y = f (X) is approximated by a Taylor series expansion
Yr = fr(X).
• Example (sandwich method):
- We want to estimate E[Y ] and Var(Y ) for Y = f (X) given µ = E[X]
and C = Cov(X).
- We approximate Y = f (X) by Yr = fr(X) = f (µ) +∇f (µ) · (X − µ).
We find:

E[Y ] ≃ E[Yr] = f (µ), Var(Y ) ≃ Var(Yr) = ∇f (µ)TC∇f (µ)

We just need to compute f (µ) and ∇f (µ) (evaluation of the gradient by
finite differences, about d + 1 calls to f , or adjoint method).
• Rapid, analytic, allows to evaluate approximately central trends of the
output (mean, variance).
• Suitable for small variations of the input parameters and a smooth
model (that can be linearized).
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Reliability methods
• We consider the output Y = f (X), with X = (Xi )

d
i=1 a random vector

with known pdf p.
• We want to evaluate

ps = P(Y ≥ ys) = P(X ∈ F ) =

∫

Rd

1F (x)p(x)dx =

∫

F

p(x)dx,

where
F = {x ∈ R

d , f (x) ≥ ys}
is called the failure domain.

• FORM-SORM method (First or Second-Order Reliability Method):
Let us assume that the Xi ’s are i.i.d. with distribution N (0, 1) (see the
slides on isoprobabilist transform):

p(x) =
1

(2π)d/2
exp

(
− ‖x‖2

2

)

[Cf. O. Ditlevsen et H. O. Madsen, Structural Reliability Methods, Wiley, 1996.]
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ps =

∫

F

p(x)dx, F = {x ∈ R
d , f (x) ≥ ys}

• we find by constrained optimization the design point xs , i.e. the point
with the smallest norm s.t. f (xs) = ys (assuming it exists and is unique).

xs = argmin
x∈F

‖x‖2
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2
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x
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f(x)>y
s

f(x)<y
s

• the failure domain F is approximated by a half-space with smooth and
simple boundary F̂ going through xs , which makes it possible to compute

p̂s =

∫

F̂

p(x)dx
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p̂s =

∫

F̂

p(x)dx

• The half-space F̂ is determined by a hyperplane by the FORM method;
it goes through the point xs and is orthogonal to the vector xs . We get:

p̂s = Φ(−‖xs‖),
where Φ is the cdf of the distribution N (0, 1).

0 2 4 6

0

1

2

3

4

5

x
s

f(x)>y
s

f(x)<y
s

FORM

Proof: Introduce an orthonormal basis of Rd whose first vector is xs/‖xs‖.
Carry out the change of variable x′ = Ox, where O is the orthogonal
matrix of basis change.

Josselin Garnier Rare event simulation ETICS 2020 18 / 54



p̂s =

∫

F̂

p(x)dx

• The half-space F̂ is determined by a quadratic surface by the SORM
method. We get (Breitung formula):

p̂s ≃ Φ(−‖xs‖)
d−1∏

i=1

1√
1 + ‖xs‖κi

(
1 + o

‖xs‖→∞
(1)
)
,

where the κi are the curvatures of the failure surface at xs (computed
from the gradient and Hessian of f at xs).
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FORM

SORM
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Isoprobabilist transform

• Let the distribution of X = (Xi )
d
i=1 be given.

How do we transform the problem into the “standard” form where Xi are
i.i.d. with distribution N (0, 1) ?
• Assume that (Xi )

d
i=1 are independent with continuous cdf (Fi )

d
i=1.

• Let
φ(x) =

(
Φ−1(F1(x1)), . . . ,Φ

−1(Fd(xd))
)
,

where Φ is the cdf of the distribution N (0, 1).
• The vector

X̃ = φ(X)

has independent coordinates which satisfy

P(X̃i ≤ x) = P
(
Φ−1(Fi (Xi )) ≤ x

)
= P

(
Fi (Xi ) ≤ Φ(x)

)
= Φ(x),

because Fi (Xi ) has distribution U(0, 1).
→ The coordinates of X̃ are i.i.d. with distribution N (0, 1).
→ p = P(f (X) ≥ ys) = P(f̃ (X̃) ≥ ys) with f̃ = f ◦ φ−1.
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• The Rosenblatt transform: If X is a random vector with arbitrary pdf,
then there exists a function φ : Rd → R

d such that

X̃ = φ(X)

has distribution N (0, I).

