Variable importance for random forests: a sensitivity analysis perspective ETICS 2021

Clément Bénard

Thesis Advisors: Gérard Biau, Sébastien da Veiga, Erwan Scornet

Safran Tech, LPSM

September 2021

Industrial processes

Context

Manufacturing process driven by controllable variables.

Industrial processes

Context

Manufacturing process driven by controllable variables.

Objective

Identify production conditions generating defects: variable settings.

- Method
 - Fit a learning algorithm
 - Ose variable importance to detect influential variables
 - Sexplore associated physical phenomenon with domain experts

- Random forests are an efficient approach
- MDA (Breiman, 2001): built-in variable importance algorithm for random forests

- Random forests are an efficient approach
- MDA (Breiman, 2001): built-in variable importance algorithm for random forests
- MDA is used intensively

- Random forests are an efficient approach
- MDA (Breiman, 2001): built-in variable importance algorithm for random forests
- MDA is used intensively
- MDA has flaws
 - Poor understanding of the MDA: what is estimated ?
 - Empirical studies show that the MDA is biased for dependent inputs (Strobl et al., 2007; Gregorutti et al., 2017; Hooker and Mentch, 2019)

- Random forests are an efficient approach
- MDA (Breiman, 2001): built-in variable importance algorithm for random forests
- MDA is used intensively
- MDA has flaws
 - Poor understanding of the MDA: what is estimated ?
 - Empirical studies show that the MDA is biased for dependent inputs (Strobl et al., 2007; Gregorutti et al., 2017; Hooker and Mentch, 2019)
- Our objective (Bénard et al., 2021)
 - Theoretical analysis of the MDA
 - First convergence result for the original MDA (Ishwaran, 2007; Zhu et al., 2015)
 - Theoretical understanding of MDA bias
 - Design of Sobol-MDA algorithm to fix the MDA flaws

Random forests

- Regression setting
 - input vector $\mathbf{X} = (X^{(1)}, \dots, X^{(p)}) \in \mathbb{R}^p$
 - output $Y \in \mathbb{R}$
 - dataset $\mathcal{D}_n = \{(\mathbf{X}_i, Y_i), i = 1, \dots, n\},\$ where $(\mathbf{X}_i, Y_i) \sim \mathbb{P}_{\mathbf{X}, Y}.$

Random forests

- Regression setting
 - input vector $\mathbf{X} = (X^{(1)}, \dots, X^{(p)}) \in \mathbb{R}^p$
 - output $Y \in \mathbb{R}$
 - dataset $\mathcal{D}_n = \{(\mathbf{X}_i, Y_i), i = 1, \dots, n\}$, where $(\mathbf{X}_i, Y_i) \sim \mathbb{P}_{\mathbf{X}, \mathbf{Y}}$.
- Random forest algorithm
 - Aggregation of Θ -random trees $\Theta = (\Theta^{(S)}, \Theta^{(V)})$
 - M: number of trees
 - $m_{M,n}(\mathbf{X}, \Theta_M)$: the forest estimate at \mathbf{X}

 $\{(\mathbf{X}_i, Y_i), i \in \Theta^{(S)}\}$

MDA convergence

MDA principle: decrease of accuracy of the forest when a variable is noised up

decrease of accuracy of the forest when a variable is noised up

9 fit a random forest with \mathcal{D}_n

decrease of accuracy of the forest when a variable is noised up

- fit a random forest with \mathcal{D}_n
- compute the accuracy of the forest

decrease of accuracy of the forest when a variable is noised up

- fit a random forest with \mathcal{D}_n
- compute the accuracy of the forest
- permute randomly the values of a given input variable X^(j): break the dependence between X^(j) and Y

decrease of accuracy of the forest when a variable is noised up

- fit a random forest with \mathcal{D}_n
- compute the accuracy of the forest
- permute randomly the values of a given input variable X^(j): break the dependence between X^(j) and Y
- compute the decrease of accuracy of the forest with the permuted data

$X^{(1)}$	$X^{(2)}$	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5

$X^{(1)}$	X ⁽²⁾	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5

$X^{(1)}$	X ⁽²⁾	 X ^(j)	 $X^{(p)}$	Y	$X^{(1)}$	X ⁽²⁾	 X ^(j)	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3	2.1	4.3	 6.7	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4	1.7	4.1	 3.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2	3.4	9.2	 9.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1	5.6	1.2	 0.1	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5	8.9	6.8	 8.2	 2.9	4.5

