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Industrial processes

o Context

Manufacturing process driven by
controllable variables.

Production Line Quality test
4 £ L 4 L 4
Variables Fail/Pass
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Industrial processes

o Context

Manufacturing process driven by
controllable variables.

Production Line Quality test
4 £ L 4 L 4
Variables Fail/Pass
@ Objective

Identify production conditions
generating defects: variable settings.

@ Method
© Fit a learning algorithm
@ Use variable importance to detect influential variables

© Explore associated physical phenomenon with domain experts
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MDA

@ Random forests are an efficient approach

e MDA (Breiman, 2001): built-in variable importance algorithm for
random forests
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@ Random forests are an efficient approach

e MDA (Breiman, 2001): built-in variable importance algorithm for
random forests

@ MDA is used intensively

e MDA has flaws

o Poor understanding of the MDA: what is estimated ?

o Empirical studies show that the MDA is biased for dependent inputs
(Strobl et al., 2007; Gregorutti et al., 2017; Hooker and Mentch,
2019)
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MDA

@ Random forests are an efficient approach

e MDA (Breiman, 2001): built-in variable importance algorithm for
random forests

(]

MDA is used intensively

MDA has flaws
o Poor understanding of the MDA: what is estimated ?
o Empirical studies show that the MDA is biased for dependent inputs
(Strobl et al., 2007; Gregorutti et al., 2017; Hooker and Mentch,
2019)

Our objective (Bénard et al., 2021)
o Theoretical analysis of the MDA
o First convergence result for the original MDA (Ishwaran, 2007; Zhu

et al., 2015)
@ Theoretical understanding of MDA bias

o Design of Sobol-MDA algorithm to fix the MDA flaws
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Random forests

@ Regression setting
o input vector X = (XW ... XP) c RP
o output Y e R
e dataset D, = {(X;, Yi),i =1,...,n},
where (X,‘, Y,) ~ IPx’y.
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Random forests

. . VAN ($)
@ Regression setting {(Xi,Y), i€ 8}
o input vector X = (XM, ..., X®)) c R? N
e output Y € R €9

e dataset D, = {(X;, Yi),i =1,...,n},
where (X,‘, Y,) ~ IPx’y.

@ Random forest algorithm
o Aggregation of ©-random trees
o= (@(5)7 @(V))
e M: number of trees
o mu,n(X,On): the forest estimate at X
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© Introduction

© MDA Theoretical Limitations
o MDA definition

© Sobol-MDA

@ Shapley effects
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MDA principle

MDA principle:
decrease of accuracy of the forest when a variable is noised up
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MDA principle

MDA principle:
decrease of accuracy of the forest when a variable is noised up
@ fit a random forest with D,,
© compute the accuracy of the forest

© permute randomly the values of a given input variable XU):
break the dependence between XU) and Y
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MDA principle

MDA principle:
decrease of accuracy of the forest when a variable is noised up
@ fit a random forest with D,,
compute the accuracy of the forest

(2]

© permute randomly the values of a given input variable XU):
break the dependence between XU) and Y

()

compute the decrease of accuracy of the forest with the permuted
data
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MDA illustration

XU x@ xO o x@]y
21 43 ... 01 ... 2623
17 41 ...92 ... 38|04
34 92 ...32 ... 36|102
56 12 ...82 ... 4201
89 6.8 ... 67 ... 2945

Table: Example of the permutation of a dataset D, for n = 5.
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MDA illustration

X0 x@ . Xy
21 43 ... ... 26|23
1.7 4.1 ... ... 38|04
34 92 ... ... 36(10.2
56 1.2 ... ... 42191
89 6.8 ... ... 29|45

Table: Example of the permutation of a dataset D, for n = 5.
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MDA illustration

XU x@ Lo XOTy | [ x@O x@ Xy
21 43 ... ... 2623 [21 43 ... ... 26|23
1.7 41 ... ... 38|04 |17 41 ... ... 38|04
34 92 ... ... 36102 |34 92 ... ... 36102
56 1.2 ... ... 4291 |56 12 ... ... 42191
89 6.8 ... ... 29|45| |89 68 ... ... 29|45

Table: Example of the permutation of a dataset D, for n = 5.
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MDA illustration

X0 x@ Lo XOTy | [(x@O x@ Xy
21 43 ... ... 26|23 |21 43 ... ... 26|23
1.7 41 ... ... 38|04 |17 41 ... ... 38|04
34 92 ... ... 36102 |34 92 ... ... 36|10.2
56 1.2 ... ... 4291 |56 12 ... ... 42091
89 6.8 ... ... 29|45 |89 68 ... ... 29145

Table: Example of the permutation of a dataset D, for n = 5.

