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Industrial processes

Context
Manufacturing process driven by
controllable variables.

Objective
Identify production conditions
generating defects: variable settings.

Method
1 Fit a learning algorithm
2 Use variable importance to detect influential variables
3 Explore associated physical phenomenon with domain experts
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MDA

Random forests are an efficient approach
MDA (Breiman, 2001): built-in variable importance algorithm for
random forests

MDA is used intensively

MDA has flaws
Poor understanding of the MDA: what is estimated ?
Empirical studies show that the MDA is biased for dependent inputs
(Strobl et al., 2007; Gregorutti et al., 2017; Hooker and Mentch,
2019)

Our objective (Bénard et al., 2021)
Theoretical analysis of the MDA

First convergence result for the original MDA (Ishwaran, 2007; Zhu
et al., 2015)
Theoretical understanding of MDA bias

Design of Sobol-MDA algorithm to fix the MDA flaws
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Random forests

Regression setting
input vector X = (X (1), . . . ,X (p)) ∈ Rp

output Y ∈ R
dataset Dn = {(Xi ,Yi ), i = 1, . . . , n},
where (Xi ,Yi ) ∼ PX,Y .

Random forest algorithm
Aggregation of Θ-random trees
Θ = (Θ(S),Θ(V ))
M: number of trees
mM,n(X,ΘM): the forest estimate at X
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1 Introduction

2 MDA Theoretical Limitations
MDA definition
MDA convergence

3 Sobol-MDA

4 Shapley effects
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MDA principle

MDA principle:
decrease of accuracy of the forest when a variable is noised up

1 fit a random forest with Dn

2 compute the accuracy of the forest
3 permute randomly the values of a given input variable X (j):

break the dependence between X (j) and Y

4 compute the decrease of accuracy of the forest with the permuted
data
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MDA illustration

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.
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2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
5.6 1.2 . . . 0.1 . . . 4.2 9.1
8.9 6.8 . . . 8.2 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.

MDA for random forests: a sensitivity analysis perspective



MDA illustration

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
5.6 1.2 . . . 0.1 . . . 4.2 9.1
8.9 6.8 . . . 8.2 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.

Explained variance of Y = 16.4 Explained variance of Y = 13.7

MDA(X (j)) = 16.4− 13.7 = 2.7
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MDA illustration

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 6.7 . . . 2.6 2.3
1.7 4.1 . . . 3.2 . . . 3.8 0.4
3.4 9.2 . . . 9.2 . . . 3.6 10.2
5.6 1.2 . . . 0.1 . . . 4.2 9.1
8.9 6.8 . . . 8.2 . . . 2.9 4.5

Table: Example of the permutation of a dataset Dn for n = 5.

Question: Can I use Dn to both fit the forest and compute accuracy ?

No: overfitting and inflated accuracy.

How to handle this in practice?
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MDA versions

The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction
of each tree, leaving aside a portion of Dn, which is not involved in the
tree growing and defines the “out-of-bag” sample.

MDA Version Package Error Data

Train-Test scikit-learn
randomForestSRC Forest Testing dataset

Breiman-Cutler randomForest (normalized)
ranger / randomForestSRC Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table: Summary of the different MDA algorithms.

MDA for random forests: a sensitivity analysis perspective



MDA versions

The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction
of each tree, leaving aside a portion of Dn, which is not involved in the
tree growing and defines the “out-of-bag” sample.

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

Selected samples: Θ
(S)
` = {1, 3, 4}

MDA Version Package Error Data

Train-Test scikit-learn
randomForestSRC Forest Testing dataset

Breiman-Cutler randomForest (normalized)
ranger / randomForestSRC Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table: Summary of the different MDA algorithms.

MDA for random forests: a sensitivity analysis perspective



MDA versions

The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction
of each tree, leaving aside a portion of Dn, which is not involved in the
tree growing and defines the “out-of-bag” sample.

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

OOB samples: {1, . . . , n} \Θ
(S)
` = {2, 5}

MDA Version Package Error Data

Train-Test scikit-learn
randomForestSRC Forest Testing dataset

Breiman-Cutler randomForest (normalized)
ranger / randomForestSRC Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table: Summary of the different MDA algorithms.