$X^{(1)}$	$X^{(2)}$	 X ^(j)	 $X^{(p)}$	Y	$X^{(1)}$	$X^{(2)}$	 X ^(j)	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3	2.1	4.3	 6.7	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4	1.7	4.1	 3.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2	3.4	9.2	 9.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1	5.6	1.2	 0.1	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5	8.9	6.8	 8.2	 2.9	4.5

Explained variance of Y = 16.4

Explained variance of Y = 13.7

$$MDA(X^{(j)}) = 16.4 - 13.7 = 2.7$$

$X^{(1)}$	$X^{(2)} \ldots X^{(j)} \ldots$	$X^{(p)}$	Y	$X^{(1)}$	X ⁽²⁾	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3 0.1	2.6	2.3	2.1	4.3	 6.7	 2.6	2.3
1.7	4.1 9.2	3.8	0.4	1.7	4.1	 3.2	 3.8	0.4
3.4	9.2 3.2	3.6	10.2	3.4	9.2	 9.2	 3.6	10.2
5.6	1.2 8.2	4.2	9.1	5.6	1.2	 0.1	 4.2	9.1
8.9	6.8 6.7	2.9	4.5	8.9	6.8	 8.2	 2.9	4.5

Question: Can I use D_n to both fit the forest and compute accuracy ?

No: overfitting and inflated accuracy.

How to handle this in practice?

The explained variance estimate of MDA algorithms differ across implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

The explained variance estimate of MDA algorithms differ across implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: \mathcal{D}_n is bootstrap prior to the construction of each tree, leaving aside a portion of \mathcal{D}_n , which is not involved in the tree growing and defines the "out-of-bag" sample.

Selected samples: $\Theta_{\ell}^{(5)} = \{1,3,4\}$

The explained variance estimate of MDA algorithms differ across implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: \mathcal{D}_n is bootstrap prior to the construction of each tree, leaving aside a portion of \mathcal{D}_n , which is not involved in the tree growing and defines the "out-of-bag" sample.

OOB samples: $\{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$

The explained variance estimate of MDA algorithms differ across implementations

Train-Test MDA: train data to fit the forest, and test data for accuracy

Out-of-bag (OOB) samples: \mathcal{D}_n is bootstrap prior to the construction of each tree, leaving aside a portion of \mathcal{D}_n , which is not involved in the tree growing and defines the "out-of-bag" sample.

MDA Version	Package	Error	Data
Train-Test	scikit-learn randomForestSRC	Forest	Testing dataset
Breiman-Cutler	randomForest (normalized) ranger / randomForestSRC	Tree	OOB sample
Ishwaran-Kogalur	randomForestSRC	Forest	OOB sample

Table: Summary of the different MDA algorithms.

•
$$i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(5)} = \{2, 5\}$$
: OOB sample of the ℓ -th tree

$X^{(1)}$	X ⁽²⁾	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree

$X^{(1)}$	$X^{(2)}$	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,πjℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the ℓ-th tree

$X^{(1)}$	X ⁽²⁾	 X ^(j)	 $X^{(p)}$	Y	$X^{(1)}$	X ⁽²⁾	 $X^{(j)}$	 $X^{(p)}$	Y
2.1	4.3	 0.1	 2.6	2.3	2.1	4.3	 0.1	 2.6	2.3
1.7	4.1	 9.2	 3.8	0.4	1.7	4.1	 6.7	 3.8	0.4
3.4	9.2	 3.2	 3.6	10.2	3.4	9.2	 3.2	 3.6	10.2
5.6	1.2	 8.2	 4.2	9.1	5.6	1.2	 8.2	 4.2	9.1
8.9	6.8	 6.7	 2.9	4.5	8.9	6.8	 9.2	 2.9	4.5

Xi

 $\mathbf{X}_{i,\pi_{j\ell}}$

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,πjℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the *l*-th tree

$$\widehat{\mathrm{MDA}}_{M,n}^{(BC)}(X^{(j)}) = \frac{1}{M} \sum_{\ell=1}^{M} \frac{1}{N_{n,\ell}} \sum_{i=1}^{n} \left[(Y_i - m_n(\mathbf{X}_{i,\pi_{j\ell}}, \Theta_\ell))^2 - (Y_i - m_n(\mathbf{X}_i, \Theta_\ell))^2 \right] \mathbb{1}_{i \notin \Theta_\ell^{(5)}}$$