Explained variance of Y = Explained variance of Y =

MDA(XW)) = - =27
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MDA illustration

XU x@ Lo XOTy | [ x@O x@ .o XPTy
21 43 ... ... 2623 [21 43 ... ... 26]23
1.7 41 ... ... 38|04 |17 41 ... ... 38|04
34 92 ... ... 36102 |34 92 ... ... 36102
56 1.2 ... ... 4291 |56 12 ... ... 4291
89 6.8 ... ... 29|45| |89 68 ... ... 29|45

Table: Example of the permutation of a dataset D, for n = 5.

Question: Can | use D, to both fit the forest and compute accuracy ?
No: overfitting and inflated accuracy.

How to handle this in practice?
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The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

MDA for random forests: a sensitivity analysis perspective



The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: D, is bootstrap prior to the construction
of each tree, leaving aside a portion of D,, which is not involved in the
tree growing and defines the “out-of-bag" sample.

XU x@ . x0O o xOf y

17 41 ... 92 ... 38|04

. 6.7 ...

Selected samples: 655) ={1,3,4}
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The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: D, is bootstrap prior to the construction
of each tree, leaving aside a portion of D,, which is not involved in the
tree growing and defines the “out-of-bag" sample.

XU x@ . x0O o xOf y

OOB samples: {1,...,n}\ 6;5) ={2,5}
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The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: D, is bootstrap prior to the construction
of each tree, leaving aside a portion of D,, which is not involved in the
tree growing and defines the “out-of-bag" sample.

MDA Version Package Error Data
. scikit-learn .
Train-Test randomForestSRO Forest | Testing dataset

randomForest (normalized)

ranger / randomForestSRC Tree | OOB sample

Breiman-Cutler

Ishwaran-Kogalur randomForestSRC Forest| OOB sample

Table: Summary of the different MDA algorithms.
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Breiman-Cutler MDA

e ic{l,...,n}\ o= {2,5}: OOB sample of the ¢-th tree

XO x@ o xWO x0T y
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Breiman-Cutler MDA

e ic{l,...,n}\ o= {2,5}: OOB sample of the ¢-th tree
o Npy=>1", ]l#e(g: 2: size of the OOB sample of the /-th tree
i4

XO x@ o xWO x0T y
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Breiman-Cutler MDA

o e {l,....n}\ o= {2,5}: OOB sample of the ¢-th tree
o Npy=>", ]l#e(a: 2: size of the OOB sample of the /-th tree
i4

° X, i-th observation where the j-th component is permuted
across the OOB sample of the /-th tree

XM x@ XAy [ x@ x@ Xy
21 43 ... 01 ...26[23]|[21 43 ...01 ... 26|23
1.7 41 ... ... 3804117 41 ... ... 3804
34 92 ... 32 ... 36(102|/3.4 92 ...32 ... 361102
56 12 ... 82 42191(/56 12 ...82 ... 4291

o7

XI‘.T!‘M

X;
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Breiman-Cutler MDA

o iec{l,....n}\ @gs): {2,5}: OOB sample of the ¢-th tree
o Np,= 27:1 ]1,'75@(5’: 2: size of the OOB sample of the /-th tree
£

® Xj x,: i-th observation where the j-th component is permuted
across the OOB sample of the /-th tree

Z i ijef))z

— (Yi = ma(X;, @e))z]]l,-g@(ﬁ

MDAM XU) MZ
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Breiman-Cutler MDA

e ie{l,...,n}\ @25): {2,5}: OOB sample of the ¢-th tree
o Npy=>1", 1 _ge=2: size of the OOB sample of the /-th tree

@ X; r,: i-th observation where the j-th component is permuted
across the OOB sample of the ¢-th tree

Z n i ﬂjpeﬁ))z

MDAM XU) MZ

JLigot®
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Breiman-Cutler MDA

o jie{l,...,n}\ @25): {2,5}: OOB sample of the ¢-th tree

o Npy=>1 ]l,;ée sy= 2: size of the OOB sample of the ¢-th tree

® Xj x,: i-th observation where the j-th component is permuted
across the OOB sample of the /-th tree

