Rare event simulation - part II

Josselin Garnier

ETICS 2020

Interacting particle systems for the analysis of rare events

- Problem: estimation of the probability of occurence of a rare event.
- Simulation by an Interacting Particle System.

Two versions:

- a rare event expressed in terms of the final state of a Markov chain,
- a rare event expressed in terms of a random variable, whose distribution is seen as the stationary distribution of a Markov chain.

Rare events

- Description of the system:
- $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$: a E-valued Markov chain $\left(E=\mathbb{R}, \mathbb{R}^{d}, \ldots\right)$:

$$
\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}, \ldots, \boldsymbol{X}_{0}=\boldsymbol{x}_{0}\right)=\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}\right)
$$

$-V: E \rightarrow \mathbb{R}$: the risk function.
$-a \in \mathbb{R}$: the threshold level.

- Problem: estimation of the probability

$$
P=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)
$$

when a is large $\Longrightarrow P \ll 1$.
We know how to simulate the Markov chain $\left(X_{p}\right)_{0 \leq p \leq M}$.

- Example: $X_{p}=X_{p-1}+\theta_{p}, X_{0}=0$, where θ_{p} is a sequence of i.i.d. Gaussian random variables with mean zero and variance one. Here
$-E=\mathbb{R}$,
$-V(x)=x$,
- the solution is known: $X_{M}=V\left(X_{M}\right) \sim \mathcal{N}(0, M)$.

Example: Communication in transoceanic optical fibers

- Optical fiber transmission principle:
- a binary message is encoded as a train of short light pulses.
- the pulse train propagates in a long optical fiber.
- the message is decoded at the output of the fiber.

Input pulse train

Output pulse train

Transmission is perturbed by different random phenomena (amplifier noise, random dispersion, random birefringence,...).

- Question: estimation of the bit-error-rate (probability of error), typically 10^{-6} or 10^{-8}.
- Answer: use of a big numerical code (but brute-force Monte Carlo too expensive).

Example: Communication in transoceanic optical fibers

- Physical model:
$\left(u_{0}(t)\right)_{t \in \mathbb{R}}=$ initial pulse profile.
$(u(z, t))_{t \in \mathbb{R}}=$ pulse profile after a propagation distance z.
$(u(Z, t))_{t \in \mathbb{R}}=$ output pulse profile (after a propagation distance Z).
Propagation from $z=0$ to $z=Z$ governed by two coupled nonlinear Schrödinger equations with randomly z-varying coefficients.
\hookrightarrow black box.
\rightarrow Truncation of $[0, Z]$ into M segments $\left[z_{p-1}, z_{p}\right), z_{p}=p Z / M$,
$1 \leq p \leq M$.
$\rightarrow \boldsymbol{X}_{p}=u\left(z_{p}, t\right)_{t \in \mathbb{R}}$ is the pulse profile at distance z_{p}.
Here $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$ is Markov with state space $E=H_{0}^{2}(\mathbb{R}) \cap L_{2}^{2}(\mathbb{R})$.

Example: Communication in transoceanic optical fibers

- Question: estimation of the probability of anomalous pulse spreading. Rms pulse width after propagation distance z :

$$
\tau(z)^{2}=\int|u(z, t)|^{2} t^{2} d t / \int|u(z, t)|^{2} d t
$$

The potential function is $V: \left\lvert\, \begin{aligned} & E \rightarrow \mathbb{R} \\ & V(\boldsymbol{X})=\int t^{2}|\boldsymbol{X}(t)|^{2} d t / \int|\boldsymbol{X}(t)|^{2} d t\end{aligned}\right.$

- Problem: estimation of the probability

$$
P=\mathbb{P}(\tau(Z) \geq a)=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)
$$

Monte Carlo method

- n i.i.d copies $\left(\left(\boldsymbol{X}_{0}^{(k)}, \ldots, \boldsymbol{X}_{M}^{(k)}\right)\right)_{k=1}^{n}$ distributed with the original \mathbb{P}.
- Proposed estimator:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{V\left(X_{M}^{(k)}\right) \geq a}
$$

- Unbiased estimator:

$$
\mathbb{E}\left[\hat{P}_{n}\right]=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)=P
$$

- Variance:

$$
\mathbb{E}\left[\left(\hat{P}_{n}-P\right)^{2}\right]=\frac{1}{n} P(1-P) \stackrel{P}{\cong} \frac{P}{n}
$$

- Relative error:

$$
\frac{\operatorname{Std}\left(\hat{P}_{n}\right)}{P} \simeq \frac{1}{\sqrt{P n}}
$$

\hookrightarrow We should have $n>P^{-1}$ to get a relative error smaller than one.

Importance Sampling method

- n i.i.d copies $\left(\left(\boldsymbol{X}_{0}^{(k)}, \ldots, \boldsymbol{X}_{M}^{(k)}\right)\right)_{k=1}^{n}$ with the biased distribution \mathbb{Q}.
- Proposed estimator:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{V\left(X_{M}^{(k)}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(X_{0}^{(k)}, \ldots, \boldsymbol{X}_{M}^{(k)}\right)
$$

Unbiased estimator:

$$
\mathbb{E}_{\mathbb{Q}}\left[\hat{P}_{n}\right]=\mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)\right]=P
$$

Variance:

$$
\mathbb{E}_{\mathbb{Q}}\left[\left(\hat{P}_{n}-P\right)^{2}\right]=\frac{1}{n}\left\{\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{Q}}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)\right]-P^{2}\right\}
$$

\hookrightarrow With a proper choice of \mathbb{Q}, the error can be dramatically reduced.

Importance Sampling method

- Optimal choice of $\mathbb{Q}: d \mathbb{Q}=\frac{\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a}}{\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)} d \mathbb{P}$. Impossible to apply!
But this result gives ideas (adaptive strategies)
- Critical points in the choice of the biased distribution:
- evaluation of the likelihood ratio,
- simulation of the biased dynamics (intrusive method).

Importance Sampling driven by Large Deviations Principle

- Consider the family of biased distributions, $\lambda>0$:

$$
d \mathbb{P}^{(\lambda)}=\frac{1}{\mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]} e^{\lambda V\left(\boldsymbol{X}_{M}\right)} d \mathbb{P}
$$

$\mathbb{P}^{(\lambda)}$ favors random evolutions with high potential values $V\left(\boldsymbol{X}_{M}\right)$.