• In two steps:
φ = φ(2) ◦ φ(1)

where φ(1) and φ(2) are the functions from R
d to R

d defined by:

1) φ
(1)
i (x) = Fi |1,...,i−1(xi |x1, . . . , xi−1), i = 1, . . . , d ,

2) φ(2)(z) = (Φ−1(z1), . . . ,Φ
−1(zd)).

Here the function Fi |1,...,i−1(xi |x1, . . . , xi−1) is the cdf of the variable Xi

given {X1 = x1, . . . ,Xi−1 = xi−1}.
• The coordinates of φ(1)(X) are i.i.d. with distribution U(0, 1).
• The coordinates of φ(2) ◦ φ(1)(X) are i.i.d. with distribution N (0, 1).
→֒ Not easy to implement and to interpret (e.g., dependence w.r.t. order).
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Proof.

Let Z = φ(1)(X). We want to show that Z has the distribution U([0, 1]d).
Let g be a test function (d = 2).

E[g(Z)] = E[g(φ(1)(X))] =

∫∫

R2

g(φ(1)(x))p(x)dx

We make the change of variable z = φ(1)(x) = (F1(x1),F2|1(x2|x1)),
whose Jacobian is:

J =

(
∂x1F1(x1) ∂x2F1(x1)

∂x1F2|1(x2|x1) ∂x2F2|1(x2|x1)

)
=

(
p1(x1) 0

∗ p2|1(x2|x1)

)

and the determinant of the Jacobian is:

Det(J) = p1(x1)p2|1(x2|x1) = p(x1, x2)

Therefore

E[g(Z)] =

∫∫

[0,1]2
g(z)dz
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Variance reduction techniques

Goal: reduce the variance of the Monte Carlo estimator:

E
[
(În − I )2

]
=

1

n
Var(h(X))

where h(x) = g(f (x)), I = E[h(X)], În = 1
n

∑n
k=1 h(X

(k)).
• The methods
- Importance sampling
- Control variates
- Stratification
reduce the constant without changing 1/n, stay close to the Monte Carlo
method (parallelizable).
• The methods
- Quasi-Monte Carlo
aim at changing 1/n.
• The methods
- Interacting particle systems
are different from Monte Carlo (sequential).
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Importance sampling
• The goal is to estimate I = E[h(X)] for X a random vector and
h(x) = g(f (x)) a deterministic function.
• Observation: the representation of I as an expectation is not unique:

I = Ep[h(X)] =

∫
h(x)p(x)dx =

∫
h(x)p(x)

q(x)
q(x)dx = Eq

[h(X)p(X)

q(X)

]

The choice of the pdf q depends on the user.
• Idea: when we know that h(X) is sensitive to certain values of X,
instead of sampling X(k) with the original pdf p(x) of X, a biased pdf
q(x) is used that makes more likely the “important” realizations.
• Using the representation

I = Ep[h(X)] = Eq

[
h(X)

p(X)

q(X)

]

we can propose the estimator:

În =
1

n

n∑

k=1

h(X(k))
p(X(k))

q(X(k))
, X(k) i.i.d. with pdf q.
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• The estimator is unbiased (provided supp(p) ⊂ supp(q)):

Eq[În] =
1

n

n∑

k=1

Eq

[
h(X(k))

p

q
(X(k))

]
= Eq

[
h(X)

p

q
(X)

]

=

∫
h(x)

p

q
(x)q(x)dx =

∫
h(x)p(x)dx = Ep

[
h(X)

]
= I

• The estimator is convergent:

În =
1

n

n∑

k=1

h(X(k))
p(X(k))

q(X(k))

n→∞−→ Eq

[
h(X)

p(X)

q(X)

]
= Ep

[
h(X)

]
= I

• The variance of the estimator is:

Var(În) =
1

n
Varq

(
h(X)

p(X)

q(X)

)
=

1

n

(
Ep

[
h(X)2

p(X)

q(X)

]
− Ep [h(X)]2

)

By a judicious choice of q the variance can be dramatically reduced.

• Critical points: it is necessary to know the likelihood ratio
p(x)

q(x)
and to

know how to simulate X with the pdf q.
Josselin Garnier Rare event simulation ETICS 2020 25 / 54



• The estimator is asymptotically normal

√
n
(
În − I

) n→+∞−→ N
(
0,Varq

(
h(X)

p(X)

q(X)

))

• It is (in theory) possible to construct asymptotic confidence intervals.
The empirical estimator of the asymptotic variance is

σ̂2
n =

1

n

n∑

k=1

h2(X(k))
p2(X(k))

q2(X(k))
− Î 2n , X(k) i.i.d. with pdf q.

