ETICS 2021 Presentation

Clément Duhamel

A SUR version of the Bichon criterion for excursion set estimation

Supervision:

PRIEUR Clémentine¹, HELBERT Céline², SINOQUET Delphine³, MUNOZ ZUNIGA Miguel

September 16, 2021

¹UGA, LJK, Inria, ² ICJ, ECL ³ IFPEN

Introduction: inversion framework

Excursion set to estimate:

$$\Gamma^{*} := \left\{ \mathbf{x} \in \mathbb{X}, \ g(\mathbf{x}) \le T \right\} \tag{1}$$

with

- $\mathbb{X} \subset \mathbb{R}^d$ design space (compact)
- g "black-box" function (e.g. calculation run)
- T fixed threshold

Essential criterion to Γ^* estimation:

Limit the number of g's expensive simulations

Application: floating wind turbine calibration

 Estimation of fitting parameters to limit the error on site measurement (accelerations)

Table of contents:

- Reminders on surrogate models and GP regression
 - Surrogate models
 - Sequential construction of a DoE by GPR
- Bichon criterion (EFF)
 - Definition
 - Interpretation
- SUR Strategies
- SUR Bichon criterion
 - Theoretical aspects
 - Numerical aspects

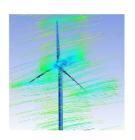
Reminders on surrogate models and GP regression Surrogate models

Surrogate models

- Approximation of the original model (simulator)
- Fast to evaluate
- Defines from a limited number of (expensive) simulations

Gaussian Process Regression (GPR)

 Hypothesis: g is a realization of a gaussian process (GP)



Sequential construction of a DoE by GPR

Sequential construction of a Design of Experiments (DoE) by GPR

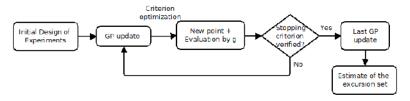


Figure 1: Functional diagram of the DoE sequential construction, by GPR.

Criterion choice

- Overall knowledge criteria (mse, IMSE, MMSE)
- Goal oriented criteria (Picheny [2010])
 - ► for optimization (EI, PI)
 - for inversion (U, tmse, Bichon (EFF), Ranjan)

Notations

- \bullet $(\Omega, \mathscr{F}, \mathbb{P})$ a probability space
- $\xi(\mathbf{x})_{\mathbf{x} \in \mathbb{X}} \sim \mathrm{GP}(m,k)$: surrogate model
- $\mathscr{X}_n := (\mathbf{x}_1, ..., \mathbf{x}_n)$: sequential DoE
- $ullet g(\mathscr{X}_n) := (g(\mathbf{x}_1),...,g(\mathbf{x}_n))$: evaluations on the sequential DoE
- \mathscr{F}_n : σ -algebra generated by observations $(\mathscr{X}_n, g(\mathscr{X}_n))$
- $m_n(\mathbf{x}) := \mathbb{E}[\xi(\mathbf{x}) | \mathscr{F}_n]$: prediction mean
- $k_n(\mathbf{x}, \mathbf{x}') := \operatorname{Cov}[\xi(\mathbf{x}), \xi(\mathbf{x}') | \mathscr{F}_n]$
- $\sigma_n(\mathbf{x}) := \sqrt{k_n(\mathbf{x}, \mathbf{x})}$: prediction standard deviation
- $\mathbb{P}_{\mathbb{X}}$ a finite measure given on \mathbb{X} (e.g. Lebesgue measure)

Bichon criterion (EFF)

Definition (Bichon [2008])

Feasibility Function

$$\begin{aligned} \operatorname{FF}(\mathbf{x}) &:= c(\mathbf{x}) - \min \left\{ |T - \xi(\mathbf{x})|, c(\mathbf{x}) \right\} \\ &= \left(c(\mathbf{x}) - |T - \xi(\mathbf{x})| \right)^{-} \\ &= \begin{cases} \varepsilon(\mathbf{x}) - |T - \xi(\mathbf{x})| & \text{if } \xi(\mathbf{x}) \in \left[T - \varepsilon(\mathbf{x}), T + \varepsilon(\mathbf{x}) \right] \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$
with $\varepsilon(\mathbf{x}) := \alpha \sigma_n(\mathbf{x})$

Expected Feasibility Function

$$EFF(\mathbf{x}) := \mathbb{E}\left[\left(\epsilon(\mathbf{x}) - |T - \xi(\mathbf{x})|\right)^{+} \middle| \mathscr{F}_{n}\right]$$
(3)

Enrichment of the DoE

$$\mathbf{x}_{n+1} := \operatorname*{argmax}_{\mathbf{x} \subset \mathbb{X}} \mathrm{EFF}(\mathbf{x}) \tag{4}$$

Interpretation

Interpretation of Feasibility Function

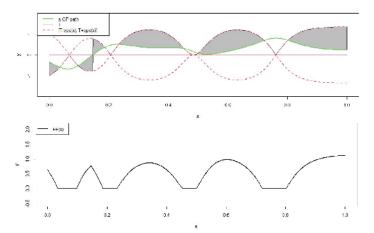


Figure 2: Representation of Feasibility Function for an example of a GP path.