- n i.i.d. copies $\left(\boldsymbol{X}_{0}^{(k)}, \ldots, \boldsymbol{X}_{M}^{(k)}\right)_{1 \leq k \leq n}$ distributed with $\mathbb{P}^{(\lambda)}$.
- Estimator:

$$
\hat{P}_{n, \lambda}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{V\left(\boldsymbol{X}_{M}^{(k)}\right) \geq a} \frac{d \mathbb{P}}{d \mathbb{P}^{(\lambda)}}\left(\boldsymbol{X}_{0}^{(k)}, \ldots, \boldsymbol{X}_{M}^{(k)}\right)
$$

- Variance:

$$
\mathbb{E}_{\mathbb{P}(\lambda)}\left[\left(\hat{P}_{n, \lambda}-P\right)^{2}\right]=\frac{1}{n}\left\{\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} e^{-\lambda V\left(\boldsymbol{X}_{M}\right)}\right] \mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]-P^{2}\right\}
$$

Importance Sampling driven by Large Deviations Principle

- Variance:

$$
\begin{aligned}
n \mathbb{E}_{\mathbb{P}(\lambda)}\left[\left(\hat{P}_{n, \lambda}-P\right)^{2}\right] & =\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{V\left(\boldsymbol{X}_{M}\right) \geq a} e^{-\lambda V\left(\boldsymbol{X}_{M}\right)}\right] \mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]-P^{2} \\
& \leq e^{-\left[\lambda a-\Lambda_{M}(\lambda)\right]} P-P^{2}
\end{aligned}
$$

where $\Lambda_{M}(\lambda)=\log \mathbb{E}_{\mathbb{P}}\left[e^{\lambda V\left(\boldsymbol{X}_{M}\right)}\right]$.

- For a judicious choice of λ,

$$
\lambda^{*} a-\Lambda_{M}\left(\lambda^{*}\right)=\sup _{\lambda>0}\left[\lambda a-\Lambda_{M}(\lambda)\right] \simeq-\ln P
$$

(Cramér's theorem, large deviations principle), so

$$
\mathbb{E}_{\mathbb{P}(\lambda)}\left[\left(\hat{P}_{n, \lambda}-P\right)^{2}\right] \lesssim \frac{P^{2}}{n}
$$

- Almost optimal: the relative error is $1 / \sqrt{n}$ (compare with $\mathrm{MC}: 1 / \sqrt{P n}$).

Feynman-Kac path measures

Question: How to simulate the biased distribution $\mathbb{P}^{(\lambda)}$? Answer: We will show a way to simulate the distribution \mathbb{Q} :

$$
d \mathbb{Q}=\frac{1}{\mathcal{Z}_{M}}\left\{\prod_{p=0}^{M} G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right\} d \mathbb{P}
$$

where $\left(G_{p}\right)_{1 \leq p \leq M}$ is a sequence of positive potential functions on the path spaces E^{p}, and $\mathcal{Z}_{M}=\mathbb{E}_{\mathbb{P}}\left[\Pi G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right]>0$ is a normalization constant.
Examples:

- $G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)=1, p<M, \quad G_{M}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{M}\right)=e^{\lambda V\left(\boldsymbol{X}_{M}\right)}$.
$-G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)=e^{\lambda\left(V\left(\boldsymbol{X}_{p}\right)-V\left(\boldsymbol{X}_{p-1}\right)\right)}$.
- What is a "good" choice for G_{p} ?
- How to simulate \mathbb{Q} directly from \mathbb{P} ?

Original measures

- $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$: a E-valued Markov chain, starting from $\boldsymbol{X}_{0}=\boldsymbol{x}_{0}$, with transition $K_{p}\left(x_{p-1}, d x_{p}\right)$:

$$
\mathbb{P}\left(\boldsymbol{X}_{p} \in A \mid \boldsymbol{X}_{p-1}=\boldsymbol{x}_{p-1}, \ldots, \boldsymbol{X}_{0}=\boldsymbol{x}_{0}\right)=\int_{A} K_{p}\left(\boldsymbol{x}_{p-1}, d x_{p}\right)
$$

where $K_{p}\left(\boldsymbol{x}_{p-1}, \cdot\right)$ is a probability measure for any $\boldsymbol{x}_{p-1} \in E$.

- Denote the (partial) path

$$
\boldsymbol{Y}_{p}={ }_{\text {def. }}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right) \in E^{p+1}, \quad p=0, \ldots, M
$$

The measure μ_{p} on E^{p+1} is the distribution of \boldsymbol{Y}_{p} :

$$
\mu_{p}\left(f_{p}\right)={ }_{\text {def. }} \int_{E^{p+1}} f_{p}\left(\boldsymbol{y}_{p}\right) \mu_{p}\left(d \boldsymbol{y}_{p}\right)=\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right)\right], \quad f_{p} \in L^{\infty}\left(E^{p+1}\right)
$$

- Expression of P in terms of μ_{M} :

$$
\begin{gathered}
P=\mu_{M}(f) \\
f\left(\boldsymbol{y}_{M}\right)=f\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a}
\end{gathered}
$$

\rightarrow If one can compute/estimate μ_{M}, then one can compute/estimate P.

Unnormalized Feynman-Kac measures

$$
\boldsymbol{Y}_{p}={ }_{\text {def. }}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right) \in E^{p+1}, \quad p=0, \ldots, M
$$

Feynman-Kac measure γ_{p} associated to the pair potential/transition $\left(G_{p}, K_{p}\right)$:

$$
\gamma_{p}\left(f_{p}\right)=\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right) \prod_{0 \leq k<p} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]
$$

- Expression of P in terms of γ_{M} :

$$
\begin{gathered}
P=\gamma_{M}(g) \\
g\left(\boldsymbol{y}_{M}\right)=g\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a} \prod_{0 \leq p<M} G_{p}^{-1}\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{p}\right)
\end{gathered}
$$

\rightarrow If one can compute/estimate γ_{M}, then one can compute/estimate P.

Normalized Feynman-Kac measures

Introduce the normalized measure η_{p} :

$$
\eta_{p}\left(f_{p}\right)=\gamma_{p}\left(f_{p}\right) / \gamma_{p}(1), \quad p=0, \ldots, M
$$

- Expression of P in terms of η_{p} :

$$
P=\eta_{M}(g) \prod_{0 \leq p<M} \eta_{p}\left(G_{p}\right)
$$

Proof:

$$
P=\mathbb{E}\left[g\left(\boldsymbol{Y}_{M}\right) \prod_{0 \leq k<M} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]=\gamma_{M}(g)=\eta_{M}(g) \gamma_{M}(1)
$$

Normalizing constant:

$$
\gamma_{M}(1)=\gamma_{M-1}\left(G_{M-1}\right)=\eta_{M-1}\left(G_{M-1}\right) \gamma_{M-1}(1)=\prod_{0 \leq p<M} \eta_{p}\left(G_{p}\right)
$$

\rightarrow If one can compute/estimate $\left(\eta_{p}\right)_{p=0}^{M}$, then one can compute/estimate P.