The estimator σ̂2
n is consistent (with standard moment conditions) but it

may be strongly fluctuating.
→֒ the construction of confidence interval is not easy.
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• Optimal importance sampling.

The best biased distribution is the one that minimizes Var(În).
→֒ solution of the minimization problem: find the pdf q(x) minimizing

Ep

[
h(X)2

p(X)

q(X)

]
=

∫
h(x)2

p2(x)

q(x)
dx

Solution (when h is nonnegative-valued):

qopt(x) =
h(x)p(x)∫

h(x′)p(x′)dx′

We then find

Var(În) =
1

n

(
Ep

[
h(X)2

p(X)

qopt(X)

]
− Ep [h(X)]2

)
= 0 !

Pratically: the denominator of qopt(x) is the desired quantity E[h(X)],
which is unknown; we do not know how to sample qopt .
Therefore the optimal IS method cannot be implemented.
But it is the principle for an adaptive method.
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• Example: We want to estimate

I = P(X ≥ 4) = E[h(X )]

with X ∼ N (0, 1) and h(x) = 1[4,∞)(x).

I =
1√
2π

∫ ∞

−∞
1[4,∞)(x)e

− x2

2 dx = Φ(−4) =
1

2
erfc

( 4√
2

)
≃ 3.17 10−5

Monte Carlo: Let (X (k))nk=1 be i.i.d. with the original distribution
N (0, 1).

În =
1

n

n∑

k=1

1X (k)≥4

We have Var(În) =
1
n
3.17 10−5.

Importance Sampling: Let (X (k))nk=1 be i.i.d. with the distribution
N (4, 1).

În =
1

n

n∑

k=1

1X (k)≥4

e−
(X (k))2

2

e−
(X (k)

−4)2

2

=
1

n

n∑

k=1

1X (k)≥4e
−4X (k)+8

We have Var(În) =
1
n
5.53 10−8.

IS needs 600 times less simulations then MC to reach the same precision !
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Warning: we should not bias too much.
Importance Sampling: Let (X (k))nk=1 be i.i.d. with the distribution
N (µ, 1).

În =
1

n

n∑

k=1

1X (k)≥4

e−
(X (k))2

2

e−
(X (k)

−µ)2

2

=
1

n

n∑

k=1

1X (k)≥4e
−µX (k)+µ

2

2

→֒ Var(În) =
1
n
eµ

2

2 erfc
(4+µ√

2

)
− 1

n
I 2, which gives the normalized relative

error
√
nE[(În − I )2]1/2/I :
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If the bias is large, the fluctuations of the likelihood ratios become large.
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• Example: we want to estimate

I = E[h(X )]

with X ∼ N (0, 1) and h(x) = exp(x).

I =
1√
2π

∫
exe−

x2

2 dx = e
1
2

The large values of X are important.
Importance Sampling: With a sample (X (k))k=1,...,n with the distribution
N (µ, 1), µ > 0.

În =
1

n

n∑

k=1

h(X (k))
e−

[X (k)]2

2

e−
[X (k)

−µ]2

2

=
1

N

n∑

k=1

h(X (k))e−µX (k)+µ
2

2

Var(În) =
1

n

(
eµ

2−2µ+2 − e1
)

Monte Carlo µ = 0: Var(În) =
1
n

(
e2 − e1

)

Optimal importance sampling µ = 1: Var(În) = 0.
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• Gaussian random walk Xp = Xp−1 + θp, X0 = 0, where θp is a sequence
of i.i.d. Gaussian random variables N (0, 1).

ps = P(XM ≥ ys) =
1√
2πM

∫ ∞

ys

exp
(
− x2

2M

)
dx

MC: sample n trajectories (X
(k)
i )Mi=0, k = 1, . . . , n, and estimate

P̂n =
1

n

n∑

k=1

1
X

(k)
M

≥ys
, ên =

1√
n

(
1

P̂n

− 1

)1/2

IS: sample n trajectories (X
(k)
p )Mp=0, k = 1, . . . , n, with biased distribution

θp ∼ N (a/M, 1) and estimate:

În =
1

n

n∑

k=1

1
X

(k)
M

≥ys
exp

( y2s
2M

− ys

M
X

(k)
M

)