_—(BC)
0y
MDA, (XU) = Z

ﬂ

—(Yi = ma(X;, 9@))2]1,@25)
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Breiman-Cutler MDA

o ie{l,....n}\ @25): {2,5}: OOB sample of the ¢-th tree
o Nyp=3", 1 gw= 2: size of the OOB sample of the /-th tree
4

° X,-’W: i-th observation where the j-th component is permuted
across the OOB sample of the /-th tree

M n

MDAM = 1 Z ! Z 7mn(xi,ﬂje7ef))2

e:

—-

= (Yi — ma(X;, ee))z}ﬂigeﬁs)

Risks are computed over the OOB sample of each tree
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Breiman-Cutler MDA

o ie{l,....n}\ @25): {2,5}: OOB sample of the ¢-th tree
o Nyp=3", 1 gw= 2: size of the OOB sample of the /-th tree
4

° X,-’W: i-th observation where the j-th component is permuted
across the OOB sample of the /-th tree

Z [(YI - mn(xf,ﬂjwef))z
i=1

= (Yi — ma(X;, ee))z}]l,-g@ip

M
MDA,V, = ;

)

Average over all trees
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© Introduction

© MDA Theoretical Limitations

@ MDA convergence

© Sobol-MDA

@ Shapley effects
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Assumptions

(A1)

The response Y € R follows
Y=m(X)+e

where
o X= (XM, . .. Xx®P)elo 1]

e X admits a density f such that ¢; < f(x) < ¢, with constants
C1,Co > 0

@ m is continuous

the noise € is sub-Gaussian and centered
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(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)
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(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)

The randomized theoretical CART tree built with the distribution of
(X, Y) is consistent, that is, for all x € [0, 1]P, almost surely,

lim A(m,Ax(x,©)) =0.
k— 00
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(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)

The randomized theoretical CART tree built with the distribution of
(X, Y) is consistent, that is, for all x € [0, 1]P, almost surely,

lim A(m,Ax(x,©)) =0.
k— 00

(A3): tree partition is not too complex with respect to n
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(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)

The randomized theoretical CART tree built with the distribution of
(X, Y) is consistent, that is, for all x € [0, 1]P, almost surely,

lim A(m,Ax(x,©)) =0.
k— 00

(A3): tree partition is not too complex with respect to n

The asymptotic regime of a,,, the size of the subsampling without
replacement, and the number of terminal leaves t, is such that

an, <n-—2,a,/n<1—kforafixedk >0, lima,=o00, lim t, =00,
n— 00 n— 00
(tog(an)® _ ¢

an

and lim t,
n—oo
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MDA Convergence

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2), and (A3) are satisfied, then, for all M € N*
and j € {1,...,p} we have

MDAy o (X0) 25 E[(m(X) — m(X,))?]

Xz, X where the j-th component is replaced by an independent copy, i.e.
Xq = (XA, X0, xP)

Limit interpretation?
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Sensitivity analysis

(1) (2)
STm// STﬂ///

VY]

Interactions

Dependence

Figure: Standard and full total Sobol indices for Y = m(X®, X)) 4 ¢.

Full total Sobol index (Mara et al.,

Total Sobol index (Sobol, 1993) 2015; Benoumechiara, 2019)

_ E[V(m(X)| X))

v(Y) STW _ Hi[\'\](n7(xm)‘x( 1))]

v(Y)

STW
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MDA Decomposition

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M € N*
andje{l,...,p} we have

——(BC g . . .
MDA(M,H)(XU)) L% VY] x STY + V[Y] x STY) + MpAzY.

The term MDA;m is not an importance measure and is defined by

MDA = B[(E[m(X)X ] — E[m(X,,)|X))?].
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MDA Decomposition

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M € N*
and j € {1,...,p} we have

(i) MDAM (XU)) L VY] x STD 4 V[Y] x STY) + MpAZY
(i) MDAy o (XD) 25 V[¥] x STO 4+ V[v] x STY) + MDA,
If additionally M — oo, then

—(IK g 1 .
(i) MDAy 2(XD) 25 V[¥] x STY + MDAV

MDA for random forests: a sensitivity analysis perspective



Independent inputs

If inputs X are independent: MDA;U) =0and STV = STg,),.

Corollary (Bénard et al. (2021))

If X has independent components, and if Assumptions (Al)-(A3) are
satisfied, for all M € N* and j € {1,...,p} we have

—(TT . 1 5
MDA, ) (XV) 25 2v[y] x STV
_——(BC . 5
MDA, ;) (X9) £ 2v]v] x 5T0).