Interacting path-particle system

- Goal: simulate the original measures μ_{p}

$$
\mu_{p}\left(f_{p}\right)=\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right)\right]
$$

- Easy: Let $\left(\boldsymbol{Y}_{p}^{(1)}, \ldots, \boldsymbol{Y}_{p}^{(n)}\right) \in\left(E^{p+1}\right)^{n}$ be i.i.d. Markov chains simulated with \mathbb{P}. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{Y}_{\rho}^{(i)}}=\mu_{p}
$$

- Goal: simulate the normalized measures η_{p}

$$
\eta_{p}\left(f_{p}\right)=\frac{\mathbb{E}\left[f_{p}\left(\boldsymbol{Y}_{p}\right) \prod_{0 \leq k<p} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]}{\mathbb{E}\left[\prod_{0 \leq k<p} G_{k}\left(\boldsymbol{Y}_{k}\right)\right]}
$$

- Idea: $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{(1)}, \ldots, \boldsymbol{Y}_{p}^{(n)}\right) \in\left(E^{p+1}\right)^{n}$ particle system s.t.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{Y}_{p}^{(i)}}=\eta_{p}
$$

Interacting path-particle system

Question: How to simulate η_{M} directly from \mathbb{P} ?

$$
d \eta_{M}=\frac{1}{\mathcal{Z}_{M}}\left\{\prod_{p=0}^{M-1} G_{p}\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)\right\} d \mathbb{P}
$$

Answer: System of path-particles, whose empirical measure will be approximately \mathbb{Q}.

- Path-particle: $\boldsymbol{Y}_{p}=\left(\boldsymbol{X}_{0}, \ldots, \boldsymbol{X}_{p}\right)$ taking values in $E^{p+1}, 0 \leq p \leq M$.
- System of n path-particles: $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{(i)}\right)_{1 \leq i \leq n}$ taking values in $\left(E^{p+1}\right)^{n}$.
- Initialization: $p=0: \boldsymbol{Y}_{0}^{(i)}=x_{0}$ for all $i=1, \ldots, n$.
- Dynamics: Evolution from generation p to $p+1$ as follows:

$$
\mathbb{Y}_{p} \in\left(E^{p+1}\right)^{n} \xrightarrow{\text { selection }} \widehat{\mathbb{Y}}_{p} \in\left(E^{p+1}\right)^{n} \xrightarrow{\text { mutation }} \mathbb{Y}_{p+1} \in\left(E^{p+2}\right)^{n}
$$

n=3 particles

3 particles $\boldsymbol{Y}_{p}^{(1)}, \boldsymbol{Y}_{p}^{(2)}, \boldsymbol{Y}_{p}^{(3)}$ at generation p, with potential weights $G\left(\boldsymbol{Y}_{p}^{(1)}\right)=1, G\left(\boldsymbol{Y}_{p}^{(2)}\right)=2, G\left(\boldsymbol{Y}_{\rho}^{(3)}\right)=3$.

n=3 particles

n=3 particles

Prob. to select part. $j: \frac{G\left(\boldsymbol{Y}_{P}^{(j)}\right)}{G\left(\boldsymbol{Y}_{P}^{(1)}\right)+G\left(\boldsymbol{Y}_{P}^{(2)}\right)+G\left(\boldsymbol{Y}_{P}^{(3)}\right)}=\left\{\begin{array}{l}\frac{1}{6} \text { if } j=1 \\ \frac{1}{3} \text { if } j=2 \\ \frac{1}{2} \text { if } j=3\end{array}\right.$
n=3 particles

Each particle evolves independently from p to $p+1$.
n=3 particles

3 particles are selected at generation $p+1$.
n=3 particles

Each particle evolve independently from $p+1$ to $p+2$.

At each generation $p=0, \ldots, M-1$:
Selection: from the system $\mathbb{Y}_{p}=\left(\boldsymbol{Y}_{p}^{(i)}\right)_{1 \leq i \leq n}$, choose randomly and independently n path-particles

$$
\widehat{\boldsymbol{Y}}_{p}^{(i)}=\left(\widehat{\boldsymbol{Y}}_{0, p}^{(i)}, \widehat{\boldsymbol{Y}}_{1, p}^{(i)}, \ldots, \widehat{\boldsymbol{Y}}_{p, p}^{(i)}\right) \in E^{p+1}
$$

according to the Boltzmann-Gibbs particle measure

$$
\sum_{i=1}^{n} \frac{G_{p}\left(\boldsymbol{Y}_{P}^{(i)}\right)}{\sum_{j=1}^{n} G_{p}\left(\boldsymbol{Y}_{p}^{(j)}\right)} \delta_{\boldsymbol{Y}_{p}^{(i)}}
$$

Mutation: each selected path-particle $\widehat{\boldsymbol{Y}}_{p}^{(i)}$ is extended by an elementary unbiased K_{p}-transition:

$$
\begin{aligned}
\boldsymbol{Y}_{p+1}^{(i)} & \left.=\left(\boldsymbol{Y}_{0, p+1}^{(i)}, \ldots, \boldsymbol{Y}_{p, p+1}^{(i)}\right) \quad, \boldsymbol{Y}_{p+1, p+1}^{(i)}\right) \\
& =\left(\left(\widehat{\boldsymbol{Y}}_{0, p}^{(i)}, \ldots, \widehat{\boldsymbol{Y}}_{p, p}^{(i)}\right), \boldsymbol{Y}_{p+1, p+1}^{(i)}\right) \in E^{p+1}
\end{aligned}
$$

where $\boldsymbol{Y}_{p+1, p+1}^{(i)}$ is a random variable with distribution $K_{p}\left(\widehat{\boldsymbol{Y}}_{p, p}^{(i)}, \cdot\right)$. The mutations are performed independently.

- The occupation measures of the ancestral lines converge to the desired measures:

$$
\eta_{p}^{n}=\text { def. } \frac{1}{n} \sum_{i=1}^{n} \delta_{\left(\boldsymbol{Y}_{0, p}^{(i)}, \ldots, \boldsymbol{Y}_{p, p}^{(i)}\right)} \xrightarrow{n \rightarrow \infty} \eta_{p}
$$

In addition, several propagation-of-chaos estimates ensure that the ancestral lines $\boldsymbol{Y}_{p}^{(i)}=\left(\boldsymbol{Y}_{0, p}^{(i)}, \ldots, \boldsymbol{Y}_{p, p}^{(i)}\right)$ are asymptotically i.i.d. with common distribution η_{p}.

- Estimator of $P=\eta_{M}(g) \prod_{0 \leq p<M} \eta_{p}\left(G_{p}\right)$:

$$
\begin{gathered}
\hat{P}_{n}=\eta_{M}^{n}(g) \prod_{0 \leq p<M} \eta_{p}^{n}\left(G_{p}\right) \\
g\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{x}_{M}\right) \geq a} \prod_{0 \leq p<M} G_{p}^{-1}\left(\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{p}\right)
\end{gathered}
$$

[cf. P. Del Moral and J. Garnier, Ann. Appl. Probab. 15 (2005), 2496-2534.]

Efficient implementation of the selection step

- Let $\left(x_{j}\right)_{j=1}^{n}$ be points and $\left(w_{j}\right)_{j=1}^{n}$ be weights such that $\sum_{i=1}^{n} w_{i}=1$. We want to sample $\left(Y_{j}\right)_{j=1}^{n}$ i.i.d. with the distribution $\sum_{i=1}^{n} w_{i} \delta_{x_{i}}$.
- Let $\left(Z_{j}\right)_{j=1}^{n+1}$ be i.i.d. random variables with distribution $\mathcal{E}(1)$.

