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Introduction

Piecewise Deterministic
Markov Process
(M.H.A Davis 1984)

Hybrid process: Zt = (Xt ,Mt)

position Xt is continuous
mode Mt is discrete

Piecewise deterministic: the
position follows a deterministic
trajectory depending on the mode.
Markov process: at random times
and deterministic times the process
jumps to random states. The
distribution of the next jumps does
not depend on past states.
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Characterization of a PDMP

The flow function Φ, solution of differential equations, gives the
deterministic dynamic. If there is no jump between time s and time s + t
then:

Zs+t = ΦZs (t)

The deterministic jumps occur when the process reaches the boundaries
of the state space E .

t∗z = inf{t > 0 : Φz(t) ∈ ∂E}

The jump intensity λ gives the distribution of the time of the next
random jump.

P(T > t | Zs = z) = 1t<t∗z exp

(
−
∫ t

0
λ (Φz(u)) du

)
The jump kernel K gives the law of the location after a jump: the
process jumps from z− to state z with probability Kz−(z).
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Likelihood

Some methods (such as importance sampling in my case) require the
computation of the likelihood of a PDMP trajectory.

Recent works (Thomas Galtier 2019) explicited the dominant measure ξ
(and the associated space and σ-algebra) for which a trajectory admits a
probability density function.

Probability density function of a PDMP trajectory
If the PDMP Z admits nZ jumps at time t1, . . . , tnZ in states z1, . . . , znZ ,
then its density f with respect to ξ is:

f (Z ) =

nZ∏
k=0

[λ (Φzk (tk))]
1tk<t∗zk exp

[
−
∫ tk

0
λ (Φzk (s)) ds

] nZ∏
k=1

Kz−k
(zk)

Take home message: the computation of the pdf of a PDMP
trajectory is easy and does not require to recalculate the flow.
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Multi-components system modeling

Purpose: estimating the probability that the physical variables
(temperature, water level, pressure, etc.) of a dynamic system exceed a
critical threshold. This occurs only after the degradation of certain
components, which is unpredictable.

PDMP framework:

Deterministic flow: induced by the physical laws governing the
evolution of the variables of interest. It is computed by expensive
numerical codes. This is what costs the most in a simulation.
Jump intensity and kernel: built from failure rates, probability of
failure on demand and repair rates of each component (provided by
engineers).

PyCATSHOO tool by EDF performs such PDMP simulations.
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Test case: the spent fuel pool

Spent nuclear fuel is stored in a
pool to be cooled. To ensure the
cooling of the fuel, the system
must:

1 Draw cold water from
outside.

2 Transfer its temperature to
the pool water through
sealed circuits.

3 Supply power to key
components.

When the system fails to cool the fuel, the water eventually evaporates
and the fuel may cause serious damage. We are looking for the
probability of the water level reaching a critical threshold.
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The issue with crude Monte-Carlo

We would like to estimate the failure probability of the system i.e the
probability for a trajectory of a PDMP with distribution f to reach a
failure area D.

P = Pf (Z ∈ D) = Ef [1Z∈D]

Crude Monte-Carlo estimator

P ≈ 1
N

N∑
k=1

1Z k∈D = P̂CMC with Z k ∼ f

Issue: if P is small (in our case smaller than 10−6) then most of the
realizations of the PDMP will fall outside of D. A proper estimation thus
requires a tremendous number of simulations.

Goal: Finding an estimator with a lower variance that can closely
estimate the probability of failure with less than 104 simulations.
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Importance sampling

Idea: generating processes from an other distribution g which produces
more faulty trajectories than f then fix the bias with a likelihood ratio.

P = Ef [1Z∈D] =

∫
1z∈Df (z)dξ(z)

=

∫
1z∈D

f (z)

g(z)
g(z)dξ(z) = Eg

[
1Z∈D

f (Z )

g(Z )

]

IS estimator

P ≈ 1
N

N∑
k=1

1Z k∈D
f (Z k)

g(Z k)
= P̂IS with Z k ∼ g

Choice of g : very delicate. Optimal choice leads to a zero variance
estimator but poor choices lead to an infinite variance estimator.
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Previous work: Thomas Galtier’s thesis

The optimal distribution g∗ of the optimal process exists:

1 it is the distribution of a PDMP...
2 with the same deterministic flow Φ than the original one!
3 it is therefore completely described by its jump intensity λ∗ and

jump kernel K∗ whose expression is given by:

λ∗(Φz(t), s) = λ(Φz(t))× U− (Φz(t), s + t)

U∗ (Φz(t), s + t)

K∗z−,s (z) = Kz−(z)× U∗ (z , s + t)

U− (z−, s)

where U∗ is a commitor function:

U∗(z , s) = Pf (Z ∈ D |Zs = z)

U−(z−, s) =
∑
z

U∗(z , s)Kz−(z)
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Importance sampling in practice

Problem: the commitor function U∗ is not known explicitly.