If additionally M — oo, then

IK g 1 ]
MDAy ,(X9) 5 V[Y] x STV,

This Corollary completes the result from (Gregorutti, 2015).
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Additive regression function

If m is additive: MDA}Y) = 0.

Corollary (Bénard et al. (2021))

If the regression function m is additive, and if Assumptions (A1)-(A3) are
satisfied, for all M € N* and j € {1,...,p} we have

MDAM 2 (X9) B viy] o STO 4 V[y] < STY)
MDAM,H (XU)) L VY] x ST + V[y] x STY).

If additionally M — oo, then

—(IK . 1 .
MDAEV,’Z(X(J)) L VY] x STY.
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@ When inputs X are dependent and have interactions, the MDA is
artificially inflated by the term MDA3 and is therefore misleading.
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@ When inputs X are dependent and have interactions, the MDA is
artificially inflated by the term MDAj3 and is therefore misleading.

o MDA versions have different theoretical counterparts, and thus
different meanings: be careful when using forest packages !
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@ When inputs X are dependent and have interactions, the MDA is
artificially inflated by the term MDAj3 and is therefore misleading.

o MDA versions have different theoretical counterparts, and thus
different meanings: be careful when using forest packages !

@ For variable selection, the total Sobol index is the relevant
component

VY] x STY) 4 Ve STT] + MBAST
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@ When inputs X are dependent and have interactions, the MDA is
artificially inflated by the term MDAj3 and is therefore misleading.

o MDA versions have different theoretical counterparts, and thus
different meanings: be careful when using forest packages !

@ For variable selection, the total Sobol index is the relevant

component
VY] x STY) 4 Ve STT] + MBAST

@ We develop the Sobol-MDA: a fast and consistent estimate of STU)
for random forests
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© Introduction

© MDA Theoretical Limitations

© Sobol-MDA

@ Shapley effects

MDA for random forests: a sensitivity analysis perspective



Sobol-MDA

Principle: project the partition of each tree along the j-th direction to
remove XU) from the prediction process.
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Sobol-MDA

Principle: project the partition of each tree along the j-th direction to
remove XU) from the prediction process.

X ()

x (1)

Figure: Partition of [0,1]? by a random tree (left side) projected on the
subspace span by X(72) = x@) (right side), for p =2 and j = 2.

SK/IBAMJ,(XU)) _ - Z[Y' B mg\;)jr;ooB)(XE—j)’eM)]z
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Sobol-MDA

Principle: project the partition of each tree along the j-th direction to
remove XU) from the prediction process.

X®) X2

|
|
|
| N -

X

Bl el s Rt

*

L

1

1

1

1

1
-

x()

x (1)

> X1

Figure: Partition of [0,1]? by a random tree (left side) projected on the
subspace span by X(72) = x@) (right side), for p =2 and j = 2.

n

D

2
Y =1

STMDA (XY = kS

S|

Q>

= [Yi = mig 2P (i, )]
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Consistency of the Sobol-MDA

The Sobol-MDA recovers the appropriate theoretical counterpart for
variable selection: the total Sobol index

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2’), and (A3’) are satisfied, for all M € N* and
.j 6 {17 tt 7p}

S-MDAp, o(XV)) £ STV,

MDA for random forests: a sensitivity analysis perspective




Sobol-MDA Experiments

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)
@ p = 200 input variables
@ 5 independent groups of 40 variables

@ each group is a Gaussian vector, strongly correlated
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Sobol-MDA Experiments

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)
@ p = 200 input variables
@ 5 independent groups of 40 variables
@ each group is a Gaussian vector, strongly correlated
°

1 variable from each group involved in m

m(x) — 2x(1) +X(41) +X(81) + X(121) +X(161).

independent Gaussian noise with V[e] = 10%V[Y]

Y=m(X)+¢
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Sobol-MDA Experiments

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)
@ p = 200 input variables
@ 5 independent groups of 40 variables
@ each group is a Gaussian vector, strongly correlated
°

1 variable from each group involved in m

m(x) — 2x(1) +X(41) +X(81) + X(121) +X(161).

independent Gaussian noise with V[e] = 10%V[Y]

Y=m(X)+¢

n = 1000 observations
M = 300 trees
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Sobol-MDA Experiments

