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Industrial motivations
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Example: Simulation of IBLOCA accident
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Loss of primary coolant accident due to
a break in cold leg | A

Second peak of cladding temperature
(PCT) = scalar output

ol = U0 Upleaptzilgl dpjoblizidlziolas -
Critical flowrates, initial/boundary
conditions, phys. eq. coef., ...

: < 700 TeSt?-rUel mdsl.llrfaoetemlpel‘amre .
Modelled using CATHARE code: | . Camiane cacion et
(thermal-hydraulic phenomena) Bata oy g =t

CPU cost for one code run > 1 hour
In industrial studies: N ~ O(1000) runs

Temperature (C)

Qol : High quantiles of the PCT
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Goals: Assess margins with regards to a regulatory criteria (the regulator will accept
the safety approach if a sufficient margin remains)

1) Historical approach

=> Conservative models (e.g. without compensating physics) with
conservative inputs’ values (leading to the most penalizing calculation,
corresponding to expert-based min. or max. value of each input)

2) New requirements:

Safety authorities: higher demands in terms of margin & realistic/complex physics

Operator: better control of margins (due to ageing) for better resources allocation
& better maneuverability

=> Realistic models (at the industrial level) with conservative inputs =>
new problems due to interactions and non-monotonicity of complex physics

3) Objectives: better assessment of the real margins

=> BEPU (Best Estimate Plus Uncertainties): realistic models & uncertain inputs
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BEPU approaches are well (and naturally) developed in the probabilistic
framework (needing to define pdf of the inputs)

Importance of the choice of the quantity of interest:

- Probability of threshold exceedence
- High (but not extreme) quantile (95% to 99%),):
- easier to compuite,

- model computations remain in the validity domain of the
computer code,

- for the regulator, it allows to keep its fundamental safety margin
(by comparison with the threshold)
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BEPU approaches are well (and naturally) developed in the probabilistic
framework (needing to define pdf of the inputs)

Importance of the choice of the quantity of interest:

- Probability of threshold exceedence
- High quantile (95% to 99%,)

Key point: Presence of so-called epistemic uncertainties: parameters which are
uncertain due to a lack of knowledge (vs. stochastic uncertainties)

The French nuclear regulatory authority ask to justify the probabilistic approach

=> Robustness of the study results towards the input distributions
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REACTOR CASE STUDY: DIFFICULTIES IN A
SAFETY LICENSING GOAL [ Larget and Gautier, 2020 |

Thermal-hydraulic model

- d =100 inputs with truncated Gaussian, log-normal, uniform, log-uniform,
triangular pdf

- 2000 Monte Carlo runs

- Quantile: q95 =737°C

- Superquantile: Q,s=673°C
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WHICH UNCERTAIN INPUT PDF ARE INFLUENTIAL?

§§§ On guantiles
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Scientific motivations
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SCIENTIFIC MOTIVATION - IMPORTANCE OF INPUT
PROBABILITY DISTRIBUTIONS IN UQ

G(X) = G(X1,X,) = cos(X;) + cos(X,) ; X; and X, are independent with same pdf

Strong impact of the choice of the input pdf on the output distribution, and
particularly on some quantities of interest: probability of exceendance, quantile, ...

pdf of X; and X, pdf of G(X)
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=> Needs of sensitivity analysis wrt pdf of the inputs
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Global sensitivity analysis: Classical view
1. Understand the behaviour of the model Y = G(X)

2. Simplify the computer model (dimension reduction)
- Determine the non-influential variables (that can be fixed)jand/or non-
influential phenomena (to skip in the analysis)

- Build a simplified model, a metamodel
For example Morris, DGSM, HSIC

ize the uncertainty sources to reduce the model output uncertainty

Quantitative

SR - Variables to be fixed to obtain the largest output uncert. reduction
partitioning

- Most influential variables in a given output domain
Var(E(Y|X,)) Var(E(Y|X )
= and7T, =1-

Var(Y) l Var(Y)

For example: Sobol’ indices g

do =



Global sensitivity analysis: New view

[ celui_dont _il_faut taire le_nom, 2020 ]
1. Understand the behaviour of the model Y = G(X)

2. Simplify the computer model (dimension reduction)
- Determine the non-influential variables (that can be fixed)jand/or non-
influential phenomena (to skip in the analysis)

+ Build a simplified model, a metamodel

3. Prioritize the uncertainty sources to reduce the model output uncertainty

- Variables to be fixed to obtain the largest output uncert. reduction

Quantitative

e - Most influential variables in a given output domain
partitioning

4. Analyze the robustness of the quantity of interest (Qol) with respect to the
input uncertainty laws

Robusthess
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PERTURBED-LAW BASED INDICES (PLI)

The motivation of the PLI indices was firstly to perform global sensitivity analysis on
exceedence probability computations, as classical Sobol' indices focus on
contributions of input on output variance (Lemaitre, 2014)

The principle is to assess the influence of a perturbation on a parameter of the
input distribution, on some quantity of interest of the model output

Recent interests:
- consideration of the quantile or superquantile as the quantity of interest