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,π_jℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the ℓ-th tree

$$\widehat{\mathrm{MDA}}_{M,n}^{(BC)}(X^{(j)}) = \frac{1}{M} \sum_{\ell=1}^{M} \frac{1}{N_{n,\ell}} \sum_{i=1}^{n} \left[(Y_i - m_n(\mathbf{X}_{i,\pi_{j\ell}}, \Theta_\ell))^2 - (Y_i - m_n(\mathbf{X}_i, \Theta_\ell))^2 \right] \mathbb{1}_{i \notin \Theta_\ell^{(5)}}$$

Quadratic risk of the ℓ -th tree

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,πjℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the ℓ-th tree

$$\widehat{\mathrm{MDA}}_{M,n}^{(BC)}(X^{(j)}) = \frac{1}{M} \sum_{\ell=1}^{M} \frac{1}{N_{n,\ell}} \sum_{i=1}^{n} \left[(Y_i - m_n(\mathbf{X}_{i,\pi_{j\ell}}, \Theta_{\ell}))^2 - (Y_i - m_n(\mathbf{X}_i, \Theta_{\ell}))^2 \right] \mathbb{1}_{i \notin \Theta_{\ell}^{(5)}}$$

Inflated quadratic risk of the ℓ -th tree where $X^{(j)}$ is permuted

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,πjℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the *l*-th tree

$$\widehat{\mathrm{MDA}}_{M,n}^{(BC)}(X^{(j)}) = \frac{1}{M} \sum_{\ell=1}^{M} \frac{1}{N_{n,\ell}} \sum_{i=1}^{n} \left[(Y_i - m_n(\mathbf{X}_{i,\pi_{j\ell}},\Theta_\ell))^2 - (Y_i - m_n(\mathbf{X}_i,\Theta_\ell))^2 \right] \mathbb{1}_{i\notin\Theta_\ell^{(S)}}$$

Risks are computed over the OOB sample of each tree

- $i \in \{1, \ldots, n\} \setminus \Theta_{\ell}^{(S)} = \{2, 5\}$: OOB sample of the ℓ -th tree
- $N_{n,\ell} = \sum_{i=1}^{n} \mathbb{1}_{i \neq \Theta_{\ell}^{(S)}} = 2$: size of the OOB sample of the ℓ -th tree
- X_{i,πjℓ}: *i*-th observation where the *j*-th component is permuted across the OOB sample of the ℓ-th tree

$$\widehat{\mathrm{MDA}}_{M,n}^{(BC)}(X^{(j)}) = \frac{1}{M} \sum_{\ell=1}^{M} \frac{1}{N_{n,\ell}} \sum_{i=1}^{n} \left[(Y_i - m_n(\mathbf{X}_{i,\pi_{j\ell}}, \Theta_\ell))^2 - (Y_i - m_n(\mathbf{X}_i, \Theta_\ell))^2 \right] \mathbb{1}_{i \notin \Theta_\ell^{(S)}}$$

Average over all trees

MDA convergence

(A1)

The response $Y \in \mathbb{R}$ follows

$$Y = m(X) + \varepsilon$$

where

- $X = (X^{(1)}, \dots, X^{(p)}) \in [0, 1]^p$
- **X** admits a density f such that $c_1 < f(\mathbf{x}) < c_2$, with constants $c_1, c_2 > 0$
- m is continuous
- the noise ε is sub-Gaussian and centered

(A2): the theoretical tree is consistent (always true with slight modifications of the forest algorithm)

Assumptions

(A2): the theoretical tree is consistent (always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of (\mathbf{X}, Y) is consistent, that is, for all $\mathbf{x} \in [0, 1]^p$, almost surely,

 $\lim_{k\to\infty}\Delta(m,A^{\star}_k(\mathbf{x},\Theta))=0.$
(A2): the theoretical tree is consistent (always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of (X, Y) is consistent, that is, for all $x \in [0, 1]^p$, almost surely,

 $\lim_{k\to\infty}\Delta(m,A_k^\star(\mathbf{x},\Theta))=0.$

(A3): tree partition is not too complex with respect to n

(A2): the theoretical tree is consistent (always true with slight modifications of the forest algorithm)