S-MDA BC-MDA/2V[Y] || IK-MDA/V[Y]
x® 10035 || xD 0.048 x® [ 0.056
x| 0.005 || X®» | 0.010 x® | 0.009
xX® | 0.004 || XBCY | 0.008 X®Y | 0.007
x| 0.004 || X | 0.008 x“ | 0.005
x@ 1 0.002 || X | 0.007 || XY | 0.005
x17) | 0.002 || x® 0.007 X1 | 0.005
X3 | 0.001 || X | 0.006 x| 0.005
x@) 1 0.001 || X | 0.006 x™ | 0.005
X | 0.001 || X“Y | 0.006 X® | 0.004
x5 | 0.001 || X2V | 0.006 X8 | 0.004

Table: Sobol-MDA, normalized BC-MDA, and normalized IK-MDA estimates
with influential variables in blue.

MDA for random forests: a sensitivity analysis perspective



Additional Experiments

Additional experiments are available in Bénard et al. (2021)
(non-linear data with interactions and dependence)

@ analytical example

@ backward variable selection with real data
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Extension

Sobol-MDA can be associated with any black-box algorithm
o fit a black box f on D,
@ generate a large sample D}, with f
@ run the Sobol-MDA with D),

MDA for random forests: a sensitivity analysis perspective



© Introduction

© MDA Theoretical Limitations

© Sobol-MDA

@ Shapley effects
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members

o Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members

o Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).

o Adapted by Owen (2014) to variable importance in machine
learning:
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members

o Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).

o Adapted by Owen (2014) to variable importance in machine
learning:

o member of the team = input variable
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Definition of Shapley effects

@ Originally defined in economics and game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members

o Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).

o Adapted by Owen (2014) to variable importance in machine
learning:

o member of the team = input variable
o value function = explained output variance

MDA for random forests: a sensitivity analysis perspective



Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh*(XY)) =

1 (p - 1> THVELY XU - VIE[Y X)) .

p\ |U V[Y
e PN Y Y]
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh*(X(j)) _ Z 1 <p|— 1> 71V[]E[Y|X(UU{J.})]] _ V[]E[Y|X(U)]]'

U VY
vepmonay PN 1Y Y]
Main property: equitably allocate contributions due to dependence and
interactions across input variables
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

. 1 (p— 1\ VIE[Y XU - VIE[Y XV
sxP) =3 <|U|> VY] '

veg iy P

Main property: equitably allocate contributions due to dependence and
interactions across input variables
Two obstacles arise to estimate Shapley effects:

@ the computational complexity is exponential with the dimension p
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

i 1 (p— 1\ VIE[Y XU - VIE[Y XV
sxP) =3 <|U|> VY] '

veg iy P

Main property: equitably allocate contributions due to dependence and
interactions across input variables
Two obstacles arise to estimate Shapley effects:
@ the computational complexity is exponential with the dimension p
Q@ V[E[Y|XY]] requires a fast and accurate estimate for all variable
subsets U C {1,...,p}
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

1/p—1\ "VE[YXUUD) - vE[Y|XV
5 (p) [E[Y] 1] - VIE[Y]X]

*(y()y — -
SHT(XP) = v V]

veqn i P

Main property: equitably allocate contributions due to dependence and
interactions across input variables
Two obstacles arise to estimate Shapley effects:

@ the computational complexity is exponential with the dimension p
Literature: Monte-Carlo methods

Q@ VI[E[Y|X]] requires a fast and accurate estimate for all variable
subsets U C {1,...,p}
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

o 1 (p— 1\ "M VELY XD - VIE[Y X))
st (x¥) = Uc{l;w}\{j}p< U] ) V(Y] |

Main property: equitably allocate contributions due to dependence and
interactions across input variables
Two obstacles arise to estimate Shapley effects:

@ the computational complexity is exponential with the dimension p
Literature: Monte-Carlo methods

(2] V[E[Y|X(U)]] requires a fast and accurate estimate for all variable
subsets U C {1,...,p}

Literature: strong approximation of the conditional distributions
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:
© sample many subsets U, typically a few hundreds, based on their
occurrence frequency pum, n(U) in the random forest

Xx@)

X2
X(3) XG
U={2}
U=1{1,3} YSihs
@ X©®

x@®
)
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:
© sample many subsets U, typically a few hundreds, based on their
occurrence frequency pum, n(U) in the random forest
@ estimate V[E[Y|X(Y)]] with the projected forest algorithm for all
selected U and their complementary sets {1,...,p} \ U: ¥p (V)