Set $U_{j}=\sum_{i=1}^{j} Z_{i} / \sum_{i=1}^{n+1} Z_{i}$.
Result 1: The vector $\left(U_{1}, \ldots, U_{n}\right)$ has the same distribution as the order statistics of a vector of i.i.d. r.v. with distribution $\mathcal{U}([0,1])$.

- Set $W_{0}=0, W_{k}=\sum_{i=1}^{k} w_{i}$.

Let $Y_{j}=x_{k}$ if $W_{k-1}<U_{j} \leq W_{k}$ for $j=1, \ldots, n$.
Result 2 : The $\left(Y_{j}\right)_{j=1}^{n}$ are i.i.d. with the distribution $\sum_{i=1}^{n} w_{i} \delta_{x_{i}}$.
k=1;

$$
\text { for } j=1: n
$$

$$
Y(j)=x(k) ;
$$

$$
\text { while } \mathrm{W}(\mathrm{k})<\mathrm{U}(\mathrm{j})
$$

$$
\mathrm{k}=\mathrm{k}+1 \text {; }
$$

$$
Y(j)=x(k) ;
$$

end
end

Estimator of the probability of the rare event

- Let

$$
\hat{P}_{n}=\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{V\left(\boldsymbol{Y}_{M, M}^{(i)}\right) \geq a} \prod_{0 \leq p<M} G_{p}^{-1}\left(\boldsymbol{Y}_{p}^{(i)}\right)\right] \times \prod_{0 \leq p<M}\left[\frac{1}{n} \sum_{i=1}^{n} G_{p}\left(\boldsymbol{Y}_{p}^{(i)}\right)\right]
$$

- \hat{P}_{n} is an unbiased estimator of P :

$$
\mathbb{E}\left[\hat{P}_{n}\right]=P
$$

such that

$$
\hat{P}_{n} \xrightarrow{n \rightarrow \infty} P \quad \text { a.s. }
$$

Central limit theorem

- The estimator \hat{P}_{n} satisfies the central limit theorem

$$
\sqrt{n}\left[\hat{P}_{n}-P\right] \xrightarrow{n \rightarrow \infty} \mathcal{N}\left(0, \sigma^{2}\right)
$$

with the asymptotic variance

$$
\sigma^{2}=\sum_{p=0}^{M} \mathbb{E}\left[\prod_{j=0}^{p-1} G_{j}\right] \mathbb{E}\left[\prod_{j=0}^{p-1} G_{j}^{-1}\left(P_{p, M}^{a}\right)^{2}\right]-P^{2}
$$

Here the functions $P_{p, M}^{a}$ are defined by

$$
\boldsymbol{x}_{p} \in E \mapsto P_{p, M}^{a}\left(\boldsymbol{x}_{p}\right)=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a \mid \boldsymbol{X}_{p}=\boldsymbol{x}_{p}\right)
$$

- Useful for

1) the choice of "good" functions G_{p} (variance reduction)
2) the design of an estimator of the asymptotic variance.

Empirical estimator of the asymptotic variance

An IPS with two lineages with distinct parents $a(4)=4$ and $a(3)=1$.

- Unbiased and weakly consistent estimator of σ^{2} :

$$
\begin{aligned}
\hat{\sigma}_{n}^{2}= & \left\{\prod_{0 \leq p<M}\left[\frac{1}{n} \sum_{i=1}^{n} G_{p}\left(\boldsymbol{Y}_{p}^{(i)}\right)\right]^{2}\right\}\left\{\frac{1}{n}\left(\sum_{i=1}^{n} g\left(\boldsymbol{Y}_{M}^{(i)}\right)\right)^{2}\right. \\
& \left.-\frac{n^{M}}{(n-1)^{M+1}} \sum_{i, j, a(i) \neq a(j)} g\left(\boldsymbol{Y}_{M}^{(i)}\right) g\left(\boldsymbol{Y}_{M}^{(j)}\right)\right\}
\end{aligned}
$$

with $g\left(\boldsymbol{y}_{M}\right)=\mathbf{1}_{V\left(\boldsymbol{y}_{M, M}\right) \geq a} \prod_{0 \leq p<M} G_{p}\left(\boldsymbol{y}_{p}\right)^{-1}$.

An IPS with a lineage $\boldsymbol{Y}^{\mathbf{L}^{1}}$ in red and a type-II lineage $\boldsymbol{Y}^{\mathbf{L}^{2}}$ in blue.

- Unbiased and weakly consistent estimator of σ^{2} :

$$
\begin{aligned}
\hat{\sigma}_{n}^{2} & =\sum_{p=0}^{M-1}\left(\mu_{n, p}-\mu_{n, \emptyset}\right) \\
\mu_{n, p} & =\frac{n^{M}}{(n-1)^{M}} \sum_{\mathbf{L}^{1}} \frac{1}{\#\left(\mathbf{L}^{2}, \mathbf{L}^{1} \cap \mathbf{L}^{2}=\left\{\mathbf{L}_{p}^{1}\right\}\right)} \sum_{\mathbf{L}^{2}, \mathbf{L}^{1} \cap \mathbf{L}^{2}=\left\{L_{p}^{1}\right\}} g\left(\boldsymbol{Y}^{\mathbf{L}^{1}}\right) g\left(\boldsymbol{Y}^{\mathbf{L}^{2}}\right), \\
\mu_{n, \emptyset} & =\frac{n^{M}}{(n-1)^{M+1}} \sum_{\mathbf{L}^{1}} \frac{1}{\#\left(\mathbf{L}^{2}, \mathbf{L}^{1} \cap \mathbf{L}^{2}=\emptyset\right)} \sum_{\mathbf{L}^{2}, \mathbf{L}^{1} \cap \mathbf{L}^{2}=\emptyset} g\left(\boldsymbol{L}^{\mathbf{L}^{1}}\right) g\left(\boldsymbol{Y}^{\mathbf{L}^{2}}\right) .
\end{aligned}
$$

[A. Lee and N. Whiteley, Biometrika 105 (2018), 609-625.]

Optimal potentials

The optimal potential functions are defined up to a multiplicative constant. For $p \geq 1$, let G_{p}^{*} be defined by:

$$
G_{p}^{*}\left(\boldsymbol{y}_{p}\right)^{2}=\left\{\begin{array}{cc}
\frac{\mathbb{E}\left[\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{p+1}\right]^{2} \mid \boldsymbol{Y}_{\rho}=\boldsymbol{y}_{p}\right]}{} & \text { if } \mathbb{E}\left[\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{p}\right]^{2} \mid \boldsymbol{Y}_{p-1}=\boldsymbol{y}_{0: p-1}\right] \neq 0 \\
\left.\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{p}\right]^{2} \mid \boldsymbol{Y}_{\rho-1}=\boldsymbol{y}_{0 \cdot p-1}\right] & \text { if } \mathbb{E}\left[\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{p}\right]^{2} \mid \boldsymbol{Y}_{p-1}=\boldsymbol{y}_{0: p-1}\right]=0
\end{array}\right.
$$

- The potential functions minimizing σ^{2} are proportional to G_{p}^{*}.