(A2)

The randomized theoretical CART tree built with the distribution of (X, Y) is consistent, that is, for all $x \in [0, 1]^p$, almost surely,

 $\lim_{k\to\infty}\Delta(m,A_k^\star(\mathbf{x},\Theta))=0.$

(A3): tree partition is not too complex with respect to n

(A3)

The asymptotic regime of a_n , the size of the subsampling without replacement, and the number of terminal leaves t_n is such that $a_n \leq n-2$, $a_n/n < 1-\kappa$ for a fixed $\kappa > 0$, $\lim_{n \to \infty} a_n = \infty$, $\lim_{n \to \infty} t_n = \infty$, and $\lim_{n \to \infty} t_n \frac{(\log(a_n))^9}{a_n} = 0$.

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2), and (A3) are satisfied, then, for all $M \in \mathbb{N}^*$ and $j \in \{1, \dots, p\}$ we have

$$\widehat{MDA}_{M,n}^{(BC)}(X^{(j)}) \stackrel{\mathbb{L}^{1}}{\longrightarrow} \mathbb{E}[(m(\boldsymbol{X}) - m(\boldsymbol{X}_{\pi_{j}}))^{2}]$$

 \mathbf{X}_{π_j} : **X** where the *j*-th component is replaced by an independent copy, i.e. $\mathbf{X}_{\pi_j} = (X^{(1)}, \dots, X'^{(j)}, \dots, X^{(p)})$

Limit interpretation?

Sensitivity analysis

Figure: Standard and full total Sobol indices for $Y = m(X^{(1)}, X^{(2)}) + \varepsilon$.

Total Sobol index (Sobol, 1993)

$$ST^{(1)} = \frac{\mathbb{E}[\mathbb{V}(m(\mathbf{X})|\mathbf{X}^{(-1)})]}{\mathbb{V}(Y)}$$

Full total Sobol index (Mara et al., 2015; Benoumechiara, 2019)

$$ST^{(1)}_{full} = rac{\mathbb{E}[\mathbb{V}(m(\mathbf{X}_{\pi_j})|\mathbf{X}^{(-1)})]}{\mathbb{V}(Y)}$$

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all $M \in \mathbb{N}^*$ and $j \in \{1, ..., p\}$ we have

$$\widehat{MDA}_{M,n}^{(BC)}(X^{(j)}) \stackrel{\mathbb{L}^1}{\longrightarrow} \mathbb{V}[Y] \times ST^{(j)} + \mathbb{V}[Y] \times ST^{(j)}_{full} + MDA_3^{\star(j)}.$$

The term $\text{MDA}_3^{\star(j)}$ is not an importance measure and is defined by $\text{MDA}_3^{\star(j)} = \mathbb{E}[(\mathbb{E}[m(\mathbf{X})|\mathbf{X}^{(-j)}] - \mathbb{E}[m(\mathbf{X}_{\pi_i})|\mathbf{X}^{(-j)}])^2].$

Proposition (Bénard et al. (2021))

If Assumptions (A1), (A2) and (A3) are satisfied, then for all $M \in \mathbb{N}^*$ and $j \in \{1, ..., p\}$ we have

(i)
$$\widehat{MDA}_{M,n}^{(TT)}(X^{(j)}) \xrightarrow{\mathbb{L}^{1}} \mathbb{V}[Y] \times ST^{(j)} + \mathbb{V}[Y] \times ST_{full}^{(j)} + MDA_{3}^{\star(j)}$$

(ii) $\widehat{MDA}_{M,n}^{(BC)}(X^{(j)}) \xrightarrow{\mathbb{L}^{1}} \mathbb{V}[Y] \times ST^{(j)} + \mathbb{V}[Y] \times ST_{full}^{(j)} + MDA_{3}^{\star(j)}$

If additionally $M \longrightarrow \infty$, then

(iii)
$$\widehat{MDA}_{M,n}^{(IK)}(X^{(j)}) \xrightarrow{\mathbb{L}^1} \mathbb{V}[Y] \times ST^{(j)} + MDA_3^{\star(j)}$$

If inputs X are independent: $MDA_3^{\star(j)} = 0$ and $ST^{(j)} = ST^{(j)}_{full}$.

