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Risk assessment

Parameters values are tainted with uncertainties. Input parameters
are then modeled as random variables.

Hypothesis : Suppose Xi mutually independent.
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Internship objectives

• Input parameters probability distribution is a strong prior in
risk assessment studies.

• The impact on the quantity of interest Y by a probability
density perturbation has to be assessed

• The initial density fi of variable Xi is perturbed into fiδ

• Main issue : How to define such a perturbation?
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Variational approach

• Pertubed density fiδ is defined by minimizing the application
q → KL(q||fi) with moments constraints.

• Example :
∫
xfiδ(x)dx = δi,

∫
x2fiδ(x)dx = δi
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Parametric framework

• Only parametrical models are considered S = {fθ, θ ∈ Θ ⊂ R
d}

• Example : Gaussian distributions {N (µ, σ2), (µ, σ) ∈ R× R
+∗}
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• Only parametrical models are considered S = {fθ, θ ∈ Θ ⊂ R
d}

• Example : Gaussian distributions {N (µ, σ2), (µ, σ) ∈ R× R
+∗}

µ

σ

σ1

µ1

δ
•

σ1

µ1

11/41



A new geometrical approach

• Fisher information endows statistical models with a remarkable
geometric structure.
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Information geometry

• Let S = {fθ, θ ∈ Θ ⊂ R
d} a parametrical statistical model

• A Riemannian manifold is defined on S
• To each point θ is associated a tangent space TθS ≃ R

d

• The latter scalar product is defined in TθS :

∀u, v ∈ TθS, 〈u, v〉θ = uT I(θ)v ,

where I(θ) is the Fisher information matrix evaluated in θ.

I(θ) = E

[
(∇θ log fθ(X))(∇θ log fθ(X))T

]
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Information geometry

Fisher information is a key feature in asymptotic statistics.

Borne de Cramer Rao :

Let θ̂ be an unbiaised estimator of θ, then

V (θ̂) ≥ I(θ)−1 , (1)

where V (θ̂) is the covariance matrix of the estimator.
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• The scalar product 〈., .〉θ could define an implicit distance
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Information geometry

• The scalar product 〈., .〉θ could define an implicit distance
• This distance is called Fisher distance.
• Let t → q(t) be a C1 path in Θ, its length is defined by :

l(q) :=

1∫

0

√
〈q̇(t), q̇(t)〉q(t)dt ,

• the Fisher distance fθ1 and fθ2 is defined by :

dF (fθ1 , fθ2) = inf
q∈C(θ1,θ2)

l(q) ,

where C(θ1, θ2) is the set of C1 path between θ1 and θ2.
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Interpretation (1/3)

Consider the space {N (µ, σ2), (µ, σ) ∈ R× R
+∗}
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•
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Interpretation (2/3)

• Let X1, ..., Xn a n sized sample fθ distributed.
• We denote by θ̂n the maximum likelihood estimator

Central limit theorem :
√
n(θ̂n − θ)

L−→ N (0, I(θ)−1) , (2)

• The probability density of θ̂n is :

p(θ̂n, θ) ∝ e−
n
2 δθT I(θ)δθ
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Geodesics computation

• All distributions on the Fisher sphere are equivalent perturbed
densities from fθ0 .

19/41



Geodesics computation

• All distributions on the Fisher sphere are equivalent perturbed
densities from fθ0 .

• We need to compute all geodesics such that q(0) = θ0 and
dF (q(0), q(1)) = δ for δ ∈ R

+ fixed.

19/41



Geodesics computation

• All distributions on the Fisher sphere are equivalent perturbed
densities from fθ0 .

• We need to compute all geodesics such that q(0) = θ0 and
dF (q(0), q(1)) = δ for δ ∈ R

+ fixed.
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Geodesics computation

Let t → q(t) a path, with p = I(q)q̇, the hamiltonian is written :

H(p, q) =
1

2
pT I−1(q)p .

If t → q(t) is a geodesic, then the function t → H(p(t), q(t)) is
constant.

A geodesic statisfies the following system of ordinary differential
equations : {

q̇= ∂H
∂p

ṗ=−∂H
∂q

(3)
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Geodesics computation

• The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dF (q(0), q(1)) = δ
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Geodesics computation

• The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dF (q(0), q(1)) = δ

• With (q(0), p(0)) defined, the ODE system (3) has an unique
solution thanks to Cauchy’s theorem

• Geodesics are computed using numerical methods.

21/41
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• We aim to measure the impact of density perturbation of input
Xi to Y
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Application to sensitivity analysis

• We aim to measure the impact of density perturbation of input
Xi to Y

• We define the quantile-PLI (Perturbated Law Index) Siδ by :

Siδ =
qαiδ−qα

qα

• qα and qαiδ are respectively the quantiles of level α of Y with Xi

distributed respectively according to fi and fiδ

• We obtain the minimum and the maximum of Siδ for fiδ in the
Fisher sphere of radius δ centered in fi.