The optimal variance of the IPS method is then

$$
\begin{aligned}
\sigma_{G^{*}}^{2}= & \mathbb{E}\left[\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{0}\right]^{2}\right]-P^{2} \\
& +\sum_{p=1}^{M}\left\{\mathbb{E}\left[\sqrt{\mathbb{E}\left[\mathbb{E}\left[h\left(\boldsymbol{Y}_{M}\right) \mid \boldsymbol{Y}_{p}\right]^{2} \mid \boldsymbol{Y}_{p-1}\right]}\right]^{2}-P^{2}\right\} .
\end{aligned}
$$

- Two observations:
- The optimal asymptotic variance is positive.
- The optimal potential G_{p}^{*} depends only on $x_{p}=y_{p, p}$ and $x_{p-1}=y_{p, p-1}$.

Example: the Gaussian walk

$$
X_{p}=X_{p-1}+\theta_{p}
$$

where $\left(\theta_{p}\right)_{1 \leq p \leq M}$ i.i.d. with the distribution $\mathcal{N}(0,1)$,

$$
V(x)=x
$$

Here X_{M} is Gaussian, has zero-mean and variance M :

$$
P=\mathbb{P}\left(X_{M} \geq a\right)=\frac{1}{\sqrt{2 \pi M}} \int_{a}^{\infty} \exp \left(-\frac{s^{2}}{2 M}\right) d s \sim \exp \left(-\frac{a^{2}}{2 M}\right)
$$

Consider $a \gg \sqrt{M}$ so that $P \ll 1$.

- MC for the Gaussian walk

Consider the unbiased dynamics with no selection.
The MC estimator

$$
\hat{P}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{X_{M}^{(k)} \geq a}, \quad X_{M}^{(k)} \text { i.i.d. distributed as } X_{M}
$$

has the asymptotic variance $P(1-P) \simeq P$.
\rightarrow relative error $\sim 1 / \sqrt{n P}$.

- IS for the Gaussian walk

Consider the biased dynamics with no selection

$$
\tilde{X}_{p}=\tilde{X}_{p-1}+\tilde{\theta}_{p}
$$

where $\left(\tilde{\theta}_{p}\right)_{1 \leq p \leq M}$ are i.i.d. with the distribution $\mathcal{N}(a / M, 1)$.
Consider the IS estimator
$\hat{I}_{n}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\tilde{X}_{M}^{(k)} \geq a} \exp \left(\frac{a^{2}}{2 M}-\frac{a}{M} \tilde{X}_{M}^{(k)}\right), \quad \tilde{X}_{M}^{(k)}$ i.i.d. distributed as \tilde{X}_{M}
\hat{I}_{n} is unbiased and has the asymptotic variance

$$
\sigma^{2}=\mathbb{E}\left[\mathbf{1}_{X_{M} \geq a} \exp \left(\frac{a^{2}}{2 M}-\frac{a}{M} X_{M}\right)\right]-P^{2} \sim \exp \left(-\frac{a^{2}}{M}\right)
$$

\rightarrow relative error $\sim 1 / \sqrt{n}$.
IS requires to bias the input distribution.

- IPS for the Gaussian walk

Consider the unbiased dynamics

$$
X_{p}=X_{p-1}+\theta_{p}
$$

where $\left(\theta_{p}\right)_{1 \leq p \leq M}$ are i.i.d. with the distribution $\mathcal{N}(0,1)$. Selection with potential G_{p}.
First choice for the potential:

$$
G_{p}\left(x_{0}, \ldots, x_{p}\right)=\exp \left(\alpha x_{p}\right), \quad \text { for some } \alpha>0
$$

We find

$$
\sigma^{2} \simeq \sum_{p=0}^{M-1}\left[e^{-\frac{a^{2}}{M}} e^{\frac{p}{M(M+p)}[a-\alpha M(p-1) / 2]^{2}+\frac{1}{12} \alpha^{2}(p-1) p(p+1)}-P^{2}\right]
$$

By an approximate optimization, we take $\alpha=2 a /[M(M-1)]$, and we get

$$
\sigma^{2} \simeq e^{-\frac{a^{2}}{M} \frac{2}{3}\left(1-\frac{1}{M-1}\right)}
$$

\hookrightarrow the asymptotic variance is of the order of $P^{4 / 3}$
\rightarrow relative error $\sim 1 / \sqrt{n P^{2 / 3}}$.

- IPS for the Gaussian walk

Second choice for the potential:

$$
G_{p}\left(x_{0}, \ldots, x_{p}\right)=\exp \left[\alpha\left(x_{p}-x_{p-1}\right)\right], \quad \text { for some } \quad \alpha>0
$$

We find

$$
\sigma^{2} \simeq \sum_{p=0}^{M-1}\left[e^{-\frac{a^{2}}{M}} e^{\frac{p+1}{M(M+p+1)}\left[a-\alpha \frac{M p}{p+1}\right]^{2}+\alpha^{2} \frac{p}{p+1}}-P^{2}\right]
$$

By an approximate optimization, we take $\alpha=a / M$, we get

$$
\sigma^{2} \sim e^{-\frac{\partial^{2}}{M}\left(1-\frac{1}{M}\right)}
$$

\hookrightarrow the asymptotic variance is of the order of P^{2}.
\rightarrow relative error $\sim 1 / \sqrt{n}$.
By comparing with the previous case: a selection pressure depending only on the state is not efficient!

- IPS for the Gaussian walk

Optimal choice for the potential:

$$
G_{p}^{*}\left(\boldsymbol{y}_{p}\right)^{2}=\frac{\int_{\mathbb{R}}\left(\int_{a}^{\infty} \exp \left[-\frac{\left(x_{M}^{\prime}-x_{p+1}^{\prime}\right)^{2}}{2(n-p-1)}\right] d x_{M}^{\prime}\right)^{2} \exp \left[-\frac{\left(x_{p+1}^{\prime}-x_{p}\right)^{2}}{2}\right] d x_{p+1}^{\prime}}{\int_{\mathbb{R}}\left(\int_{a}^{\infty} \exp \left[-\frac{\left(x_{M}^{\prime}-x_{p}^{\prime}\right)^{2}}{2(n-p)}\right] d x_{M}^{\prime}\right)^{2} \exp \left[-\frac{\left(x_{\rho}^{\prime}-x_{p-1}\right)^{2}}{2}\right] d x_{p}^{\prime}}
$$

$G_{p}\left(\boldsymbol{y}_{p}\right)$	$\operatorname{mean}(\hat{P})$	$\hat{\sigma}_{I P S, G}^{2}$
$\exp \left[\alpha x_{p}\right], \alpha=0.22$	1.0510^{-6}	2.810^{-9}
$\exp \left[\alpha\left(x_{p}-x_{p-1}\right)\right], \alpha=1.4$	1.0510^{-6}	1.710^{-10}
$\exp \left[-\frac{\left(x_{p}-a\right)^{2}}{2(n-p+1)}+\frac{\left(x_{p-1}-\mathrm{a}\right.}{}\right)^{2}$		
$G_{p}^{*}\left(\boldsymbol{y}_{p}\right)$	1.0510^{-6}	1.510^{-10}
	1.0510^{-6}	1.310^{-10}

Here $P=1.0510^{-6}, n=2000, M=10, a=15$.

