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CATHARE SIMULATION

o Variables Description

.f_\;slpfz"f:?::' ﬂ X1 Minimal film temperature
"‘*'% | |“ X2 Interfacial friction
*‘“““‘“’“’5_: & |l T X3 Interfacial friction
NP X4 Interfacial friction
A . X5 Interfacial friction
o= 4 X6 Interfacial friction

X7 Critical flowrate

CATHARE code simulates a thermohydraulic transient during a
specific accident.
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RISK ASSESSMENT

Parameters values are tainted with uncertainties.

3/



RISK ASSESSMENT

Parameters values are tainted with uncertainties. Input parameters
are then modeled as random variables.

3/



RISK ASSESSMENT

Parameters values are tainted with uncertainties. Input parameters
are then modeled as random variables.

Hypothesis : Suppose X; mutually independent.
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CATHARE

Pressunzer -’ﬂ_\

ey fmbgh

"? kil \,L i Input variables Probability distribution

i B i 1 Uniform 4] 4.9, 63.5])
f | ¥a Truncated Lag Marmal LA 0L76) an QL1100

*3 Truncated Lag Normal £A70. 076 an 0110

x4 Truncated Log Normal SATN, L7687 an 0. (N0

x5 Truncated Log Mormal £A70 N.78) on (0L, L0

LG Truncated Log Normal £A7—0. 1, (145 on [1.234 3,45

X7 Truncated Normal A76.4, 1271 on (1, 124

Experimental data and expert judgement help choosing probability
distributions.
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INTERNSHIP OBJECTIVES

« Input parameters probability distribution is a strong prior in
risk assessment studies.
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INTERNSHIP OBJECTIVES

« Input parameters probability distribution is a strong prior in
risk assessment studies.

- The impact on the quantity of interest Y by a probability
density perturbation has to be assessed

- The initial density f; of variable X; is perturbed into f;s

+ Main issue : How to define such a perturbation?

5/



PERTURBATION EXAMPLE

Are A and B further apart than ¢ and D?
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PERTURBATION EXAMPLE

Are A and B further apart than ¢ and D?

[
1.3 0'
12 - { 12
.14
(3]
A B
a9
(WU
1.3 £ flz I
o For the 2-Wasserstein distance they
o I .
o are at equal distance. It computes
H'g (}L B] = II} ((__,r_._ _D] = \/ (,{i-g — fE] }2
[
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VARIATIONAL APPROACH

« Pertubed density f;s is defined by minimizing the application
q — K L(q||f;) with moments constraints.

- Example: [z fis(z)dx = 6;, [ 2?fis(x)dx = 6;

71t



GRAPHICAL ILLUSTRATION
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FIGURE 1 - Mean (left figure) and variance (right figure) perturbation of

U(0, 1y density.
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STANDARD SPACE
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10 4

KL divergence

FIGURE 2 - KL divergence between initial density 7(-1,0,1) and ¢4{—1.1)
and their associated perturbed density
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PARAMETRIC FRAMEWORK

- Only parametrical models are considered S = {fy,0 € © C R4}

+ Example : Gaussian distributions {N (i, 0?), (u,0) € R x R**}
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PARAMETRIC FRAMEWORK

- Only parametrical models are considered S = {fy,0 € © C R4}

+ Example : Gaussian distributions {N (i, 0?), (u,0) € R x R**}
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A NEW GEOMETRICAL APPROACH

« Fisher information endows statistical models with a remarkable
geometric structure.