Corollary (Bénard et al. (2021))

If **X** has independent components, and if Assumptions (A1)-(A3) are satisfied, for all $M \in \mathbb{N}^*$ and $j \in \{1, ..., p\}$ we have

$$\widehat{MDA}_{M,n}^{(TT)}(X^{(j)}) \stackrel{\mathbb{L}^{1}}{\longrightarrow} 2\mathbb{V}[Y] \times ST^{(j)}
\widehat{MDA}_{M,n}^{(BC)}(X^{(j)}) \stackrel{\mathbb{L}^{1}}{\longrightarrow} 2\mathbb{V}[Y] \times ST^{(j)}.$$

If additionally $M \longrightarrow \infty$, then

$$\widehat{MDA}_{M,n}^{(IK)}(X^{(j)}) \xrightarrow{\mathbb{L}^1} \mathbb{V}[Y] \times ST^{(j)}.$$

This Corollary completes the result from (Gregorutti, 2015).

Additive regression function

If *m* is additive: $MDA_3^{\star(j)} = 0$.

Corollary (Bénard et al. (2021))

If the regression function m is additive, and if Assumptions (A1)-(A3) are satisfied, for all $M \in \mathbb{N}^*$ and $j \in \{1, \dots, p\}$ we have

$$\widehat{MDA}_{M,n}^{(TT)}(X^{(j)}) \xrightarrow{\mathbb{L}^{1}} \mathbb{V}[Y] \times ST^{(j)} + \mathbb{V}[Y] \times ST^{(j)}_{full} \\
\widehat{MDA}_{M,n}^{(BC)}(X^{(j)}) \xrightarrow{\mathbb{L}^{1}} \mathbb{V}[Y] \times ST^{(j)} + \mathbb{V}[Y] \times ST^{(j)}_{full}$$

If additionally $M \longrightarrow \infty$, then

$$\widehat{MDA}_{M,n}^{(IK)}(X^{(j)}) \stackrel{\mathbb{L}^1}{\longrightarrow} \mathbb{V}[Y] \times ST^{(j)}.$$

• When inputs **X** are dependent and have interactions, the MDA is artificially inflated by the term MDA_3 and is therefore misleading.

- When inputs X are dependent and have interactions, the MDA is artificially inflated by the term MDA_3 and is therefore misleading.
- MDA versions have different theoretical counterparts, and thus different meanings: be careful when using forest packages !

- When inputs **X** are dependent and have interactions, the MDA is artificially inflated by the term MDA_3 and is therefore misleading.
- MDA versions have different theoretical counterparts, and thus different meanings: be careful when using forest packages !
- For variable selection, the total Sobol index is the relevant component

$$\mathbb{V}[Y] \times ST^{(j)} + \underline{\mathbb{V}[Y]} \times ST^{(j)}_{full} + \underline{\mathrm{MDA}}_{3}^{*(j)}$$

- When inputs **X** are dependent and have interactions, the MDA is artificially inflated by the term MDA_3 and is therefore misleading.
- MDA versions have different theoretical counterparts, and thus different meanings: be careful when using forest packages !
- For variable selection, the total Sobol index is the relevant component

$$\mathbb{V}[Y] \times ST^{(j)} + \underline{\mathbb{V}[Y]} \times ST^{(j)}_{full} + \underline{\mathrm{MDA}}_{3}^{*(j)}$$

• We develop the Sobol-MDA: a fast and consistent estimate of *ST*^(j) for random forests

2 MDA Theoretical Limitations

- MDA definition
- MDA convergence

Principle: **project** the partition of each tree along the *j*-th direction to remove $X^{(j)}$ from the prediction process.

Principle: **project** the partition of each tree along the *j*-th direction to remove $X^{(j)}$ from the prediction process.

$$\widehat{\text{S-MDA}}_{M,n}(X^{(j)}) = \frac{1}{\hat{\sigma}_Y^2} \frac{1}{n} \sum_{i=1}^n \left[Y_i - m_{M,n}^{(-j,OOB)}(\mathbf{X}_i^{(-j)}, \Theta_M) \right]^2 - \left[Y_i - m_{M,n}^{(OOB)}(\mathbf{X}_i, \Theta_M) \right]^2$$

Principle: **project** the partition of each tree along the *j*-th direction to remove $X^{(j)}$ from the prediction process.