- IPS for the Gaussian walk

$$
M=15, n=210^{4} \text { particles, } \alpha=1
$$

Example: Communication in transoceanic optical fibers

- Physical model:
$\left(u_{0}(t)\right)_{t \in \mathbb{R}}=$ initial pulse profile.
$(u(z, t))_{t \in \mathbb{R}}=$ pulse profile after a propagation distance z.
$(u(Z, t))_{t \in \mathbb{R}}=$ output pulse profile (after a propagation distance Z).
$\tau(z)^{2}=\int|u(z, t)|^{2} t^{2} d t / \int|u(z, t)|^{2} d t$ rms pulse width after propagation distance z.
Propagation from $z=0$ to $z=Z$ governed by two coupled nonlinear Schrödinger equations with randomly z-varying coefficients.
\rightarrow Truncation of $[0, Z]$ into M segments $\left[z_{p-1}, z_{p}\right), z_{p}=p Z / M$, $1 \leq p \leq M$.
$\rightarrow \boldsymbol{X}_{p}=\left(u\left(z_{p}, t\right)_{t \in \mathbb{R}}\right)$ is the pulse profile at distance z_{p}.
Here $\left(\boldsymbol{X}_{p}\right)_{0 \leq p \leq M}$ is Markov with state space $E=H_{0}^{2}(\mathbb{R}) \cap L_{2}^{2}(\mathbb{R})$
- Problem: estimation of the probability

$$
P=\mathbb{P}\left(V\left(\boldsymbol{X}_{M}\right) \geq a\right)=\mathbb{P}(\tau(Z) \geq a)
$$

The potential function is $V: \left\lvert\, \begin{aligned} & E \rightarrow \mathbb{R} \\ & V(\boldsymbol{X})=\int t^{2}|\boldsymbol{X}(t)|^{2} d t / \int|\boldsymbol{X}(t)|^{2} d t\end{aligned}\right.$

1) asymptotic model (separation of scales technique)
\rightarrow the rms pulse width $\tau(z)$ is a diffusion process and its pdf is

$$
p_{z}(\tau)=\frac{\tau^{1 / 2}}{\sqrt{2 \pi}\left(4 \sigma^{2} z\right)^{3 / 2}} \exp \left(-\frac{\tau}{8 \sigma^{2} z}\right) \mathbf{1}_{[0, \infty)}(\tau)
$$

2) realistic model: impossible to get a closed-form expression for the pdf of $\tau(z)$.
3) experimental observations: the pdf tail of the rms pulse width does not fit with the Maxwellian distribution in realistic configurations.

$$
M=15, n=210^{4} \text { particles, } \alpha=1 \text { and } \alpha=3 .
$$

The solid line stands for the Maxwellian pdf predicted by the asymptotic model.

Multilevel splitting

- Description of the system:
- Let \boldsymbol{X} be a \mathbb{R}^{d}-valued random variable with pdf $p(\boldsymbol{x})$.
- Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the risk function.
- Let a be the threshold level.
- Problem: estimation of

$$
P=\mathbb{P}(V(\boldsymbol{X}) \geq a)
$$

when a is large $\Longrightarrow P \ll 1$.

Multilevel splitting

- Let \boldsymbol{X} be a \mathbb{R}^{d}-valued random variable with pdf $p(\boldsymbol{x})$. Estimation of

$$
P=\mathbb{P}(V(X) \geq a)=\int_{\mathbb{R}^{d}} \mathbf{1}_{V(x) \geq a} p(x) d x
$$

- Splitting strategy:
- Write the decomposition (with $a_{M}=a>\cdots>a_{0}=-\infty$)

$$
P=\prod_{j=1}^{M} P_{j}, \quad P_{j}=\mathbb{P}\left(V(\boldsymbol{X}) \geq a_{j} \mid V(\boldsymbol{X}) \geq a_{j-1}\right)
$$

- Estimate P_{j} separately.
- Two key issues:

1) Algorithm to evaluate each P_{j},
2) Selection of the levels a_{j}.

Multilevel splitting

$$
P=\mathbb{P}(V(\boldsymbol{X}) \geq a)=\prod_{j=1}^{M} P_{j}, \quad P_{j}=\mathbb{P}\left(V(\boldsymbol{X}) \geq a_{j} \mid V(\boldsymbol{X}) \geq a_{j-1}\right)
$$

- Two key issues:

1) Algorithm to evaluate each P_{j},
2) Selection of the levels a_{j}.

- Answers:

Answer to 1): use an interacting particle method (based on a Markov process whose invariant distribution has pdf $p) \rightarrow \hat{P}_{n}$.
Answer to 2): choose a_{j} such that the P_{j} 's are all equal to the same $\alpha \in(0,1)$. Then

$$
\operatorname{Var}\left(\hat{P}_{n}\right)=\frac{P^{2}}{n}\left(\frac{(1-\alpha) \ln P}{\alpha \ln \alpha}\right)+o\left(n^{-1}\right)
$$

\hookrightarrow one should take $\alpha \rightarrow 1$.

- Multilevel splitting strategy with " $\alpha=1-1 / n$ ":
- Generate n particles (with pdf p) to create generation zero:

$$
\hookrightarrow \quad\left(\boldsymbol{X}_{0}^{(1)}, \ldots, \boldsymbol{X}_{0}^{(n)}\right) \text { i.i.d. with pdf } p(\boldsymbol{x})
$$

- For $j-1 \rightarrow j$,
- define the level a_{j} as the minimum of $V(\boldsymbol{x})$ evaluated on the n particles: $a_{j}=\min _{k=1, \ldots, n}\left\{V\left(X_{j-1}^{(k)}\right)\right\}$,
- remove the particle that achieves the minimum,
- generate a new particle with the conditional distribution $\mu_{a_{j}}$ of \boldsymbol{X} knowing that $V(\boldsymbol{X}) \geq a_{j}$:

$$
\mu_{a_{j}}(d \boldsymbol{x})=p_{a_{j}}(\boldsymbol{x}) d \boldsymbol{x}, \quad p_{a_{j}}(\boldsymbol{x})=\frac{\mathbf{1}_{V(\boldsymbol{x}) \geq a_{j}} p(\boldsymbol{x})}{\int_{\mathbb{R}^{d}} \mathbf{1}_{V\left(\boldsymbol{x}^{\prime}\right) \geq a_{j}} p\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime}}
$$

(see below: use the Metropolis-Hastings algorithm).

$$
\hookrightarrow \quad\left(\boldsymbol{X}_{j}^{(1)}, \ldots, \boldsymbol{X}_{j}^{(n)}\right) \text { i.i.d. with the distribution } \mu_{\mathrm{a}_{j}}
$$