ên =
1√
n





1
n

∑n
k=1 1X (k)

M
≥ys

exp
(
y2
s

M
− 2ys

M
X

(k)
M

)

Î 2n
− 1





1/2
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• Adaptive importance sampling: choice of a family of biased distributions

{qθ,θ ∈ Θ ⊂ R
q}

• Affine transform
Change of mean qθµ

(x) = p(x− θµ)

Change of mean and variance qθµ,θσ
(x) = | detθσ|−1p

(
θ−1
σ (x− θµ)

)

Easy to implement X̃ = θσX + θµ ∼ qθµ,θσ
iff X ∼ p.

Often used with Gaussian distributions.
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• Adaptive importance sampling: choice of θ.
• Variance minimization.
Principle: minimization of the variance of the estimator:

θ∗ ∈ argmin
θ

Ep

[
h(X)2

p

qθ
(X)

]

Empirically

θ̂n ∈ argmin
θ

1

n

n∑

k=1

h(X(k))2
p

qθ
(X(k)), X(k) i.i.d. with pdf p

Studied with Gaussian distribution and change of mean and variance.
With additional hypotheses, θ̂n → θ̂

∗
a.s., with central limit theorem.

But: the likelihood ratio is strongly fluctuating.

[B. Jourdain and J. Lelong. Robust adaptive importance sampling for normal

random vectors. Ann. Appl. Probab. 19, 1687-1718, 2009.]
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• Adaptive importance sampling: choice of θ.
• Cross entropy
Let q∗ be the optimal pdf q∗(x) = h(x)

Ep [h(X))]p(x) (here h ≥ 0).

Principle: minimization of the Kullback-Leibleir distance between q∗ and
qθ:

θ∗ ∈ argmin
θ

D(q∗, qθ), D(q∗, qθ) = Eq∗
[
log

q∗

qθ
(X)

]

In fact

argmin
θ

D(q∗, qθ) = argmin
θ

Ep

[
h(X) log

p

qθ
(X)

]

Empirically

θ̂n ∈ argmin
θ

1

n

n∑

k=1

h(X(k)) log
p

qθ
(X(k)), X(k) i.i.d. with pdf p

With additional hypotheses, θ̂n → θ̂
∗
a.s., with central limit theorem.

The log-likelihood ratio is less fluctuating than the likelihood ratio used in
the variance minimization method.
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• Adaptive importance sampling: choice of θ.
• Cross entropy
For any θ0,

argmin
θ

D(q∗, qθ) = argmin
θ

Eqθ0

[
h(X) log

( p
qθ

(X)
) p

qθ0

(X)
]

Empirically, if X(k) i.i.d. with pdf qθ0 , then

θ̂n ∈ argmin
θ

1

n

n∑

k=1

h(X(k)) log
( p
qθ

(X(k))
) p

qθ0

(X(k))
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• Adaptive importance sampling: choice of θ.
• Recursive cross entropy
Principle: go progressively towards θ∗.
Algorithm:
Step 0: Set θ0 (e.g. θ0 = 0, qθ0 = p).
Step j ≥ 1: Generate X(k) i.i.d. with pdf qθj−1

θj ∈ argmin
θ

1

Nj−1

Nj−1∑

k=1

h(X(k)) log
( p
qθ

(X(k))
) p

qθj−1

(X(k)),

with Nj−1 large enough, until a stopping criterium is met, e.g.
|θj − θj−1| ≤ δ.
Problem: if h(x) = 1f (x)≥ys , then one needs realizations that achieve

f (X(k)) ≥ ys during the first step (θ0,N0).
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• Adaptive importance sampling: choice of θ.
• Adaptive cross entropy
Assume h(x) = 1f (x)≥ys .
Principle: go progressively towards θ∗ by “increasing” ys.
Algorithm:
Step 0: Set θ0 (e.g. θ0 = 0, qθ0 = p), y0, and α (e.g. α = 0.1).
Step j ≥ 1: Generate X(k) i.i.d. with pdf qθj−1

θj ∈ argmin
θ

1

Nj−1

Nj−1∑

k=1

1f (X(k))≥yj−1
log
( p
qθ

(X(k))
) p

qθj−1

(X(k)),

yj = (1− α)−empirical quantile of (f (X(k)))
Nj−1

k=1

with Nj−1 large enough, until yj ≥ ys.
Estimation of I with or without recycling.