- use in industrial safety studies
- generalization of PLI

g
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Methodology:
Principles of PLI
(robustness indices)
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NOTATIONS

We want to study a deterministic computer code G which :
= js « costly » (CPU time, memory,...)
= has d input variables

= allows calculating the value G(X) for a given set of input values X = (X, ..., X3)

The input variables are uncertain, hence we denote
= X c R the domain of variation of the random vector X
= =TI, f; the probability density function of X

» each f; is the density of X;, the i-th marginal of X
» the uncertain input variables X;, ... X; are considered independent

The Qol will be:
- a a-order quantile g% = inf{t € R, F,(t) = a}
- or a a-order superquantile Q% = E[G(X)|G(X) = q*]

=> Robustness of g% and Q% wrt uncertainty in some f;

¢
ds =2
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PLI: THE PRINCIPLE

We aim at quantifying the impact of a perturbation on the pdf of X;

For example, what happens if we replace E(X;) = u; by E(X;) = u; + 8 ?

(04
We then define the PLI-quantiles as : Sis = (% — )

= |t gives results in terms of percentage of perturbations
= S;s = 0when g5 = q% i.e. when f; has no impact on the quantile

= The sign of S;5 indicates how the perturbation modifies the quantile

Remark: PLI can be defined for any Qol (e.g. PLI-superquantile and PLI for failure

probability)

q
ds =2
-~ EDF
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ESTIMATION: REVERSE IMPORTANCE SAMPLING

= We have n obs. (the model calculations) : (x4, ..., x(™) > (yD, .., y(M)

= We start from classical Monte-Carlo estimators:
- if Qol = failure probability (Proba(Y < t)):p = 1/NYN_, Iy gy

- if Qol = quantile: §*N = inf{t € R, £ (t) > a} where FY (t) = 1/NYN_, Iy m <)

= Let us note f;s the perturbed density of f; by §, we can estimate p;s, F;5(t), qi5 with
the same sample than for p, Fy(t), q“ by « reverse importance sampling »:

e
. fis\ x; N
pr = %Zﬁzl I, (e L(l,n)wﬂh L(") . (( : ))) [ Lemaitre et al., 2015 |

N N
RO = ) Ty 107 Y 1 5 G5 = infe € R, A0 = o)
n=1 n=1

[ Sueur et al., 2017 |

1
AaN _ (n)
Qis' =7, E y(")ﬂ{y(mzaggv} L;" [1 etal, 2020 ]
n=1

& < €DF No need of new runs of G model 47



PLI INDICES ESTIMATION

We then estimate the PLI-quantile indices with the so-called plug-in estimator:

~aN
S:N _ <Qi6 - 1)
i6 él‘aN

Convergence and cental limit theorem of this estimator has been obtained

([ Lemaitre et al., 2015 for failure probability; Gauchy et al., 2020 for quantile) ], with natural
assumption Supp(f;s) € Supp(f;), and others more complex:

fis(x)

" Forexample, for PLI-quantile: g - ( fi(0)

)3 dx < 400

For PLI-quantile, confidence intervals are easier to compute by bootstrap

» =
-~ EDF
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ILLUSTRATION

PLI indice S;

Vv
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ILLUSTRATION
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PLI indice S;

Vv
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ILLUSTRATION
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ILLUSTRATION
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ANALYTICAL EXAMPLE

G(X) = sin(X;) + 7 * sin?(X,) + 0,1 * X3 * sin(X,) ;

Sobol’ indices

o main effect
4~ total effect

q
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The provided information are different

A
PLls

02

0.1

00

-01

02

X;~U(—mn, ™) independent

PLI on g5

-1.0 0.5 0.0 05 1.0

5

Perturbation on the pdf mean— N = 10000
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Density perturbation
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HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ V'(y, %)

= What if the mean of X; was not u but 4+ 6 ?

& TeDF - 25



HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ V' (y, 62)

= How to define f;5 with the constraint fX_ Xifis(x))dx; =u+6?

& TeDF - 26



HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ V' (u, 6%)

* How to define f;5 with the constraint [ x;fis(x)dx; =u+8?

f \ fis

U Uu+o
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HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ N (y, 62)

= How to define f;; with the constraint fx. Xifis(x)dx; =u+6?
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HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ N (y, 62)

= How to define f;; with the constraint fx. Xifis(x)dx; =u+6?
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HOW TO DEFINE A DENSITY PERTURBATION ?

= Let’s assume that the X; input variable has a normal distribution X; ~ N (y, 62)

= How to define f;; with the constraint fx. Xifis(x)dx; =u+6?

f fis

/_5\

U Uu+o
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HOW TO DEFINE A DENSITY PERTURBATION ?

