

Baptiste Kerleguer 1,2 , Claire Cannamela 1 , Josselin Garnier 2

"École thématique sur les incertitudes en calcul scientifique " | October 2020

¹ CEA,DAM,DIF, F-91297, Arpajon, France,
² Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Surrogate model and multi-fidelity			

Surrogate model and multi-fidelity

- Surrogate model
- Multi-fidelity
- Time-series

Multi-fidelity time-series outputs model

- The model
- The resolution

3 Steps

- Dimension Reduction
- Multi-fidelity Gaussian process regression
- Tensorisation of the covariance

4 Illustration

Surrogate model and multi-fidelity	Multi-fidelity time-series outputs model	Steps	Hustration	Conclusion	Références
□■□		00000	00000	O	O
	0				

Surrogate moo	lel and multi-fidelity	Multi-fidelity time-series outputs model	Steps	Illustration	Conclusion	Références
○○●		OO	00000	00000	O	O
cea	Time dep	endent outputs, definitior	n and use	:		

- Functional output of dimension 1
- Each realization of the code gives a 1D curve
- \blacksquare $Z(x,t_u)$ is known for t_u with $u = 1, \dots, N_t$ but only for some $x \in \mathbb{R}^d$.

Surrogate model an 000		Multi-fidelity time-series outputs model ••	Steps 00000	Illustration 00000	
cea	Multi-fideli	ty time-series outputs	s model		

- Objective : model a multi-fidelity and time-series outputs system
- Idea : Combine the tensorized covariance method and Multifidelity CoKriging.
- Decomposition of the problem into two parts :

$$Z_L(x,t_u) = \sum_{i=1}^N \mathbf{A}_{i,L}(x)\Gamma_i(t_u) + Z_L^{\perp}(x,t_u)$$

$$Z_{H}(x,t_{u}) = \underbrace{\sum_{i=1}^{N} \overbrace{A_{i,H}(x)}^{\text{coefficients}} \overbrace{\Gamma_{i}(t_{u})}^{\text{basis}} + Z_{H}^{\perp}(x,t_{u})}_{\text{dimension reduction}} \underbrace{Z_{H}(x,t_{u})}_{\text{orthogonal part}}$$

Surrogate model	and multi-fidelity	Multi-fidelity time-series outputs model ○●	Steps 00000	Illustration 00000	Conclusion O	Références O
cea	Method i	n 3 steps				

- **Q** Dimension reduction, definition of the basis Γ expression onto Γ .
- **2** Multi-fidelity CoKriging for $A_{i,H}(x)$ and $A_{i,L}(x)$.
- **③** Gaussian process regression with tensorized covariance for $Z_H^{\perp}(x, t_u)$.
- \blacksquare The value of N is chosen by cross-validation.

We try to reduce the size of the outputs so we express :

$$Z(x,t) = \sum_{i=1}^{N} \mathbf{A}_{i}(x) \Gamma_{i}(t) + Z^{\perp}(x,t)$$

So we have $A_i(x)$ that we can use to do our regression. We are back to the previous regression problem.

Surrogate model a	and multi-fidelity	Multi-fidelity time-series outputs model OO	Steps ○●○○○	Illustration 00000	Conclusion O	Références O
cea	The not se	o easy choice of basis				

We propose different basis distributions for Γ :

Dirac

- We can give ourselves a basis a priori thanks to an expert judgement.
- The other solution is to carry out the SVD on the low fidelity data set. Empirical
- The method is inspired by K-fold cross-validation :
 - First define a learning set out of the available low fidelity output set.
 - Second generate the basis with the SVD on the learning set.
 - Finally compute the first two moments of the basis elements.
- → allows to compute the predictive mean and variance for $Z_H(x, t_u)$.

Surrogate mode	l and multi-fidelity	Multi-fidelity time-series outputs model OO	Steps 00●00	Illustration 00000	Conclusion O	Références O
cea	Definition	of the empirical basis				

Illustration of the construction of the bases taking into account the subset data used :

Surrogate model and	d multi-fidelity	Multi-fidelity time-serie	s outputs model	Steps ○○○●○	Illustration 00000	Conclusion O	Références O
cea	Multi-fidel	ity Gaussian ı	process regre	ssion, ste	ep 2		

- The quantities of interest : $a_H(x) \in \mathbb{R}$, respectively $a_L(x)$ with $x \in \mathbb{R}^d$.
- Hypothesis : $(a_H(x), a_L(x))$ realization of GP $(A_H(x), A_L(x))$
- Autoregressive CoKriging model from KENNEDY et O'HAGAN 2000; LE GRATIET et GARNIER 2014 :

$$A_H(x) = \rho(x)A_L(x) + \delta(x),$$

where $\delta(x)$ GP independent of $A_L(x)$ and $\rho(x)$ ajustment linear form.