MDA for random forests: a sensitivity analysis perspective



MDA versions

The explained variance estimate of MDA algorithms differ across
implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: Dn is bootstrap prior to the construction
of each tree, leaving aside a portion of Dn, which is not involved in the
tree growing and defines the “out-of-bag” sample.

MDA Version Package Error Data

Train-Test scikit-learn
randomForestSRC Forest Testing dataset

Breiman-Cutler randomForest (normalized)
ranger / randomForestSRC Tree OOB sample

Ishwaran-Kogalur randomForestSRC Forest OOB sample

Table: Summary of the different MDA algorithms.

MDA for random forests: a sensitivity analysis perspective



Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ
(S)
` = {2, 5}: OOB sample of the `-th tree

Nn,` =
∑n

i=1 1i 6=Θ
(S)
`

= 2: size of the OOB sample of the `-th tree

Xi,πj`
: i-th observation where the j-th component is permuted

across the OOB sample of the `-th tree

X (1) X (2) . . . X (j) . . . X (p) Y
2.1 4.3 . . . 0.1 . . . 2.6 2.3
1.7 4.1 . . . 9.2 . . . 3.8 0.4
3.4 9.2 . . . 3.2 . . . 3.6 10.2
5.6 1.2 . . . 8.2 . . . 4.2 9.1
8.9 6.8 . . . 6.7 . . . 2.9 4.5

M̂DA
(BC)

M,n (X (j)) =
1
M

M∑
`=1

1
Nn,`

n∑
i=1

[
−
]
1
i /∈Θ

(S)
`
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Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ
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` = {2, 5}: OOB sample of the `-th tree

Nn,` =
∑n

i=1 1i 6=Θ
(S)
`

= 2: size of the OOB sample of the `-th tree

Xi,πj`
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Risks are computed over the OOB sample of each tree
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Breiman-Cutler MDA

i ∈ {1, . . . , n} \Θ
(S)
` = {2, 5}: OOB sample of the `-th tree

Nn,` =
∑n

i=1 1i 6=Θ
(S)
`
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Xi,πj`
: i-th observation where the j-th component is permuted
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Average over all trees
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Assumptions

(A1)

The response Y ∈ R follows

Y = m(X) + ε

where
X = (X (1), . . . ,X (p)) ∈ [0, 1]p

X admits a density f such that c1 < f (x) < c2, with constants
c1, c2 > 0
m is continuous
the noise ε is sub-Gaussian and centered
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Assumptions

(A2): the theoretical tree is consistent
(always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of
(X,Y ) is consistent, that is, for all x ∈ [0, 1]p, almost surely,

lim
k→∞

∆(m,A?k(x,Θ)) = 0.

(A3): tree partition is not too complex with respect to n

(A3)

The asymptotic regime of an, the size of the subsampling without
replacement, and the number of terminal leaves tn is such that
an ≤ n − 2, an/n < 1− κ for a fixed κ > 0, lim

n→∞
an =∞, lim

n→∞
tn =∞,

and lim
n→∞

tn
(log(an))9

an
= 0.
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MDA Convergence

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2), and (A3) are satisfied, then, for all M ∈ N?
and j ∈ {1, . . . , p} we have

M̂DA
(BC)

M,n (X (j))
L1

−→ E[(m(X)−m(Xπj ))2]

Xπj : X where the j-th component is replaced by an independent copy, i.e.
Xπj = (X (1), . . . ,X ′(j), . . . ,X (p))

Limit interpretation?
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Sensitivity analysis

V[Y ]

V[ε]

ST
(1)
full ST

(2)
full

Interactions

Dependence
ST (1) ST (2)

Figure: Standard and full total Sobol indices for Y = m(X (1),X (2)) + ε.

Total Sobol index (Sobol, 1993)

ST (1) =
E[V(m(X)|X(−1))]

V(Y )

Full total Sobol index (Mara et al.,
2015; Benoumechiara, 2019)

ST
(1)
full =

E[V(m(Xπj )|X
(−1))]

V(Y )
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MDA Decomposition

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M ∈ N?
and j ∈ {1, . . . , p} we have

M̂DA
(BC)

M,n (X (j))
L1

−→ V[Y ]× ST (j) + V[Y ]× ST
(j)
full + MDA?(j)

3 .