Figure: Partition of $[0, 1]^2$ by a random tree (left side) projected on the subspace span by $\mathbf{X}^{(-2)} = X^{(1)}$ (right side), for p = 2 and j = 2.

$$\widehat{\text{S-MDA}}_{M,n}(X^{(j)}) = \frac{1}{\hat{\sigma}_Y^2} \frac{1}{n} \sum_{i=1}^n \left[Y_i - m_{M,n}^{(-j,OOB)}(\mathbf{X}_i^{(-j)}, \Theta_M) \right]^2 - \left[Y_i - m_{M,n}^{(OOB)}(\mathbf{X}_i, \Theta_M) \right]^2$$

Principle: **project** the partition of each tree along the *j*-th direction to remove $X^{(j)}$ from the prediction process.

Figure: Partition of $[0, 1]^2$ by a random tree (left side) projected on the subspace span by $\mathbf{X}^{(-2)} = X^{(1)}$ (right side), for p = 2 and j = 2.

$$\widehat{\text{S-MDA}}_{M,n}(X^{(j)}) = \frac{1}{\hat{\sigma}_Y^2} \frac{1}{n} \sum_{i=1}^n \left[Y_i - m_{M,n}^{(-j,OOB)}(\mathbf{X}_i^{(-j)}, \Theta_M) \right]^2 - \left[Y_i - m_{M,n}^{(OOB)}(\mathbf{X}_i, \Theta_M) \right]^2$$

The Sobol-MDA recovers the appropriate theoretical counterpart for variable selection: the total Sobol index

Theorem (Bénard et al. (2021))

If Assumptions (A1), (A2'), and (A3') are satisfied, for all $M \in \mathbb{N}^*$ and $j \in \{1, \dots, p\}$

 $\widehat{S-MDA}_{M,n}(X^{(j)}) \stackrel{p}{\longrightarrow} ST^{(j)}.$

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)

- *p* = 200 input variables
- 5 independent groups of 40 variables
- each group is a Gaussian vector, strongly correlated

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)

- *p* = 200 input variables
- 5 independent groups of 40 variables
- each group is a Gaussian vector, strongly correlated
- 1 variable from each group involved in m

$$m(\mathbf{X}) = 2X^{(1)} + X^{(41)} + X^{(81)} + X^{(121)} + X^{(161)}.$$

• independent Gaussian noise with $\mathbb{V}[\varepsilon] = 10\%\mathbb{V}[Y]$

$$Y = m(\mathbf{X}) + \varepsilon$$

Settings (Archer and Kimes, 2008; Gregorutti et al., 2017)

- *p* = 200 input variables
- 5 independent groups of 40 variables
- each group is a Gaussian vector, strongly correlated
- 1 variable from each group involved in m

$$m(\mathbf{X}) = 2X^{(1)} + X^{(41)} + X^{(81)} + X^{(121)} + X^{(161)}.$$

• independent Gaussian noise with $\mathbb{V}[\varepsilon] = 10\%\mathbb{V}[Y]$

$$Y = m(\mathbf{X}) + \varepsilon$$

- *n* = 1000 observations
- *M* = 300 trees

S-MDA		$\widehat{\mathrm{BC-MDA}/2\mathbb{V}[Y]}$		$\widehat{\text{IK-MDA}/\mathbb{V}[Y]}$	
X ⁽¹⁾	0.035	X ⁽¹⁾	0.048	X ⁽¹⁾	0.056
$X^{(161)}$	0.005	X ⁽²⁵⁾	0.010	X ⁽⁵⁾	0.009
X ⁽⁸¹⁾	0.004	X ⁽³¹⁾	0.008	X ⁽⁸¹⁾	0.007
X ⁽¹²¹⁾	0.004	X ⁽¹⁴⁾	0.008	X ⁽⁴¹⁾	0.005
X ⁽⁴¹⁾	0.002	X ⁽⁴⁰⁾	0.007	X ⁽¹⁶¹⁾	0.005
X ⁽¹⁷⁹⁾	0.002	X ⁽³⁾	0.007	X ⁽¹⁵⁾	0.005
X ⁽¹³⁾	0.001	X ⁽¹⁷⁾	0.006	X ⁽¹²¹⁾	0.005
X ⁽²⁵⁾	0.001	X ⁽²⁶⁾	0.006	X ⁽⁷⁾	0.005
X ⁽⁷³⁾	0.001	X ⁽⁴¹⁾	0.006	X ⁽⁴⁾	0.004
X ⁽¹⁵⁵⁾	0.001	X ⁽¹²¹⁾	0.006	X ⁽²⁸⁾	0.004

Table: Sobol-MDA, normalized BC-MDA, and normalized IK-MDA estimates with influential variables in blue.