[ Lemaitre et al., 2015 ]

= We suggest to define the perturbed density f;s as the closest one from the initial
f; In the sense of the entropy, under the constraint of perturbation

= j.e. in the sense of Kullback-Leibler divergence :

400

KL(my,m,) = J m1(x) log <7T1(x)> dx

1, (x)

— 00

= So we can give a general formal definition for f;5 the following way :

fis = argmin KL(m, f;)
VA

s.it. Exlgrl=6k
k=1,..K

where ;

- 91, ---, g are K linear constraints on the modified density
- and 63, ..., 6 are the values for the perturbed parameters

q
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EXAMPLES OF PERTURBED PDF

. i 2 ;
Mean u ; Variance o Gaussian Uniform

Mean perturbation

Variance perturbation
E[X;] = u

Var[X;] =02 + 6

+'~eDF . . ny
. This perturbation approach can be criticized [ Gauchy et al., 2020]

- 32




SIMPLER PERTURBATION WAY: GENERAL
DENSITY PERTURBATION

[ Perrin and Defaux, 2019 ]

= |In the case of some usual pdf, we have an analytical expression of %5 ,e.ga
l

perturbed Gaussian pdf is another Gaussian pdf of different mean or variance

= But it is not always possible! (e.g. lognormal pdf)

= By applying an iso-probabilistic transformation (e.g. Rosenblatt transformation), we
switch to the standard space and then get Gaussian pdf for each inputs

d 1o Fy, (xl.(l), ...,xl.(N)) = (x’gl), ...,x’gN)) ~N(0,1)
= PLI indices can then be easily determined

= However, interpreting the results in the (initial) physical space can be difficult

[ Gauchy et al., 2020 ]
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Validation of
PLI-quantiles and
PLI-superquantiles
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PLI-gquantile (M = 1000, o = 0.95 ) on X 1 of the linear function PLi-suparquantile (M = 1000 , « = 0.858 ) on X 1 of the linaar function
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Les barres vertes et bleues sont des heuristigues qui donnent des limites de domaine de validité:

- Verte : nb de pts minimal, ici 30, a avoir de chaque c6té de la moyenne de I'entrée perturbée

- Bleue : nb de pts minimal, ici 5 (resp. 10) pour le quantile (resp. superquantile) a avoir de
3‘:eDF chaque cété du quantile (resp. superquantile) perturbé - 35




ISHIGAMI FCT: Y=sin(X,) + 7sin2(X,) + 0.1X;* sin(X,), X; ~ ¥(0,1)

o.n

-0.1

-0.2

-0.3

000 0.5

-0.05

-0.10

PLi-gquantile (M = 1000 , o = 0.95 ) on X 2 of the lshigami function

PLI-superquantils (M = 1000 , o = 0.95 ) on X 3 of the Ishigami function

L
P
-

o O
-]
B

\J
L

I = 7 T
¢ Reverse sampling T o Reverse sampling T
= Resiubalion o s + Resioulaton ==
o - | x
=
™ - e
-
.=1 i
= - .
A ]

—7 r . T T T T
-3 -2 -1 0 i 2 a 2 1 0 1 a
i &

PLI-quantile (M = 10000 , « = 0.95 } on X 2 of the Ishigami function PLI-superquantile (N = 10000 , o = 0.95 ) on X 3 of the Ishigami function

| o - I =
@ Reverse sampling - Reverse sampling o
= Resimulation + Resimulation =
| 2 | = | : —
iHa I_ —
A o - 1

| -
1 -

- 36




q
> =

Applications

- 37



THERMAL-HYDRAULIC MODEL OF A MOCKUP

27 inputs with truncated Gaussian, log-normal, uniform, log-uniform, triangular pdf

Monte-Carlo sampling of 1000 runs

Perturbation on the mean between [-1;1] in the standard space (each input ~4(0,1))

|

Initial

R R B — |
F1'|’L’UL'UL' A EICHT T, P T T

Uniform

[Truncated .
" |Gaussian

Perturbed lawsd

2.1 0 1 2 2

deviation of
+1,28c

ta
=
m

i
=
m

A2

2 1 v 1 2 3

deviation ¢
+1,64c
e

" Triangular Perturbed laws
. w . _|‘IW . .ﬂﬂ{
M Initial deviation of deviation
+1,280 +1,640
- [ ‘ M‘ |
Truncated T e o s
lognormal

Df
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RESULTS

Graphs show
the PLI of the 7
most influential
variables

90%-confidence
intervals are
obtained by
bootstrap

- Quantile seems to be robust towards the pdf: less than 5% variation

]
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—0.08

STMFSCO
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STOIDC
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CLFBR

1.0

—-0.5

0.0

A few conclusions

0.5

Perturbation ¢ dans I'espace standard

1.0

- Sign of the PLI allows to know which value allows us to be conservative

q
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- Non-monotonic behaviour (STOIDC)
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Allows to quantify the robustness of a Qol of a model output wrt uncertainty on

inputs’ pdf parameters (mean and variance)

Confidence Intervals (CLT for probability of exceedance, bootstrap for
quantile/superquantile) and simple heuristics allow to adjust the calculation

budget (number of runs of the G code)
No need of new runs of the ¢ code and the input dimension is not an issue

Easy to perturb several inputs at the same time

Software implementation: R package ‘sensitivity’

Many open issues (to be discussed)
<seoF - 4
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