- Stop when $a_{j} \geq a$. Denote $\hat{J}_{n}=\min \left\{j, a_{j} \geq a\right\}-1$.
- Result 1: if one knows how to generate the new particle with the distribution $\mu_{a_{j}}$,
then \hat{J}_{n} follows a Poisson distribution with parameter $-n \ln P$:

$$
\mathbb{P}\left(\hat{J}_{n}=j\right)=\frac{P^{n}(-n \log P)^{j}}{j!}
$$

Proof:
we assume that $V(\boldsymbol{X})$ has continuous cdf F.
(a) the random variables $-\log \left(1-F\left(a_{j}\right)\right), j \geq 1$, are distributed as the successive arrival times of a Poisson process with rate n,

$$
-\log \left(1-F\left(a_{j}\right)\right) \stackrel{\text { dist. }}{=} \frac{1}{n} \sum_{i=1}^{j} E_{i}
$$

where E_{i} are i.i.d. exponential random variables. (b) $\mathbb{P}\left(\hat{J}_{n}=j\right)=\mathbb{P}\left(a_{j} \leq a, a_{j+1}>a\right)=\mathbb{P}\left(\sum_{i=1}^{j} E_{i} \leq-n \ln P<\sum_{i=1}^{j+1} E_{i}\right)$.

Proof of (a).

Let $\Lambda(y)=-\log (1-F(y)) . \Lambda: \mathbb{R} \rightarrow(0, \infty)$ is continuous and increasing.

- Generation 0: $\left(\Lambda\left(V\left(\boldsymbol{X}_{0}^{(k)}\right)\right)\right)_{k=1, \ldots, n}$ are i.i.d.
F is the cdf of $V(\boldsymbol{X})$, so $F(V(\boldsymbol{X})) \sim \mathcal{U}(0,1)$
Therefore $\Lambda(V(\boldsymbol{X}))=-\log (1-F(V(\boldsymbol{X}))) \sim \mathcal{E}(1)$:

$$
\mathbb{P}(\Lambda(V(\boldsymbol{X})) \geq \lambda)=e^{-\lambda}
$$

Therefore $\left(\Lambda\left(V\left(\boldsymbol{X}_{0}^{(k)}\right)\right)\right)_{k=1, \ldots, n}$ are i.i.d. with the distribution $\mathcal{E}(1)$. Let $a_{1}=\min _{k=1, \ldots, n}\left\{V\left(\boldsymbol{X}_{0}^{(k)}\right)\right\}$. We have

$$
\begin{aligned}
\Lambda\left(a_{1}\right) & =\min _{k=1, \ldots, n}\left\{\Lambda\left(V\left(\boldsymbol{X}_{0}^{(k)}\right)\right)\right\} \\
\mathbb{P}\left(\Lambda\left(a_{1}\right) \geq \lambda\right) & =\mathbb{P}(\Lambda(V(\boldsymbol{X})) \geq \lambda)^{n}=e^{-n \lambda}
\end{aligned}
$$

Therefore

$$
\Lambda\left(a_{1}\right) \sim \frac{1}{n} E_{1}, \quad E_{1} \sim \mathcal{E}(1)
$$

- Generation j. Let $\Lambda_{j}(y)=-\log \left(1-F_{j}(y)\right)$ where F_{j} is the cdf of $V(\boldsymbol{X})$ given $V(\boldsymbol{X}) \geq a_{j}$:
$F_{j}(y)=\mathbb{P}\left(V(\boldsymbol{X}) \leq y \mid V(\boldsymbol{X}) \geq a_{j}\right)=\frac{\mathbb{P}\left(a_{j} \leq V(\boldsymbol{X}) \leq y\right)}{\mathbb{P}\left(V(\boldsymbol{X}) \geq a_{j}\right)}=\frac{F(y)-F\left(a_{j}\right)}{1-F\left(a_{j}\right)}$
Therefore $\Lambda_{j}(y)=\Lambda(y)-\Lambda\left(a_{j}\right)$.
As above: $\left(\Lambda_{j}\left(V\left(\boldsymbol{X}_{j}^{(k)}\right)\right)\right)_{k=1, \ldots, n}$ are i.i.d. with the distribution $\mathcal{E}(1)$.
Let $a_{j+1}=\min _{k=1, \ldots, n}\left\{V\left(\boldsymbol{X}_{j}^{(k)}\right)\right\}$. As above $\Lambda_{j}\left(a_{j+1}\right) \sim \frac{1}{n} E_{j+1}, E_{j} \sim \mathcal{E}(1)$. Therefore

$$
\Lambda\left(a_{j+1}\right)=\Lambda\left(a_{j}\right)+\Lambda_{j}\left(a_{j+1}\right) \sim \frac{1}{n} \sum_{i=1}^{j+1} E_{i}, \quad E_{i} \sim \mathcal{E}(1)
$$

- Estimator:

$$
\hat{P}_{n}=\left(1-\frac{1}{n}\right)^{\hat{\jmath}_{n}}
$$

- Result 2: if one knows how to generate the new particle with the distribution $\mu_{a_{j}}$, then \hat{P}_{n} is an unbiased estimator of P with variance

$$
\operatorname{Var}\left(\hat{P}_{n}\right)=P^{2}\left(P^{-1 / n}-1\right) \simeq \frac{-P^{2} \ln P}{n}
$$

Proof:

$$
\mathbb{P}\left(\hat{P}_{n}=\left(1-\frac{1}{n}\right)^{j}\right)=\mathbb{P}\left(\hat{J}_{n}=j\right)=\frac{P^{n}(-n \log P)^{j}}{j!}
$$

- Result 3: Denote

$$
\hat{P}_{n, \pm}=\hat{P}_{n} \exp \left(\pm \frac{z_{1-\alpha / 2}}{\sqrt{n}} \sqrt{-\log \hat{P}_{n}}\right)
$$

where $z_{1-\alpha / 2}$ is the $1-\alpha / 2$-quantile of the standard normal distribution. We have

$$
\mathbb{P}\left(P \in\left[\hat{P}_{n,-}, \hat{P}_{n,+}\right]\right) \approx 1-\alpha
$$

If $\alpha=0.05$, then $z_{1-\alpha / 2} \approx 2$.