[P.T. De Boer, D.P. Kroese, S. Mannor, and R.Y. Rubinstein. A tutorial on the

cross-entropy method, Annals of Operations Research 134, 19-67, 2005.]
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Control variates

• The goal is to estimate I = E[h(X)] for X a random vector and
h(x) = g(f (x)) a deterministic function.
• Assume that we have a reduced model fr(X).

• Importance sampling method:
First we evaluate (we approximate) the optimal density

qopt,r(x) =
g(fr(x))p(x)

Ir
, with Ir =

∫
g(fr(x))p(x)dx.

Second we use it as a biased density for estimating I .
Dangerous, use conservative version.
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Control variates

• The goal is to estimate I = E[h(X)] for X a random vector and
h(x) = g(f (x)) a deterministic function.
• Assume that we have a reduced model fr(X).

• Control variates method:
We denote h(x) = g(f (x)), hr(x) = g(fr(x)).
We assume that we know Ir = E[hr(X)].
By considering the representation

I = E[h(X)] = Ir + E[h(X)− hr(X)]

we propose the estimator:

În = Ir +
1

n

n∑

k=1

h(X(k))− hr(X
(k)),

where (X(k))nk=1 is a n-sample (with the pdf p).
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• Estimator:

În = Ir +
1

n

n∑

k=1

h(X(k))− hr(X
(k))

• The estimator is unbiased:

E
[
În
]

= Ir +
1

n

n∑

k=1

E
[
h(X(k))− hr(X

(k))
]
= Ir + E[h(X)]− E[hr(X)]

= Ir + E[h(X)]− Ir = I

• The estimator is convergent:

În
n→∞−→ Ir + E

[
h(X)− hr(X)

]
= I

• The variance of the estimator is:

Var(În) =
1

n
Var
[
h(X)− hr(X)

]

→֒ The use of a reduced model can reduce the variance.
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• Example: we want to estimate

I = E[h(X )]

with X ∼ U(0, 1), h(x) = exp(x).
Result: I = e − 1 ≃ 1.72.
Monte Carlo.

În =
1

n

n∑

k=1

exp[X (k)]

Variance of the MC estimator= 1
n
(2e − 1) ≃ 1

n
4.44.

Control Variates. Reduced model: hr(x) = 1 + x (here Ir =
3
2). CV

estimator:

În = Ir +
1

n

n∑

k=1

{
exp[X (k)]− 1− X (k)

}

Variance of the CV estimator = 1
n
(3e − e2

2 − 53
12) ≃ 1

n
0.044.

The CV method needs 100 times less simulations to reach the same
precision as MC !
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• Application: estimation of

I = E[g(f (X))]

We have a reduced model fr of the full code f . The ratio between the
computational cost of one call of f and one call of fr is q > 1.
Estimator

În =
1

nr

nr∑

k=1

hr(X̃
(k)) +

1

n

n∑

k=1

h(X(k))− hr(X
(k))

with nr > n, h(x) = g(f (x)), hr(x) = g(fr(x)).
Allocation between calls to the complete code and calls to the reduced
model can be optimized with the contraint nr/q + n(1 + 1/q) = ntot:

n

ntot
=

q

1 + q

1

1 + 1√
1+q

√
Var(hr(X))√

Var((h−hr)(X))

Classical trade-off between approximation error and estimation error.
Used when f (X) is the solution of an ODE or PDE with fine grid, while
fr(X) is the solution obtained with a coarse grid (MultiLevel Monte Carlo).
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• Optimal control variate
By considering the representation (for a fixed λ)

I = E[h(X)] = λIr + E[h(X)− λhr(X)]

we propose the estimator:

În = λIr +
1

n

n∑

k=1

h(X(k))− λhr(X
(k)),

where (X(k))nk=1 is a n-sample (with the pdf p).
The estimator is unbiased and consistent for any λ. The variance is

Var(În) =
1

n
Var
(
h(X)− λhr(X)

)

The λ that minimizes the variance is

λ =
Cov

(
h(X), hr(X)

)

Var(hr(X)
)

and then

Var(În) =
1

n
Var
(
h(X)

)(
1− ρ2

)
, ρ = Corr

(
h(X), hr(X)

)
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• Empirical optimal control variate

