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Introduction ,~ EDF

Piecewise Deterministic
Markov Process
(M.H.A Davis 1984)

Hybrid process: Z; = (X;, M;)

Mode; |

m position X; is continuous

m mode M, is discrete '
Piecewise deterministic: the
position follows a deterministic
trajectory depending on the mode. Mode, ;

Markov process: at random times b
and deterministic times the process
jumps to random states. The
distribution of the next jumps does
not depend on past states.

Modes
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Characterization of a PDMP

The flow function @, solution of differential equations, gives the
deterministic dynamic. If there is no jump between time s and time s + t
then:

Zs+t - q)Zs (t)

The deterministic jumps occur when the process reaches the boundaries
of the state space E.

t; =inf{t >0:d,(t) € OE}

The jump intensity A gives the distribution of the time of the next
random jump.

B(T >t | Zo = 2) = Locy: oxp (— /Otx(%(u)) du)

The jump kernel C gives the law of the location after a jump: the
process jumps from z~ to state z with probability /- (z).
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Likelihood <'>eDF

Some methods (such as importance sampling in my case) require the
computation of the likelihood of a PDMP trajectory.

Recent works (Thomas Galtier 2019) explicited the dominant measure £
(and the associated space and o-algebra) for which a trajectory admits a
probability density function.

Probability density function of a PDMP trajectory

If the PDMP Z admits nz jumps at time t1,...,t,, in states z, ..., z,
then its density f with respect to £ is:

F(2) = [ M (@2 (6] exp [‘ JARCXC) "S} [1%. (0

Take home message: the computation of the pdf of a PDMP
trajectory is easy and does not require to recalculate the flow.
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Piecewise Deterministic Markov Process 0000@0

Multi-components system modeling

Purpose: estimating the probability that the physical variables
(temperature, water level, pressure, etc.) of a dynamic system exceed a
critical threshold. This occurs only after the degradation of certain
components, which is unpredictable.

PDMP framework:

m Deterministic flow: induced by the physical laws governing the
evolution of the variables of interest. It is computed by expensive
numerical codes. This is what costs the most in a simulation.

m Jump intensity and kernel: built from failure rates, probability of
failure on demand and repair rates of each component (provided by
engineers).

PyCATSHOO tool by EDF performs such PDMP simulations.

5/15



Piecewise Deterministic Markov Process 00000®

Test case: the spent fuel pool

Spent nuclear fuel is stored in a
pool to be cooled. To ensure the
cooling of the fuel, the system
must:

Draw cold water from
outside.

Transfer its temperature to
the pool water through
sealed circuits.

Supply power to key

components. @

When the system fails to cool the fuel, the water eventually evaporates
and the fuel may cause serious damage. We are looking for the
probability of the water level reaching a critical threshold.

6/15



Importance sampling



Piecewise Deterministic Markov Process 000000 Importance sampling 0®00 Parametric approach and results O¢

The issue with crude Monte-Carlo :'QEDF

We would like to estimate the failure probability of the system i.e the
probability for a trajectory of a PDMP with distribution f to reach a
failure area D.

P = IP’f(Z S D) =Er []lZeD]

Crude Monte-Carlo estimator

N

1 = .
IP &g N;ﬂzkep = Pcmc with Zy, ~

Issue: if P is small (in our case smaller than 107°) then most of the
realizations of the PDMP will fall outside of D. A proper estimation thus
requires a tremendous number of simulations.

Goal: Finding an estimator with a lower variance that can closely
estimate the probability of failure with less than 10* simulations.
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Importance sampling f:QEDF

Idea: generating processes from an other distribution g which produces
more faulty trajectories than f then fix the bias with a likelihood ratio.

P~ [1zen] = [ Leenf(z)de(2)

— /]lzepéfrggg(z)dg(z) =E, []IZGD;EQ}

IS estimator

N
1 f(Zx) ~ .

