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Functional output of dimension 1

Each realization of the code gives a 1D curve

Z(x, tu) is known for tu with u = 1,⋯, Nt but only for some x ∈ Rd.

Time dependent outputs, definition and use
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Objective : model a multi-fidelity and time-series outputs system

Idea : Combine the tensorized covariance method and Multifidelity CoKriging.

Decomposition of the problem into two parts :

ZL(x, tu) =
N

∑
i=1

Ai,L(x)Γi(tu) +Z
�
L(x, tu)

ZH(x, tu) =
N

∑
i=1

coefficients
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ai,H(x)

basis
³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ
Γi(tu)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dimension reduction

+ Z
�
H(x, tu)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
orthogonal part

Multi-fidelity time-series outputs model
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1 Dimension reduction, definition of the basis Γ expression onto Γ.

2 Multi-fidelity CoKriging for Ai,H(x) and Ai,L(x).

3 Gaussian process regression with tensorized covariance for Z�H(x, tu).

The value of N is chosen by cross-validation.

Method in 3 steps
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We try to reduce the size of the outputs so we express :

Z(x, t) =
N

∑
i=1

Ai(x)Γi(t) +Z⊥(x, t)

So we have Ai(x) that we can use to do our regression. We are back to the previous
regression problem.

Z(x, t) = A1(x)

0 2 4 6 8 10

−
1
0

−
5

0
5

t

+A2(x)

0 2 4 6 8 10

−
1
0

−
5

0
5

t

+

0 2 4 6 8 10

−
1
0

−
5

0
5

t

Dimension Reduction, step 1
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We propose different basis distributions for Γ :
Dirac

We can give ourselves a basis a priori thanks to an expert judgement.

The other solution is to carry out the SVD on the low fidelity data set.

Empirical

The method is inspired by K-fold cross-validation :

- First define a learning set out of the available low fidelity output set.

- Second generate the basis with the SVD on the learning set.

- Finally compute the first two moments of the basis elements.

→ allows to compute the predictive mean and variance for ZH(x, tu).

The not so easy choice of basis
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Illustration of the construction of the bases taking into account the subset data used :
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Definition of the empirical basis
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The quantities of interest : aH(x) ∈ R, respectively aL(x) with x ∈ Rd.

Hypothesis : (aH(x), aL(x)) realization of GP (AH(x), AL(x))

Autoregressive CoKriging model from Kennedy et O’Hagan 2000 ; Le Gratiet et
Garnier 2014 :

AH(x) = ρ(x)AL(x) + δ(x),

where δ(x) GP independent of AL(x) and ρ(x) ajustment linear form.

Prediction : when the hyperparameters of the model are known,

[AH(x)∣data] ∼ GP(mAH
(x), σ

2

AH
(x)),

the quantities mAH
(x) and σ2

AH
(x) have analytical expressions.

Multi-fidelity Gaussian process regression, step 2
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Assumption : z⊥H(x, t) realization of a Gaussian process Z⊥H(x, t) with values in
Span {ΓN+1(tu)⋯ΓNt(tu)}.

Proposed approach Perrin 2019 : the covariance function is separable in time and
space. The covariance function Rx(x, x′) in x is Matèrn kernel. The covariance matrix
in tu is estimated by maximum likelihood.

We keep the stationarity for x, but the non-stationarity in t is used.

The process Z⊥H(x, tu) : [Z⊥H(x, tu)∣data, hyperparameters] ∼ GP (µ⋆(x), R⋆(x, x′, tu))
µ⋆(x) and R⋆(x, x′, tu, t′u) have analytical expressions Perrin 2019.

Estimation of Rx hyperparameters : Leave One Out-Cross validation :

lcLOO = arg min
l∈(R+)nx

nx

∑
k=1

∥µ(−k)
⋆ (x(k), lc) − z

⊥(k)∥2,

Tensorisation of the covariance, step 3
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We use the outputs of a calculation code that models the system with two levels of fidelity :

inputs
k spring stiffness
M mobile mass
l pendulum length
y mobile position
θ pendulum angle
m pendulum mass

output
z pendulum position

The difference between high and low fidelity is that the for low fidelity we assume that the
angle θ is small.

The double pendulum
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Orthogonal realisations for 5
different values of x

Basis and orthogonal part of the example
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Example of prediction with and without orthogonal part
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About this method :

Uncertainty is fully estimated even for the orthogonal part.

Our method is always better than the simple fidelity. The adavantages of coKriging and
tensorisation approaches are exploited.

We are able to reduce the dimension and to exploit the orthogonal part.

Perspectives :

The sequential learning

Image output

Non linear multi-fidelity approach

Conclusion
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