În = λ̂nIr +
1

n

n∑

k=1

h(X(k))− λ̂nhr(X
(k)),

with

λ̂n =

∑n
k=1

(
h(X(k))− 1

n

∑n
k ′=1 h(X

(k ′))
)(
hr(X

(k))− 1
n

∑n
k ′=1 hr(X

(k ′)))
∑n

k=1

(
hr(X(k))− 1

n

∑n
k ′=1 hr(X

(k ′))
)2

The estimator is slightly biased (O(1/n)).
We have the (optimal) asymptotic normality result

√
n
(
În − I

) n→+∞−→ N
(
0,Var

(
h(X)

)(
1− ρ2

))
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Stratification

Principle: The sample (X(k))nk=1 is enforced to obey prescribed
proportions in some “strata”.
Method used in polls (representative sample).
Here: we want to estimate E[h(X)], X with values in D.
• Two ingredients:
i) A partition of the state space D =

⋃m
i=1Di . We know pi = P(X ∈ Di ).

ii) Total probability formula:

I = E[h(X)] =
m∑

i=1

E[h(X)|X ∈ Di ]︸ ︷︷ ︸
Ji

P(X ∈ Di )︸ ︷︷ ︸
pi• Estimation:

1) For all i = 1, . . . ,m, Ji is estimated by MC with ni simulations:

Ĵi ,ni =
1

ni

ni∑

k=1

h(X(i ,k)), X(i ,k) ∼ L(X|X ∈ Di ) ind.

2) The estimator is În =
m∑

i=1

Ĵi ,nipi
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În =
m∑

i=1

pi Ĵi ,ni , Ĵi ,ni =
1

ni

ni∑

k=1

h(X(i ,k)), X(i ,k) ∼ L(X|X ∈ Di )

The total number of simulations is n =
∑m

i=1 ni .
• The estimator is unbiased, convergent and its variance is

Var
(
În
)
S
=

m∑

i=1

p2i Var
(
Ĵi ,ni

)
=

m∑

i=1

p2i
σ2
i

ni
, with σ2

i = Var
(
h(X)|X ∈ Di

)

The user is free to choose the ni (with the constraint
∑m

i=1 ni = n).
• Proportional stratification: ni = pin.

În =
m∑

i=1

pi

ni

ni∑

k=1

h(X(i ,k)) =
1

n

m∑

i=1

ni∑

k=1

h(X(i ,k)), X(i ,k) ∼ L(X|X ∈ Di )

Then
Var
(
În
)
SP

=
1

n

m∑

i=1

piσ
2
i

Var
(
În
)
MC

=
1

n
Var
(
h(X)

)
≥1

n

m∑

i=1

piσ
2
i = Var

(
În
)
SP
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Proof: We have

E[h(X)]2 =
( m∑

i=1

piE[h(X)|X ∈ Di ]
)2

≤
( m∑

i=1

pi

)( m∑

i=1

piE[h(X)|X ∈ Di ]
2
)

=
m∑

i=1

piE[h(X)|X ∈ Di ]
2

Therefore

m∑

i=1

piσ
2
i =

m∑

i=1

pi

(
E[h(X)2|X ∈ Di ]− E[h(X)|X ∈ Di ]

2
)

= E[h(X)2]−
m∑

i=1

piE[h(X)|X ∈ Di ]
2

≤ E[h(X)2]− E[h(X)]2 = Var(h(X))

Josselin Garnier Rare event simulation ETICS 2020 47 / 54



However, the proportional allocation is not optimal !
• The optimal allocation is the one that minimizes the variance

Var(În)S =
∑m

i=1 p
2
i

σ2
i

ni
.

It is the solution of the minimization problem: find (ni )i=1,...,m minimizing

m∑

i=1

p2i
σ2
i

ni
with the constraint

m∑

i=1

ni = n

Solution (optimal allocation, obtained with Lagrange multiplier method):

ni = n
piσi∑m
l=1 plσl

The minimal variance is

Var
(
În
)
SO

=
1

n

(
m∑

i=1

piσi

)2

,

We have:
Var
(
În
)
SO

≤ Var
(
În
)
SP

≤ Var
(
În
)
MC

Practically: the σi ’s are unknown, therefore the optimal allocation is
unknown (principle of an adaptive method).
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• Example: we want to estimate

E[h(X )]

with X ∼ U(−1, 1), h(x) = exp(x).
Result: E[exp(X )] = sinh(1) ≃ 1.18.
MC. With a sample X (1), ..., X (n) with the distribution U(−1, 1)

În =
1

n

n∑

k=1

exp[X (k)]

Variance of the estimator = 1
n
(12 − e−2

2 ) ≃ 1
n
0.43.