Prediction : when the hyperparameters of the model are known,

$$[\mathbf{A}_{\mathbf{H}}(x)|\mathsf{data}] \sim \mathcal{GP}(m_{\mathbf{A}_{\mathbf{H}}}(x), \sigma^{2}_{\mathbf{A}_{\mathbf{H}}}(x)),$$

the quantities $m_{A_H}(x)$ and $\sigma^2_{A_H}(x)$ have analytical expressions.

Surrogate mode 000	l and multi-fidelity	Multi-fidelity time-series outputs mod OO	del	Steps ○○○○●	Illustration 00000	Conclusion O	Références O
cea	Tensorisati	on of the covariance	e, step	0 3			

- Assumption : $z_{H}^{\downarrow}(x,t)$ realization of a Gaussian process $Z_{H}^{\downarrow}(x,t)$ with values in $\text{Span} \{\Gamma_{N+1}(t_{u}) \cdots \Gamma_{N_{t}}(t_{u})\}.$
- Proposed approach PERRIN 2019 : the covariance function is separable in time and space. The covariance function $R_x(x, x')$ in x is Matèrn kernel. The covariance matrix in t_u is estimated by maximum likelihood.
- We keep the stationarity for x, but the **non-stationarity** in t is used.
- The process $Z_{H}^{\perp}(x, t_{u}) : [Z_{H}^{\perp}(x, t_{u})|$ data, hyperparameters] ~ $\mathcal{GP}(\mu_{\star}(x), R_{\star}(x, x', t_{u}))$ $\mu_{\star}(x)$ and $R_{\star}(x, x', t_{u}, t'_{u})$ have analytical expressions PERRIN 2019.

Estimation of R_x hyperparameters : Leave One Out-Cross validation :

$$l_{c \text{LOO}} = \underset{l \in (\mathbb{R}^+)^{n_x}}{\arg \min} \sum_{k=1}^{n_x} \| \mu_{\star}^{(-k)} \left(x^{(k)}, l_c \right) - z^{\perp(k)} \|^2,$$

Surrogate mo	del and multi-fidelity	Multi-fidelity time-series outputs model OO	Steps 00000	Illustration 00000	Conclusion O	Références O
cea	The doub	le pendulum				

We use the outputs of a calculation code that models the system with two levels of fidelity :

The difference between high and low fidelity is that the for low fidelity we assume that the angle θ is small.

Surrogate model and multi-fidelity	Multi-fidelity time-series outputs model	Steps	Hustration	Références
000			00000	

Examples of Outputs

TABLE - Range of variation of the different system parameters.

For $N_H = 10$ (red), $N_L = 100$ (blue) and $N_t = 101$ Baptiste Kerleguer

	Steps 00000	Illustration 00000	

Basis and orthogonal part of the example

First 4 elements of the basis

Orthogonal realisations for 5 different values of x

Surrogate model and multi-fidelity	Multi-fidelity time-series outputs model	Steps	Hustration	Références
OOO	OO	00000	00000	O

cea

Optimise in N different for each method and each data set

			Illustration	
000	00	00000	00000	

Cea Example of

Example of prediction with and without orthogonal part

Surrogate model 000	and multi-fidelity	Multi-fidelity time-series outputs model OO	Steps 00000	Illustration 00000	Conclusion	Références O
cea	Conclusior	1				

- About this method :
 - Uncertainty is fully estimated even for the orthogonal part.
 - Our method is always better than the simple fidelity. The adavantages of coKriging and tensorisation approaches are exploited.
 - We are able to reduce the dimension and to exploit the orthogonal part.

Perspectives :

- The sequential learning
- Image output
- Non linear multi-fidelity approach

Surrogate mode		Multi-fidelity time-series outputs model OO	Steps 00000	Illustration 00000	Références O
cea	References	5			

- KENNEDY, M. C. et A. O'HAGAN (2000). "Predicting the Output from a Complex Computer Code When Fast Approximations Are Available". In : *Biometrika* 87.1, p. 1-13.
- LE GRATIET, Loic et Josselin GARNIER (2014). "Recursive co-kriging model for design of computer experiments with multiple levels of fidelity". In : *International Journal for Uncertainty Quantification* 4.5.
- PERRIN, Guillaume (2019). "Adaptive calibration of a computer code with time-series output". In : *Reliability Enginering and System Safety*.

Cea

Questions ?