Additional experiments are available in Bénard et al. (2021) (non-linear data with interactions and dependence)

- analytical example
- backward variable selection with real data

Sobol-MDA can be associated with any black-box algorithm

- fit a black box \hat{f} on \mathcal{D}_n
- generate a large sample \mathcal{D}'_N with \hat{f}
- run the Sobol-MDA with \mathcal{D}'_N

2 MDA Theoretical Limitations

- MDA definition
- MDA convergence

• Originally defined in economics and game theory (Shapley, 1953)

- Originally defined in economics and game theory (Shapley, 1953)
- Attribute the value produced by a joint team to its individual members

- Originally defined in economics and game theory (Shapley, 1953)
- Attribute the value produced by a joint team to its individual members
- Difference of produced value between a subset of the team and the same subteam with an additional member (averaged over all possible subteams).

- Originally defined in economics and game theory (Shapley, 1953)
- Attribute the value produced by a joint team to its individual members
- Difference of produced value between a subset of the team and the same subteam with an additional member (averaged over all possible subteams).
- Adapted by Owen (2014) to variable importance in machine learning:

- Originally defined in economics and game theory (Shapley, 1953)
- Attribute the value produced by a joint team to its individual members
- Difference of produced value between a subset of the team and the same subteam with an additional member (averaged over all possible subteams).
- Adapted by Owen (2014) to variable importance in machine learning:
 - member of the team = input variable

- Originally defined in economics and game theory (Shapley, 1953)
- Attribute the value produced by a joint team to its individual members
- Difference of produced value between a subset of the team and the same subteam with an additional member (averaged over all possible subteams).
- Adapted by Owen (2014) to variable importance in machine learning:
 - member of the team = input variable
 - value function = explained output variance

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\ldots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}.$$

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\dots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}$$

Main property: equitably allocate contributions due to dependence and interactions across input variables

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\ldots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}.$$

Main property: equitably allocate contributions due to dependence and interactions across input variables

Two obstacles arise to estimate Shapley effects:

 \bigcirc the computational complexity is exponential with the dimension p

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\ldots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}.$$

Main property: equitably allocate contributions due to dependence and interactions across input variables

Two obstacles arise to estimate Shapley effects:

- \bigcirc the computational complexity is exponential with the dimension p
- ② V[E[Y|X^(U)]] requires a fast and accurate estimate for all variable subsets U ⊂ {1,...,p}

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\dots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}$$

Main property: equitably allocate contributions due to dependence and interactions across input variables

Two obstacles arise to estimate Shapley effects:

- the computational complexity is exponential with the dimension p Literature: Monte-Carlo methods
- ♥[E[Y|X^(U)]] requires a fast and accurate estimate for all variable subsets U ⊂ {1,..., p}
Formally, the Shapley effect of the j-th variable is defined by

$$Sh^{\star}(X^{(j)}) = \sum_{U \subset \{1,\dots,p\} \setminus \{j\}} \frac{1}{p} {p-1 \choose |U|}^{-1} \frac{\mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U \cup \{j\})}]] - \mathbb{V}[\mathbb{E}[Y|\mathbf{X}^{(U)}]]}{\mathbb{V}[Y]}$$

Main property: equitably allocate contributions due to dependence and interactions across input variables

Two obstacles arise to estimate Shapley effects:

- the computational complexity is exponential with the dimension p Literature: Monte-Carlo methods
- ♥[E[Y|X^(U)]] requires a fast and accurate estimate for all variable subsets U ⊂ {1,..., p}

Literature: strong approximation of the conditional distributions

SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

Sample many subsets U, typically a few hundreds, based on their occurrence frequency $\hat{p}_{M,n}(U)$ in the random forest

SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

- sample many subsets U, typically a few hundreds, based on their occurrence frequency $\hat{p}_{M,n}(U)$ in the random forest
- estimate V[E[Y|X^(U)]] with the projected forest algorithm for all selected U and their complementary sets {1,..., p} \ U: v̂_{M,n}(U)

Figure: Partition of $[0, 1]^2$ by a random tree (left side) projected on the subspace span by $\mathbf{X}^{(U)} = X^{(1)}$ (right side), for p = 2 and $U = \{1\}$.