12/



INFORMATION GEOMETRY

- Let S = {fy,0 € © C R¢} a parametrical statistical model
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INFORMATION GEOMETRY

+ Let S — {fo,0 € © C R?} a parametrical statistical model
- A Riemannian manifold is defined on &
« To each point 4 is associated a tangent space 7,8 ~ k¢

"%, Gabriel Peyré iwgabrieipeyre - Sep 24 i
o iemannian manifeld is locally an Euclidean space. An embedded surface
b AR fold s Iocally an Euclicean space. A ddled surf

i an example. It defines a Riemannian tensors field ifisst fundamental farm)
in par ametrlc space which encode Icr\gt?* deformations. en wikipedia ong
i enwikipedia.org/wili/Parametn . enuwikipedia.org

Parametric surface M;

u € R plu) € M
First t'undamental form: ~

I ™ ({5 o0 i

1
Length of a curve  L{y) %" f |7 ()bt = [ \..-"1 {rJLU,"r'(.“,ldt

e s e L TR

13{m



INFORMATION GEOMETRY

- Let S = {fy,0 € © C R¢} a parametrical statistical model
A Riemannian manifold is defined on S
- To each point @ is associated a tangent space T3S ~ R?

« The latter scalar product is defined in TS :

Vu,v € TS, (u,v)g = uTI(0)v, J

where 1(0) is the Fisher information matrix evaluated in 6.

1(6) = E| (Vo log fo(X)) (Vo log fo(X))”

13/,



INFORMATION GEOMETRY

Fisher information is a key feature in asymptotic statistics.

Borne de Cramer Rao :

Let § be an unbiaised estimator of ¢, then
V@) =10, (1)

where V(0) is the covariance matrix of the estimator.

1w/



INFORMATION GEOMETRY

- The scalar product (.,.)y could define an implicit distance
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INFORMATION GEOMETRY

- The scalar product (., .)y could define an implicit distance
- This distance is called Fisher distance.
. Lett — ¢(t) be aC! path in ©, its length is defined by :

1
/\/ t)dt
0

- the Fisher distance fy, and f, is defined by :

dF(f017f92) = inf Z(Q)

q€eC(01,02)

where C(61,0-) is the set of C! path between 6, and 6.

15/6



Consider the space {N(u, %), (u,0) € R x RT™*}

o C D
%2 C D
Mll le a
H1 K2
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* Let Xy, ..., X,, an sized sample fy distributed.
« We denote by 0,, the maximum likelihood estimator

Central limit theorem :

Vi, —0) 5 N(0,1(6)71), (2)

- The probability density of 4,, is :

p(é\na 9) X 8_%60TI(9)60

171



The Fisher distance hetween two distributions f, and f,: represents
the separahility of the two distributions by a finite sample of
independent ohservations sampled for the fy distribution.

FIGURE 3 - All solid line distributions are at the same Fisher distance from
the dashed one. They are located on the Fisher sphere of radius 1 centered
in A°(0, 1) 18/



GEODESICS COMPUTATION

« All distributions on the Fisher sphere are equivalent perturbed
densities from f;, .
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GEODESICS COMPUTATION

« All distributions on the Fisher sphere are equivalent perturbed
densities from f;, .

- We need to compute all geodesics such that ¢(0) = 6, and
dr(q(0),q(1)) = 6 for § € R fixed.
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GEODESICS COMPUTATION

« All distributions on the Fisher sphere are equivalent perturbed
densities from f;, .

- We need to compute all geodesics such that ¢(0) = 6, and
dr(q(0),q(1)) = 6 for § € R fixed.

g

g1

M1
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GEODESICS COMPUTATION

Let t — ¢(¢) a path, with p = I(q)q, the hamiltonian is written :

1

H(p.q) = 5p" 1" (a)p -

If t — q(t) is a geodesic, then the function ¢t — H(p(t),q(¢)) is
constant.

A geodesic statisfies the following system of ordinary differential

equations :
g= OH
2 B 3)
P=="3¢

20/



GEODESICS COMPUTATION

- The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dr(¢(0),¢(1)) =4
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GEODESICS COMPUTATION

- The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dr(¢(0),¢(1)) =4

- With (¢(0), p(0)) defined, the ODE system (3) has an unique
solution thanks to Cauchy’s theorem
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GEODESICS COMPUTATION

- The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dr(¢(0),¢(1)) =4

- With (¢(0), p(0)) defined, the ODE system (3) has an unique
solution thanks to Cauchy’s theorem

- Geodesics are computed using numerical methods.