X2 X2

|
|
|
| N -

-l Bl el s Rt

- > x(1)

x@)

Figure: Partition of [0,1]? by a random tree (left side) projected on the
subspace span by X(V) = x() (right side), for p =2 and U = {1}.
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:
© sample many subsets U, typically a few hundreds, based on their
occurrence frequency py n(U) in the random forest
@ estimate V[E[Y|X(Y)]] with the projected forest algorithm for all
selected U and their complementary sets {1,...,p} \ U: ¥ ,(U)

@ solve a weighted linear regression problem to recover Shapley effects
Sth,n by minimizing in 3

eM,n(B)zl > w(U) (0m,n(U) — BTI(U))?,

K &z, Pma(U)
o p—1 . .
where w(U) = (A=) and /(U) is the binary vector of

dimension p where the j-th component takes the value 1 if j € U
and 0 otherwise.

MDA for random forests: a sensitivity analysis perspective



SHAFF consistency

(A4)
The number of Monte-Carlo sampling K,, and the number of trees M,
grow with n, such that M,, — oo and n.M, /K, — 0.

| A

Theorem

If Assumptions (A1), (A2’), (A3’), and (A4) are satisfied, then SHAFF is
consistent, that is

Shw,.n — Sh*.
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Conclusion

@ Strong connections between the MDA and Sobol indices

@ MDA does not target the appropriate quantity
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Conclusion

@ Strong connections between the MDA and Sobol indices
@ MDA does not target the appropriate quantity
@ Sobol-MDA fixes the flaws of original MDA

@ R/C++ package SobolMDA, available online on Gitlab
(https://gitlab.com/drti/sobolmda), and based on the package
ranger

MDA for random forests: a sensitivity analysis perspective



Conclusion

@ Strong connections between the MDA and Sobol indices
@ MDA does not target the appropriate quantity
@ Sobol-MDA fixes the flaws of original MDA

@ R/C++ package SobolMDA, available online on Gitlab
(https://gitlab.com/drti/sobolmda), and based on the package
ranger

@ SHAFF: generalization of projected random forests to Shapley effects

@ R/C++ package shaff, available online on Gitlab
(https://gitlab.com/drti/shaff), and based on the package ranger

MDA for random forests: a sensitivity analysis perspective



MDA for random forests: a sensi el e



K.J. Archer and R.V. Kimes. Empirical characterization of random forest variable importance
measures. Computational Statistics & Data Analysis, 52:2249-2260, 2008.

C. Bénard, S. Da Veiga, and E. Scornet. Mda for random forests: inconsistency, and a
practical solution via the sobol-mda. arXiv preprint arXiv:2102.13347, 2021.

N. Benoumechiara. Treatment of dependency in sensitivity analysis for industrial reliability.
PhD thesis, Sorbonne Université ; EDF R&D, 2019.

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

B. Gregorutti. Random forests and variable selection : analysis of the flight data recorders for
aviation safety. PhD thesis, Université Pierre et Marie Curie - Paris VI, 2015.

B. Gregorutti, B. Michel, and P. Saint-Pierre. Correlation and variable importance in random
forests. Statistics and Computing, 27:659-678, 2017.

G. Hooker and L. Mentch. Please stop permuting features: an explanation and alternatives.
arXiv preprint arXiv:1905.03151, 2019.

H. Ishwaran. Variable importance in binary regression trees and forests. Electronic Journal of
Statistics, 1:519-537, 2007.

T. A Mara, S. Tarantola, and P. Annoni. Non-parametric methods for global sensitivity
analysis of model output with dependent inputs. Environmental Modelling & Software, 72:
173-183, 2015.

A.B. Owen. Sobol'indices and shapley value. SIAM/ASA Journal on Uncertainty
Quantification, 2:245-251, 2014.

L.S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2:307-317,
1953.

I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling
and Computational Experiments, 1:407-414, 1993.

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC bioinformatics, 8:25, 2007.

R. Zhu, D. Zeng, and M. R. Kosorok. Reinforcement learning trees. Journal of the American
Statistical Association, 110:1770-1784, 2015.

MDA for random forests: a sens y analysis perspective



	Introduction
	MDA Theoretical Limitations
	MDA definition
	MDA convergence

	Sobol-MDA
	Shapley effects
	References