SHAFF proceeds in three steps:

- sample many subsets U, typically a few hundreds, based on their occurrence frequency $\hat{p}_{M,n}(U)$ in the random forest
- estimate V[E[Y|X^(U)]] with the projected forest algorithm for all selected U and their complementary sets {1,..., p} \ U: v̂_{M,n}(U)
- **③** solve a weighted linear regression problem to recover Shapley effects $\hat{Sh}_{M_n,n}$ by minimizing in β

$$\ell_{M,n}(\beta) = \frac{1}{K} \sum_{U \in \mathcal{U}_{n,K}} \frac{w(U)}{\hat{p}_{M,n}(U)} (\hat{v}_{M,n}(U) - \beta^T I(U))^2,$$

where $w(U) = \frac{p-1}{\binom{p}{|U|}|U|(p-|U|)}$ and I(U) is the binary vector of dimension p where the j-th component takes the value 1 if $j \in U$ and 0 otherwise.

(A4)

The number of Monte-Carlo sampling K_n and the number of trees M_n grow with n, such that $M_n \longrightarrow \infty$ and $n.M_n/K_n \longrightarrow 0$.

Theorem

If Assumptions (A1), (A2'), (A3'), and (A4) are satisfied, then **SHAFF** is consistent, that is

$$\operatorname{Sh}_{M_n,n} \xrightarrow{p} \operatorname{Sh}^{\star}.$$

MDA for random forests: a sensitivity analysis perspective

- Strong connections between the MDA and Sobol indices
- MDA does not target the appropriate quantity

- Strong connections between the MDA and Sobol indices
- MDA does not target the appropriate quantity
- Sobol-MDA fixes the flaws of original MDA
- R/C++ package SobolMDA, available online on Gitlab (https://gitlab.com/drti/sobolmda), and based on the package ranger

- Strong connections between the MDA and Sobol indices
- MDA does not target the appropriate quantity
- Sobol-MDA fixes the flaws of original MDA
- R/C++ package SobolMDA, available online on Gitlab (https://gitlab.com/drti/sobolmda), and based on the package ranger
- SHAFF: generalization of projected random forests to Shapley effects
- R/C++ package shaff, available online on Gitlab (https://gitlab.com/drti/shaff), and based on the package ranger

MDA for random forests: a sensitivity analysis perspective

- K.J. Archer and R.V. Kimes. Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 52:2249–2260, 2008.
- C. Bénard, S. Da Veiga, and E. Scornet. Mda for random forests: inconsistency, and a practical solution via the sobol-mda. *arXiv preprint arXiv:2102.13347*, 2021.
- N. Benoumechiara. *Treatment of dependency in sensitivity analysis for industrial reliability*. PhD thesis, Sorbonne Université ; EDF R&D, 2019.
- L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
- B. Gregorutti. Random forests and variable selection : analysis of the flight data recorders for aviation safety. PhD thesis, Université Pierre et Marie Curie Paris VI, 2015.
- B. Gregorutti, B. Michel, and P. Saint-Pierre. Correlation and variable importance in random forests. *Statistics and Computing*, 27:659–678, 2017.
- G. Hooker and L. Mentch. Please stop permuting features: an explanation and alternatives. *arXiv preprint arXiv:1905.03151*, 2019.
- H. Ishwaran. Variable importance in binary regression trees and forests. *Electronic Journal of Statistics*, 1:519–537, 2007.
- T. A Mara, S. Tarantola, and P. Annoni. Non-parametric methods for global sensitivity analysis of model output with dependent inputs. *Environmental Modelling & Software*, 72: 173–183, 2015.
- A.B. Owen. Sobol'indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2:245–251, 2014.
- L.S. Shapley. A value for n-person games. *Contributions to the Theory of Games*, 2:307–317, 1953.
- I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1:407–414, 1993.
- C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: illustrations, sources and a solution. *BMC bioinformatics*, 8:25, 2007.
- R. Zhu, D. Zeng, and M. R. Kosorok. Reinforcement learning trees. Journal of the American Statistical Association, 110:1770–1784, 2015.