• This new methodology is called OF-PLI (Optimal Fisher based
PLI).
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PLI estimation

• Industrial simulation code are o�en time-expensive.
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• Industrial simulation code are o�en time-expensive.
• We want to estimate the PLI without resampling Xi from the
perturbed density.

• We consider a sample (X(1), ...,X(N)) with Xi sampled from fi

and a simulation code G :

F̂iδ(t) =

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

1(G(X(n))<t)

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

This is the reverse importance sampling (RIS) estimator of the
cdf of G(X)
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PLI estimation

• Industrial simulation code are o�en time-expensive.
• We want to estimate the PLI without resampling Xi from the
perturbed density.

• We consider a sample (X(1), ...,X(N)) with Xi sampled from fi

and a simulation code G :

F̂iδ(t) =

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

1(G(X(n))<t)

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

This is the reverse importance sampling (RIS) estimator of the
cdf of G(X)

• the perturbed quantile qαiδ is estimated with the empirical
quantile of F̂iδ .
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Theoretical results - PLI estimation

• Self normalized cdf estimator F̂iδ(t) is used because it is
bounded. Moreover, it possess better asymptotic properties.

• The estimator Ŝiδ =
q̂αiδ−q̂α

q̂α
built verify a CLT.
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Theoretical results - PLI estimation

• Self normalized cdf estimator F̂iδ(t) is used because it is
bounded. Moreover, it possess better asymptotic properties.

• The estimator Ŝiδ =
q̂αiδ−q̂α

q̂α
built verify a CLT.

• Main hypothesis for the CLT : E
[(

fiδ(X)
fi(X)

)2]
< +∞
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A toy case : Ishigami function

• We take 3 independent random variables (X1, X2, X3) with a
standard Gaussian distribution N (0, 1).

• The output variable is the analytical function

G(x1, x2, x3) = sin(x1) + 7 sin(x2)
2 + 0.1x4

3 sin(x1) . (4)
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Flood model

• OF-PLI computation for the flood model, quantifying the
flooding risk of industrial facilities.
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Flood model

Variable n◦ Name Description Probability distribution Admissible values
1 Q Maximal annual flowrate Gumbel G(1013, 558) [500, 3000]

2 Ks Strickler coefficient Normal N (30, 7.5) [15,+∞]

3 Zv Upstream level of the river Triangular T (50) [49, 51]

4 Zm Downstream level of the river Triangular T (55) [54, 56]

Input parameters of the flood model with their associated probability
distribution

• We denote H the maximal annual water level.

H =

(
Q

300Ks

√
2.10−4(Zm − Zv)

)0.6

.
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Conclusion

• Definition of a new framework of density perturbation,
development of a numerical solver in Python (OpenTurns
inside).
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Conclusion

• Definition of a new framework of density perturbation,
development of a numerical solver in Python (OpenTurns
inside).

• Theoretical results
• Writing of a scientific article (Arxiv link :
https://arxiv.org/pdf/2008.03060.pdf)

• Perspectives : simultaneous pertubation of several density of
input parameters, dependent input parameters.
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Appendice - Normalité asymptotique du PLI i

Supposons que Fi soit différentiable en qα avec F ′
i (q

α) > 0 et Fiδ

soit différentiable en qαiδ avec F ′
iδ(q

α
iδ) > 0. On note Σ =

(
σ2
i θ̃i

θ̃i σ̃2
iδ

)

tel que :

σ2
i =

α(1− α)

fi(qα)2
.

σ̃2
iδ =

E

[(
fiδ(Xi)
fi(Xi)

)2
(1(G(X)≤qα

iδ
) − α)2

]

fiδ(qαiδ)
2

.

θ̃i =
E

[
fiδ(Xi)
fi(Xi)

1(G(X)≤qα)1(G(X)≤qα
iδ
)

]
− αE[1(G(X)≤qα

iδ
)]

fi(qα)fiδ(qαiδ)
.
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Appendice - Normalité asymptotique du PLI ii

Alors en supposant Σ inversible et E
[(

fiδ(Xi)
fi(Xi)

)2]
< +∞. On

obtient :

√
N

(
θ̂N −

(
qα

qαiδ

))
L−→ N (0,Σ) .
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Appendice - Méthodologie de l’état de l’art

La densité perturbée fδ est défini par :

fδ = argmin
π∈P, s.t Eπ [X]=Ef [X]+δ

KL(π||f) ,

où KL(.||.) est la divergence de Kullback-Leibler.
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Appendice - Méthodologie de l’état de l’art

Soit X ∼ f la transformation de Rosenblatt est défini par :

U = Φ−1(F (X)) ,

où Φ est la fonction de répartition de la loi N (0, 1) et F la fonction
de répartition de X . Ainsi, U ∼ N (0, 1)
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