We replace it by an approximation Uα where α denotes a vector of
parameters that can be adjusted during estimation procedure to improve
the approximation. Uα should quantify the distance between any state z
and the failure area D.

Importance process: trajectories are simulated under distribution gα
with jump intensity λα and jump kernel Kα obtained by replacing U∗ by
Uα in the expressions of U−,λ∗ and K∗.

Optimization by Cross-Entropy: once the parametric family (Uα)α is
chosen, it remains to find the best value for parameter α. It is set
iteratively by the Cross-Entropy method.
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Cross Entropy

Idea: we look for the closest density to g∗ into a parametric family
(gα)α∈A according to the Kullback Leibler divergence. The resulting
minimization program depends on f , D and gα but not on g∗!

arg min
α∈A

KL (g∗‖gα) = arg min
α∈A

Eg∗

[
log

(
g∗(Z )

gα(Z )

)]
= arg min

α∈A
{−Ef [1z∈D log (gα (Z ))]}

Sequential optimization: Start with an initial α0 then at iteration t

1 Generate Z (t)
1 , . . . ,Z (t)

N ∼ gα(t)

2 Compute the solution to the below optimization problem

α(t+1) = arg min
α∈A

− 1
N

N∑
k=1

1Z (t)
k ∈D

f
(
Z (t)

k

)
gα(t)

(
Z (t)

k

) log
(
gα
(
Z (t)

k

))
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Minimal groups: the spent fuel pool case

Minimal groups:
smallest sets of
components that if
left broken ensure
system failure.
(permanent repair of
one component in
each group prevents
the failure)

Examples: (G0,G1,G2,G3), (R1,R2), (C1L1,C3L2,C1L3)

In this system: there is 69 minimal groups for 15 components.
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Parametric family

Let d be the number of minimal groups of the system. For any state z
we denote βi (z) the proportion of broken components in the i-th most
damaged minimal group, then for α ∈ Rd+1

+ we set:

Uα(z) =

(
d∑

i=1

Uαi (z)

)α0

with Uαi (z) = α
βi (z)
i

The Uαi functions are convex and increasing in the number of broken
components within their group.

α0 small: trying to get a failing minimal group quickly.
α0 large: trying to increase multiple failures in as many minimal
groups as possible.

Dimension reduction: we are able to find a good α value in a lower
dimension space than d + 1 during the Cross-Entropy. (outside the scope
of this talk)
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Experiment and results

We tested this importance sampling approach on the spent fuel pool case
and we compared it to a massive crude Monte-Carlo method.

Method N P̂ 95% Confidence interval

CMC 106 2× 10−6 [−7.72× 10−7 ; 4.78× 10−6]

CMC 107 3.9× 10−6 [2.67× 10−6 ; 5.12× 10−6]

CMC 108 3.50× 10−6 [3.13× 10−6 ; 3.87× 10−6]

IS 102 3.91× 10−6 [8.08× 10−7 ; 7.01× 10−6]

IS 103 3.03× 10−6 [1.09× 10−6 ; 4.95× 10−6]

IS 104 3.35× 10−6 [2.65× 10−6 ; 4.04× 10−6]

Table 1: Comparison between method CMC and IS

Our IS method performs as well with 103 to 104 simulations than crude
Monte-Carlo method with 107 to 108 simulations. It is thus more than a
thousand times more efficient.
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Conclusion

Future work:

Finding a good way to initialize the Cross-entropy method.
Testing the method on larger systems with more subtle/complex
dynamics.
Analyzing the sensitivity of the probability of failure to the PDMP
parameters without simulating new trajectories.
Using our approximation of the commitor function U∗ to estimate
the probabilities of different rare sub-events with an interacting
particle system method.

Thank you for your attention!
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