21/t



FISHER SPHERE - GAUSSIAN FAMILY
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FIGURE 4 - Fisher sphere ¢ = 1 - Coordinate space
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FISHER SPHERE - GAUSSIAN FAMILY

e ceme NI

FIGURE 5 - Fisher sphere 4 = | - densities space
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APPLICATION TO SENSITIVITY ANALYSIS

- We aim to measure the impact of density perturbation of input
X;toY
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- We aim to measure the impact of density perturbation of input
X;toY

- We define the quantile-PLI (Perturbated Law Index) S;s by :

_ 95%5—a”
Sis = —mqa— J

+ ¢™ and ¢ are respectively the quantiles of level a of Y with X;
distributed respectively according to f; and fis

24/t



APPLICATION TO SENSITIVITY ANALYSIS

- We aim to measure the impact of density perturbation of input
X;toY

- We define the quantile-PLI (Perturbated Law Index) S;s by :

_ 95%5—a”
Sis = —mqa— J

+ ¢™ and ¢ are respectively the quantiles of level a of Y with X;
distributed respectively according to f; and fis

+ We obtain the minimum and the maximum of S;; for f;5 in the
Fisher sphere of radius § centered in f;.

24/t



APPLICATION TO SENSITIVITY ANALYSIS

- We aim to measure the impact of density perturbation of input
X;toY

- We define the quantile-PLI (Perturbated Law Index) S;s by :

_ 95%5—a”
Sis = —mqa— J

+ ¢™ and ¢ are respectively the quantiles of level a of Y with X;
distributed respectively according to f; and fis

+ We obtain the minimum and the maximum of S;; for f;5 in the
Fisher sphere of radius § centered in f;.

- This new methodology is called OF-PLI (Optimal Fisher based
PLI).

24/t



« Industrial simulation code are often time-expensive.
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perturbed density.
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« Industrial simulation code are often time-expensive.

« We want to estimate the PLI without resampling X; from the
perturbed density.

- We consider a sample (XV, ..., X)) with X; sampled from f;
and a simulation code G :

fis(X{™)
. nZI fé(X(n)) (G(X(M)<t)
Fw(t) =

This is the reverse importance sampling (RIS) estimator of the
cdf of G(X)
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« Industrial simulation code are often time-expensive.

« We want to estimate the PLI without resampling X; from the
perturbed density.

- We consider a sample (XV, ..., X)) with X; sampled from f;
and a simulation code G :

fis(X{™)
. nZI fé(X(n)) (G(X(M)<t)
Fw(t) =

This is the reverse importance sampling (RIS) estimator of the
cdf of G(X)

- the perturbed quantile ¢ is estimated with the empirical
quantile of Fjs.

25/41



THEORETICAL RESULTS - PLI ESTIMATION

« Self normalized cdf estimator Fi(;(t) is used because it is
bounded. Moreover, it possess better asymptotic properties.

- The estimator S;5 = q’“ ~4° puilt verify a CLT.
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THEORETICAL RESULTS - PLI ESTIMATION

« Self normalized cdf estimator Fi(;(t) is used because it is
bounded. Moreover, it possess better asymptotic properties.

- The estimator S;5 = q’“ ~4° puilt verify a CLT.

+ Main hypothesis for the CLT : E[(f”()}f))) } < +o0

26/



PRACTICAL IMPLEMENTATION OF THE OF-PLI

« Empirical criterion for choice of 4,,,, : Minimal number of
G{:X{'Ef‘)’s values greater or lesser than the perturbed quantile,

- Due to the RIS estimator, we have to take care of the likelihood
ratio value

0.6 7

0.4 4

.24

0.0
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PRACTICAL IMPLEMENTATION OF THE OF-PLI

« Empirical criterion for choice of 4,,,, : Minimal number of
G{:X{'Ef‘)’s values greater or lesser than the perturbed quantile,

- Due to the RIS estimator, we have to take care of the likelihood
ratio value

0.5 4

0.6 7

0.4 4

0.2 4

0.0 4

27{5



A TOY CASE : ISHIGAMI FUNCTION

- We take 3 independent random variables (X, X», X3) with a
standard Gaussian distribution A(0, 1).