The term MDA?(j)
3 is not an importance measure and is defined by

MDA?(j)
3 = E[(E[m(X)|X(−j)]− E[m(Xπj )|X

(−j)])2].
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MDA Decomposition

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all M ∈ N?
and j ∈ {1, . . . , p} we have

(i) M̂DA
(TT )

M,n (X (j))
L1

−→ V[Y ]× ST (j) + V[Y ]× ST
(j)
full + MDA?(j)

3

(ii) M̂DA
(BC)

M,n (X (j))
L1

−→ V[Y ]× ST (j) + V[Y ]× ST
(j)
full + MDA?(j)

3 .

If additionally M −→∞, then

(iii) M̂DA
(IK)

M,n(X (j))
L1

−→ V[Y ]× ST (j) + MDA?(j)
3 .
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Independent inputs

If inputs X are independent: MDA?(j)
3 = 0 and ST (j) = ST

(j)
full .

Corollary (Bénard et al. (2021))

If X has independent components, and if Assumptions (A1)-(A3) are
satisfied, for all M ∈ N? and j ∈ {1, . . . , p} we have

M̂DA
(TT )

M,n (X (j))
L1

−→ 2V[Y ]× ST (j)

M̂DA
(BC)

M,n (X (j))
L1

−→ 2V[Y ]× ST (j).

If additionally M −→∞, then

M̂DA
(IK)

M,n(X (j))
L1

−→ V[Y ]× ST (j).

This Corollary completes the result from (Gregorutti, 2015).
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Additive regression function

If m is additive: MDA?(j)
3 = 0.

Corollary (Bénard et al. (2021))

If the regression function m is additive, and if Assumptions (A1)-(A3) are
satisfied, for all M ∈ N? and j ∈ {1, . . . , p} we have

M̂DA
(TT )

M,n (X (j))
L1

−→ V[Y ]× ST (j) + V[Y ]× ST
(j)
full

M̂DA
(BC)

M,n (X (j))
L1

−→ V[Y ]× ST (j) + V[Y ]× ST
(j)
full .

If additionally M −→∞, then

M̂DA
(IK)

M,n(X (j))
L1

−→ V[Y ]× ST (j).
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MDA summary

When inputs X are dependent and have interactions, the MDA is
artificially inflated by the term MDA3 and is therefore misleading.

MDA versions have different theoretical counterparts, and thus
different meanings: be careful when using forest packages !
For variable selection, the total Sobol index is the relevant
component

V[Y ]× ST (j) + ������
V[Y ]× ST

(j)
full + ����MDA?(j)

3

We develop the Sobol-MDA: a fast and consistent estimate of ST (j)

for random forests
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3 Sobol-MDA

4 Shapley effects
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Sobol-MDA

Principle: project the partition of each tree along the j-th direction to
remove X (j) from the prediction process.

X (1)

X (2)

X

X (1)

X (2)

X

X(−j)

Figure: Partition of [0, 1]2 by a random tree (left side) projected on the
subspace span by X(−2) = X (1) (right side), for p = 2 and j = 2.

̂S-MDAM,n(X (j)) =
1
σ̂2Y

1
n

n∑
i=1−
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̂S-MDAM,n(X (j)) =
1
σ̂2Y

1
n

n∑
i=1

[
Yi −m

(−j,OOB)
M,n (X(−j)

i ,ΘM)
]2

−
[
Yi −m

(OOB)
M,n (Xi ,ΘM)

]2
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Consistency of the Sobol-MDA

The Sobol-MDA recovers the appropriate theoretical counterpart for
variable selection: the total Sobol index

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2’), and (A3’) are satisfied, for all M ∈ N? and
j ∈ {1, . . . , p}

Ŝ-MDAM,n(X (j))
p−→ ST (j).
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Sobol-MDA Experiments

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)
p = 200 input variables
5 independent groups of 40 variables
each group is a Gaussian vector, strongly correlated

1 variable from each group involved in m

m(X) = 2X (1) + X (41) + X (81) + X (121) + X (161).

independent Gaussian noise with V[ε] = 10%V[Y ]

Y = m(X) + ε

n = 1000 observations
M = 300 trees
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Sobol-MDA Experiments

̂S-MDA
X(1) 0.035

X(161) 0.005
X(81) 0.004
X(121) 0.004
X(41) 0.002
X(179) 0.002
X(13) 0.001
X(25) 0.001
X(73) 0.001
X(155) 0.001

̂BC-MDA/2V[Y ]