Proportional stratification. With a sample
- X (1), ..., X (n/2) with the distribution U(−1, 0),
- X (n/2+1), ..., X (n) with the distribution U(0, 1).

În =
1

n

n/2∑

k=1

exp[X (k)] +
1

n

n∑

k=n/2+1

exp[X (k)] =
1

n

n∑

k=1

exp[X (k)]

Variance of the PS estimator ≃ 1
n
0.14.

Here PS needs 3 times less simulations to reach the same precision as MC.
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Nonproportional stratification. With a sample
- X (1), ..., X (n/4) with the distribution U(−1, 0),
- X (n/4+1), ..., X (n) with the distribution U(0, 1).

În =
2

n

n/4∑

k=1

exp[X (k)] +
1

2n

n∑

k=n/4+1

exp[X (k)]

Variance of the estimator ≃ 1
n
0.048.

The stratification method needs 9 times less simulations to reach the same
precision as MC.
Similar to importance sampling with a stepwise constant biased pdf.
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Antithetic variables

• We want to compute
I =

∫

[0,1]d
h(x)dx

MC with a n-sample (X(1), . . . ,X(n)) with the distribution U([0, 1]d):

În =
1

n

n∑

k=1

h(X(k))

E
[
(În − I )2

]
=

1

n
Var(h(X)) =

1

n

(∫

[0,1]d
h2(x)dx− I 2

)

• We consider the representations

I =

∫

[0,1]d
h(1− x)dx and I =

∫

[0,1]d

h(x) + h(1− x)

2
dx

MC with a n/2-sample (X(1), . . . ,X(n/2)) distributed as U([0, 1]d):

Ĩn =
1

n

n/2∑

k=1

h(X(k)) + h(1−X(k))
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• MC estimator with the sample
(X̃(1), . . . , X̃(n)) := (X(1), . . . ,X(n/2), 1−X(1), . . . , 1−X(n/2)) that is
not i.i.d.:

Ĩn =
1

n

n∑

k=1

h(X̃(k))

The function f is called n times.
• Error:

E
[
(Ĩn − I )2

]
=

1

n

(
Var(h(X)) + Cov(h(X), h(1−X))

)

=
1

n

(∫

[0,1]d
h2(x) + h(x)h(1− x)dx− 2I 2

)

The variance is reduced if Cov(h(X), h(1−X)) < 0.
Sufficient condition: h is monotoneous.
Proof: If X,X ′ i.i.d.

[h(X)− h(X ′)][−h(1−X) + h(1−X ′)] ≥ 0 a.s.

−2E
[
h(X)h(1−X)

]
+ 2E

[
h(X)

]2 ≥ 0
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• Example:

I =

∫ 1

0

1

1 + x
dx

Result: I = ln 2.
Monte Carlo:

În =
1

n

n∑

k=1

1

1 + X (k)

Var(În) =
1
n

( ∫ 1
0 (1 + x)−2dx − ln 22

)
= 1

n

(
1
2 − ln 22

)
≃ 1

n
1.95 10−2.

Antithetic variables:

Ĩn =
1

n

n/2∑

k=1

1

1 + X (k)
+

1

2− X (k)

Var(Ĩn) =
2
n

( ∫ 1
0

(
1

2(1+x) +
1

2(2−x)

)2
dx − ln 22

)
≃ 1

n
1.2 10−3.

The AV method requires 15 times less simulations than MC.
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• More generally: one needs to find a pair (X, X̃) such that h(X) and
h(X̃) have the same distribution and Cov(h(X), h(X̃)) < 0.
• Monte Carlo with an i.i.d. sample ((X(1), X̃(1)), . . . , (X(n/2), X̃(n/2))) :

Ĩn =
1

n

n/2∑

k=1

h(X(k)) + h(X̃(k))

E
[
(Ĩn − I )2

]
=

1

n

(
Var(h(X)) + Cov(h(X), h(X̃))

)

• Recent application: computation of effective tensors in stochastic
homogenization (the effective tensor is the expectation of a functional of
the solution of an elliptic PDE with random coefficients; antithetic pairs of
the realizations of the composite medium are sampled; gain by a factor 3;
in fact, better results with control variates; cf C. Le Bris, F. Legoll).
• Not very useful for the estimation of probabilities of rare events.
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