- Aparté: Metropolis-Hastings algorithm.
- Let μ_{a} be a probability distribution on \mathbb{R}^{d} with $\operatorname{pdf} p_{a}(x)$ (known up to a multiplicative constant). We want to simulate an ergodic Markov chain $\left(X_{t}\right)_{t \geq 0}$ whose invariant distribution is μ_{a}.
- Preliminary step: choose an instrumental transition density q on \mathbb{R}^{d}, i.e., for any fixed $\boldsymbol{x}^{\prime} \in \mathbb{R}^{d}, \boldsymbol{x} \rightarrow q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ is a pdf and we know how to generate a random variable \boldsymbol{X} with this pdf.
- Algorithm:

Step 0: Choose \boldsymbol{X}_{0} arbitrarily.
Step $t+1$: Choose a candidate $\tilde{\boldsymbol{X}}_{t+1}$ with the distribution with pdf $q\left(\boldsymbol{X}_{t}, \boldsymbol{x}\right)$. Set $\boldsymbol{X}_{t+1}=\boldsymbol{X}_{t}$ with probability $1-\rho\left(\boldsymbol{X}_{t}, \tilde{\boldsymbol{X}}_{t+1}\right)$ (reject) and $\boldsymbol{X}_{t+1}=\tilde{\boldsymbol{X}}_{t+1}$ with probability $\rho\left(\boldsymbol{X}_{t}, \tilde{\boldsymbol{X}}_{t+1}\right)$ (accept). Here

$$
\rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=\min \left(\frac{p_{a}(\boldsymbol{x}) q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)}{p_{a}\left(\boldsymbol{x}^{\prime}\right) q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)}, 1\right)
$$

- $\left(\boldsymbol{X}_{t}\right)_{t \geq 0}$ is a Markov chain with transition

$$
K\left(\boldsymbol{x}^{\prime}, d \boldsymbol{x}\right)=q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) d \boldsymbol{x}+\left(1-\int q\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right) d \boldsymbol{y}\right) \delta_{\boldsymbol{x}^{\prime}}(d \boldsymbol{x})
$$

- We have (because $\left.p_{a}\left(\boldsymbol{x}^{\prime}\right)\left[q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \rho\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)\right]=p_{a}(\boldsymbol{x})\left[q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \rho\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right]\right)$

$$
\int d \boldsymbol{x}^{\prime} p_{a}\left(\boldsymbol{x}^{\prime}\right) K\left(\boldsymbol{x}^{\prime}, d \boldsymbol{x}\right)=p_{a}(\boldsymbol{x}) d \boldsymbol{x}
$$

$\hookrightarrow \mu_{a}$ is stationary for the Markov chain.

- Under mild conditions (for instance, if q is positive), the chain $\left(\boldsymbol{X}_{t}\right)_{t \geq 0}$ is ergodic with stationary distribution μ_{a} :

$$
\sup _{A \in \mathcal{B}\left(\mathbb{R}^{d}\right)}\left|\mathbb{P}\left(\boldsymbol{X}_{t} \in A\right)-\mu_{a}(A)\right| \xrightarrow{t \rightarrow \infty} 0
$$

- In practice:
- after a burn-in phase with some length t_{0}, the sequence $\left(\boldsymbol{X}_{t}\right)_{t \geq t_{0}}$ is stationary with distribution μ_{a} (but not independent).
- the choice of the instrumental transition density is important to get fast convergence. Ideally the rejection rate should be around 50%.
- If $\boldsymbol{X}_{0} \sim \mu_{\mathrm{a}}$, then the chain is stationary. After a few accepted mutations, $\boldsymbol{X}_{t} \sim \mu_{a}$ and is quasi-independent from \boldsymbol{X}_{0}.
- Problem: how to generate the new particle with the distribution $\mu_{\mathrm{a}_{j}}$ (of \boldsymbol{X} knowing that $\left.V(\boldsymbol{X})>a_{j}\right)$?
Version 1:
- Consider a symmetric transition kernel $q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ such that

$$
q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

- Algorithm:
- $a_{j}=$ minimal value of the n particles.
- pick a particle $\boldsymbol{X}_{(1)}$ amongst the $n-1$ largest particles (larger than a_{j}).
- for $t=1, \ldots, T$, draw a new particle \boldsymbol{X}^{*} with the pdf $q\left(\boldsymbol{X}_{(1)}, \cdot\right)$;
if $V\left(\boldsymbol{X}^{*}\right)>a_{j}$, then $\boldsymbol{X}_{(1)}=\boldsymbol{X}^{*}$ with probability $\min \left(p\left(\boldsymbol{X}^{*}\right) / p\left(\boldsymbol{X}_{(1)}\right), 1\right)$; otherwise keep $\boldsymbol{X}_{(1)}$.
- replace the smallest particle by $\boldsymbol{X}_{(1)}$.
- Result 3: the distribution of $\boldsymbol{X}_{(1)}$ is the distribution $\mu_{\mathrm{a}_{j}}$. As $T \rightarrow \infty$, the distribution of $\boldsymbol{X}_{(1)}$ becomes independent of the other particles.
- Problem: how to generate the new particle with the distribution $\mu_{a_{j}}$ (of \boldsymbol{X} knowing that $\left.V(\boldsymbol{X})>a_{j}\right)$? Version 2:
- Consider a transition kernel $q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)$ such that

$$
p\left(\boldsymbol{x}^{\prime}\right) q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=p(\boldsymbol{x}) q\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

- Algorithm:
- $a_{j}=$ minimal value of the n particles.
- pick a particle $\boldsymbol{X}_{(1)}$ amongst the $n-1$ largest particles (larger than a_{j}).
- for $t=1, \ldots, T$, draw a new particle \boldsymbol{X}^{*} with the pdf $q\left(\boldsymbol{X}_{(1)}, \cdot\right)$; if $V\left(\boldsymbol{X}^{*}\right)>a_{j}$, then $\boldsymbol{X}_{(1)}=\boldsymbol{X}^{*}$; otherwise keep $\boldsymbol{X}_{(1)}$.
- replace the smallest particle by $\boldsymbol{X}_{(1)}$.
- Result 3: the distribution of $\boldsymbol{X}_{(1)}$ is the distribution $\mu_{\mathrm{a}_{j}}$. As $T \rightarrow \infty$, the distribution of $\boldsymbol{X}_{(1)}$ becomes independent of the other particles. In practice: $T=$ a few tens.
- Example:

$$
P=\mathbb{P}(V(\boldsymbol{X}) \geq a)
$$

with $\boldsymbol{X} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{d}\right), d=20, a=0.95, V(\boldsymbol{x})=\left|x_{1}\right| /|\boldsymbol{x}|: P=4.7040^{-11}$. Kernel $q: \boldsymbol{x}^{\prime} \rightarrow \mathcal{N}\left(\frac{x^{\prime}}{\sqrt{1+\sigma^{2}}}, \frac{\sigma^{2}}{1+\sigma^{2}} \mathbf{I}_{d}\right), \sigma=0.3, T=20$, ie

$$
q\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right)=\frac{\left(1+\sigma^{2}\right)^{d / 2}}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\left|\sqrt{1+\sigma^{2}} \boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{2}}{2 \sigma^{2}}\right)
$$

$n \in[100,200,500,1000]$ particles.
[A. Guyader, et al., Appl. Math. Optim. 64 (2011), 171-196]

Conclusions

- Importance sampling: bias the input.
\hookrightarrow Intrusive method.
- Interacting particle system: select the particles based on the output. \hookrightarrow No physical insight is required to guess the suitable biased input distribution.
But: need $V(\boldsymbol{X})$.
\hookrightarrow Non-intrusive method: no need to change the numerical code.
- Number of particles fixed, computational cost (almost) fixed.
- The simulation code is used with the original distribution.
- Empirical estimator of the variance of the estimator and confidence intervals can be built.
- It is possible to make the algorithm partially parallel (not fully parallel as Monte Carlo).
- Also: conditional distributions. The method is efficient for the computation of conditional expectations and for the analysis of the cascade of events leading to a rare event.