X(1) 0.048
X(25) 0.010
X(31) 0.008
X(14) 0.008
X(40) 0.007
X(3) 0.007
X(17) 0.006
X(26) 0.006
X(41) 0.006
X(121) 0.006

̂IK-MDA/V[Y ]

X(1) 0.056
X(5) 0.009
X(81) 0.007
X(41) 0.005
X(161) 0.005
X(15) 0.005
X(121) 0.005
X(7) 0.005
X(4) 0.004
X(28) 0.004

Table: Sobol-MDA, normalized BC-MDA, and normalized IK-MDA estimates
with influential variables in blue.
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Additional Experiments

Additional experiments are available in Bénard et al. (2021)
(non-linear data with interactions and dependence)

analytical example
backward variable selection with real data
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Extension

Sobol-MDA can be associated with any black-box algorithm
fit a black box f̂ on Dn

generate a large sample D′N with f̂

run the Sobol-MDA with D′N

MDA for random forests: a sensitivity analysis perspective



1 Introduction

2 MDA Theoretical Limitations
MDA definition
MDA convergence

3 Sobol-MDA

4 Shapley effects
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Definition of Shapley effects

Originally defined in economics and game theory (Shapley, 1953)

Attribute the value produced by a joint team to its individual
members
Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).
Adapted by Owen (2014) to variable importance in machine
learning:

member of the team = input variable
value function = explained output variance
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Definition of Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh?(X (j)) =
∑

U⊂{1,...,p}\{j}

1
p

(
p − 1
|U|

)−1V[E[Y |X(U∪{j})]]− V[E[Y |X(U)]]

V[Y ]
.
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Two obstacles arise to estimate Shapley effects:

1 the computational complexity is exponential with the dimension p

2 V[E[Y |X(U)]] requires a fast and accurate estimate for all variable
subsets U ⊂ {1, . . . , p}
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1 the computational complexity is exponential with the dimension p
Literature: Monte-Carlo methods

2 V[E[Y |X(U)]] requires a fast and accurate estimate for all variable
subsets U ⊂ {1, . . . , p}
Literature: strong approximation of the conditional distributions
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:
1 sample many subsets U, typically a few hundreds, based on their

occurrence frequency p̂M,n(U) in the random forest

2 estimate V[E[Y |X(U)]] with the projected forest algorithm for all
selected U and their complementary sets {1, . . . , p} \ U: v̂M,n(U)

3 solve a weighted linear regression problem to recover Shapley effects
ŜhMn,n by minimizing in β
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Figure: Partition of [0, 1]2 by a random tree (left side) projected on the
subspace span by X(U) = X (1) (right side), for p = 2 and U = {1}.

3 solve a weighted linear regression problem to recover Shapley effects
ŜhMn,n by minimizing in β
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:
1 sample many subsets U, typically a few hundreds, based on their

occurrence frequency p̂M,n(U) in the random forest
2 estimate V[E[Y |X(U)]] with the projected forest algorithm for all

selected U and their complementary sets {1, . . . , p} \ U: v̂M,n(U)

3 solve a weighted linear regression problem to recover Shapley effects
ŜhMn,n by minimizing in β

`M,n(β) =
1
K

∑
U∈Un,K

w(U)

p̂M,n(U)
(v̂M,n(U)− βT I (U))2,

where w(U) = p−1
( p
|U|)|U|(p−|U|)

and I (U) is the binary vector of

dimension p where the j-th component takes the value 1 if j ∈ U
and 0 otherwise.
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SHAFF consistency

(A4)

The number of Monte-Carlo sampling Kn and the number of trees Mn

grow with n, such that Mn −→∞ and n.Mn/Kn −→ 0.

Theorem

If Assumptions (A1), (A2’), (A3’), and (A4) are satisfied, then SHAFF is
consistent, that is

ŜhMn,n
p−→ Sh?.
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Conclusion

Strong connections between the MDA and Sobol indices
MDA does not target the appropriate quantity

Sobol-MDA fixes the flaws of original MDA
R/C++ package SobolMDA, available online on Gitlab
(https://gitlab.com/drti/sobolmda), and based on the package
ranger

SHAFF: generalization of projected random forests to Shapley effects
R/C++ package shaff, available online on Gitlab
(https://gitlab.com/drti/shaff), and based on the package ranger
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Questions ?
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