« The output variable is the analytical function

G (21,22, 73) = sin(x;) + 7Tsin(z2)? 4+ 0.123 sin(z1) . (4)

28/t



NUMERICAL RESULTS : PLI WiTH KULLBACK-LEIBLER MINIMIZATION

] —= A1
LR B Ly EEE
...... Xy
(.00 4 Ul
| =
= _ [~
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010 A 0173
i} 1 1 2 A
i &%
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ISHIGAMI : NUMERICAL RESU

(hd A

0.2 1

PLI

(0.0

0.2

FIGURE 7 - OF-PLI for the Ishigami function with a 100 points grid on the
Fisher sphere.
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FLOOD MODEL

« OF-PLI computation for the flood model, quantifying the
flooding risk of industrial facilities.

31/



Variable n° Name Description  Probability distribution  Admissible values

1 Q Maximal annual flowrate Gumbel G(1013,558) [500, 3000]
2 K, Strickler coefficient Normal A (30,7.5) [15, +00]
3 Zy Upstream level of the river Triangular 7(50) [49, 51]
4 Z,, Downstream level of the river Triangular 7(55) [54,56]

Input parameters of the flood model with their associated probability
distribution

+ We denote H the maximal annual water level.

0.6

Q
300K,\/2.10~2(Zy, — Zy)
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FIGURE 8 = Analysis of the density perturbation of the variahle Q.
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NUMERICAL RESULTS FOR THE FLOOD MODEL

0.2 1

0.1 1
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FIGURE 9 — OF-PLI for the flood model on 100 points on the Fisher sphere. 55T



CoDE CATHARE RESULTS
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FIGURE 10 - OF-PLI for CATHARE code
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CONCLUSION

- Definition of a new framework of density perturbation,
development of a numerical solver in Python (OpenTurns
inside).
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CONCLUSION

- Definition of a new framework of density perturbation,
development of a numerical solver in Python (OpenTurns
inside).

- Theoretical results

- Writing of a scientific article (Arxiv link :
https://arxiv.org/pdf/2008.03060.pdf)

- Perspectives : simultaneous pertubation of several density of
input parameters, dependent input parameters.
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APPENDICE - NORMALITE ASYMPTOTIQUE DU PLI 1|

Supposons que F; soit différentiable en ¢® avec F!(q%)

>
2 .
soit differentiable en ¢ avec F/s(¢%) > 0. On note & = < 0 )
i i

tel que:
a(l — «
o} = (7a2)
fi(q™)
2
5 (X
., {(%X))) (Lem<agy) — 04)2]
O =
° fis(a%5)?
fis (Xi
é E [ ff(()(q)) H(G(X)SQQ)H(G(X)gq%)} - OZE[]]_(G(X)S(I%)]
i = .

fi(q™) fis(q55)
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APPENDICE - NORMALITE ASYMPTOTIQUE DU PLI 11

: : fis(X0) )
Alors en supposant X inversible et E (W) < +00.0n
obtient :
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APPENDICE - METHODOLOGIE DE L'ETAT DE L’ART

La densité perturbée fs est défini par:
fs=  agmin  KL(|lf),
TEP, s.t Ex[X]|=Ef[X]+d

ol KL(.||.) est la divergence de Kullback-Leibler.

40/t



APPENDICE - METHODOLOGIE DE L'ETAT DE L’ART

Soit X ~ f la transformation de Rosenblatt est défini par:
U=2e ' (F(X)),

ou @ est la fonction de répartition de la loi A/(0,1) et F la fonction
de répartition de X. Ainsi, U ~ N (0,1)

JAVIA