P~ — 1 —= =P th Z, ~
N k§:1 ZkeDg(Zk) S k™~ &

Choice of g: very delicate. Optimal choice leads to a zero variance
estimator but poor choices lead to an infinite variance estimator.
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Previous work: Thomas Galtier's thesis

The optimal distribution g* of the optimal process exists:

it is the distribution of a PDMP...
with the same deterministic flow ® than the original one!
it is therefore completely described by its jump intensity \* and
jump kernel K* whose expression is given by:
U™ (9,(t),s+ 1)
U* (P,(t),s +t)
U*(z,s+ t)
U= (z7,s)

Ko (2) = K. (2) x
where U* is a commitor function:

U*(z,s) =Pr(Z € D| Z = z)

U (z7,s) = Z U*(z,s)K,-(2)
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Importance sampling in practice 2~ EDF

Problem: the commitor function U* is not known explicitly.

We replace it by an approximation U, where o denotes a vector of
parameters that can be adjusted during estimation procedure to improve
the approximation. U, should quantify the distance between any state z
and the failure area D.

Importance process: trajectories are simulated under distribution gu
with jump intensity A* and jump kernel K< obtained by replacing U* by
U, in the expressions of U™, \* and K*.

Optimization by Cross-Entropy: once the parametric family (Ua),, is
chosen, it remains to find the best value for parameter . It is set
iteratively by the Cross-Entropy method.
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Cross Entropy f:QEDF

Idea: we look for the closest density to g* into a parametric family
(&a)aca according to the Kullback Leibler divergence. The resulting
minimization program depends on f, D and g, but not on g*!

L o)

= argenr)\ln {=Ef[1zep log(ga (Z))]}

Sequential optimization: Start with an initial «g then at iteration t
Generate Z(lt)7 ce Z(,\j) ~ o)

Compute the solution to the below optimization problem

N zE{f) )
S f((z()))' (6o (22))

k

a1 = argmin{ —

acA

2 \
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Minimal groups: the spent fuel pool case & S EeDF

Minimal groups:
smallest sets of

components that if ( (
L2 13
\,

left broken ensure
system failure.
(permanent repair of
one component in
each group prevents L

the failure) | |

Examples: (Go, Gl, Gz, G3), (Rl, RQ), (Cll_l, C3L2, C1L3)

In this system: there is 69 minimal groups for 15 components.
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Parametric family f:QEDF

Let d be the number of minimal groups of the system. For any state z
we denote [3;(z) the proportion of broken components in the i-th most
damaged minimal group, then for a € Riﬂ we set:

d o
Ua(z) = <Z Ua,.(z)> with Uy, (z) = o'
i=1

The U,, functions are convex and increasing in the number of broken
components within their group.

m g small: trying to get a failing minimal group quickly.
m qp large: trying to increase multiple failures in as many minimal
groups as possible.

Dimension reduction: we are able to find a good « value in a lower
dimension space than d + 1 during the Cross-Entropy. (outside the scope
of this talk)
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Experiment and results S €DF

We tested this importance sampling approach on the spent fuel pool case
and we compared it to a massive crude Monte-Carlo method.

Method ‘ N ‘ P ‘ 95% Confidence interval ‘

CMC | 10° | 2x107® | [-7.72x10°7; 4.78 x 1079]
CMC | 107 | 3.9x10°® | [2.67 x107%;5.12 x 1079]
CMC | 108 | 3.50 x 1076 | [3.13 x 1075; 3.87 x 1079]
IS 102 | 3.91 x 107 | [8.08 x 10~7; 7.01 x 1079]
IS 10° | 3.03 x 107% | [1.09 x 107°; 4.95 x 10~°]
IS 10% | 3.35x 107% | [2.65 x 107 4.04 x 10~°]

Table 1: Comparison between method CMC and IS

Our IS method performs as well with 103 to 10* simulations than crude
Monte-Carlo method with 107 to 108 simulations. It is thus more than a
thousand times more efficient.
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Conclusion ,~ EDF

Future work:

m Finding a good way to initialize the Cross-entropy method.

m Testing the method on larger systems with more subtle/complex
dynamics.

m Analyzing the sensitivity of the probability of failure to the PDMP
parameters without simulating new trajectories.

m Using our approximation of the commitor function U* to estimate
the probabilities of different rare sub-events with an interacting
particle system method.

Thank you for your attention!
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