SUR Strategies (Bect [2012])

ldea

- An adaptive strategy class
- Anticipate the impact of adding the next evaluation(s)
- Complex formalism resulting from k-step lookahead strategies
- Possible enrichment by q-batch

Simplified formulation with q = 1 (and k = 1)

$$\mathbf{x}_{n+1} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{X}} \mathscr{J}_n(\mathbf{x}) \quad \text{and} \quad \mathscr{J}_n(\mathbf{x}) := \mathbb{E}\left[H_{n+1} \, \middle| \, \xi(\mathbf{x}), \, \mathscr{F}_n \right]$$
 (5)

with

• H_{n+1} uncertainty measure \mathscr{F}_{n+1} -measurable

Example (Chevalier [2013])

SUR Vorob'ev criterion:

$$\Pi_{n+1}^{V} := \mathbb{E}\left[\mathbb{P}_{\mathbb{Z}}\left(\Gamma \Delta Q_{n+1,\alpha_{n+1}^{*}}\right) \,\middle|\, \mathscr{F}_{n+1}\right] \tag{6}$$

with Q_{n+1, m_{n+1}^*} Vorob'ev expectation and $\Gamma := \{ \mathbf{x} \in \mathbb{X}, \, \xi(\mathbf{x}) \leq T \}$ (see Appendix)

Major problem of SUR strategies

- Explain the x dependence in the definition of \mathscr{J}_n (equation (5))
 - Quadrature methods
 - Simplifying assumptions

SUR Bichon criterion

Theoretical aspects

Idea

- Propose a SUR version of the Bichon criterion
- uncertainty measure: integral of Bichon criterion generated by \mathscr{F}_{n+1} according to $\mathbb{F}_{\mathbb{X}}$ measure

Simplified formulation with q=1

$$H_{n+1}^{\mathrm{B}} := \int_{\mathbb{X}} \mathbb{E}\left[\left(\alpha \sigma_{n+1}(\mathbf{y}) - |T - \xi(\mathbf{y})|\right)^{+} \, \middle| \, \mathscr{F}_{n+1}\right] \mathrm{d}\mathbb{P}_{\mathbb{X}}(\mathbf{y}) \tag{7}$$

with σ_{n+1} prediction standard deviation with the addition of x to the DoE (independent of the evaluation)

Simplifications

$$\mathbf{x}_{n+1} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{X}} \mathscr{J}_n(\mathbf{x}) \tag{8}$$

with

$$\mathcal{J}_{n}(\mathbf{x}) := \mathbb{E}\left[\int_{\mathbb{X}} \mathbb{E}\left[\left(\alpha\sigma_{n+1}(\mathbf{y}) - |T - \xi(\mathbf{y})|\right)^{+} \middle| \mathscr{F}_{n-1}\right] d\mathbb{P}_{\mathbb{X}}(\mathbf{y}) \middle| \xi(\mathbf{x}), \mathscr{F}_{n}\right]
\stackrel{\text{Fubini}}{=} \int_{\mathbb{X}} \mathbb{E}\left[\mathbb{E}\left[\left(\alpha\sigma_{n+1}(\mathbf{y}) - |T - \xi(\mathbf{y})|\right)^{-} \middle| \mathscr{F}_{n+1}\right] \middle| \xi(\mathbf{x}), \mathscr{F}_{n}\right] d\mathbb{P}_{\mathbb{X}}(\mathbf{y})
\stackrel{*}{=} \int_{\mathbb{X}} \underbrace{\mathbb{E}\left[\left(\alpha\sigma_{n+1}(\mathbf{y}) - |T - \xi(\mathbf{y})|\right)^{+} \middle| \xi(\mathbf{x}), \mathscr{F}_{n}\right]}_{\text{EFF}_{\mathbf{x}}(\mathbf{y})} d\mathbb{P}_{\mathbb{X}}(\mathbf{y})$$
(9)

* by tower property

EFF_x(y) can be calculated based on $m_n(y)$, $\sigma_n(y)$, T, α and $\sigma_{n+1}(y)$ (see Appendix).

Numerical aspects

Test function

• Branin-rescaled function with T=10 (or T=80)

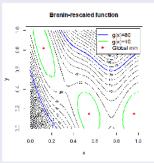


Figure 3: Representation of the Branin2d-rescaled function on $[0,1]^2$.

Performance comparison measure

• $\mathbb{P}_{\mathbb{X}}(\hat{\Gamma}_n \Delta \Gamma^*)$ with $\hat{\Gamma}_n$ estimator of the true excursion set Γ^* after n obs.

Performance comparison measure

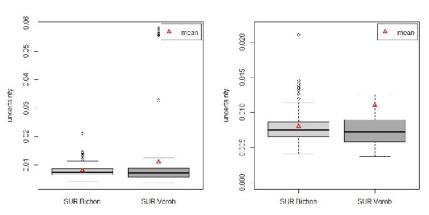


Figure 4: Boxplot (with mean) representation of the performance comparaison measure after 20 iterations, in the case of the inversion of the Branin-rescaled function (d=2) with T=10, for 100 different initial DoE of size 10 and type LHS Maximin.

Conclusion

Summary

- Presenting a SUR version of Bichon criterion
 - Theoretical aspects
 - Numerical aspects

Next objectives:

- Complete the numerical tests of the inversion based on SUR Bichon criterion
- Move to the functional framework $(g(\mathbf{x}) := \mathbb{E}_{\mathbf{V}}[f(\mathbf{x}, \mathbf{V})])$
- Generalize the work of Reda El Amri's thesis (El Amri [2019]) to probability type constraint rather than expectation

Thank you for your attention

Some references:

El Amri R. [2019]. Analyse d'incertitudes et de robustesse pour les modèles à entrées et sorties fonctionnelles.

Picheny V., Ginsbourger D., Roustant O., Haftka R. [2010] Kim Nam-Ho. Adaptive Designs of Experiments for Accurate Approximation of a Target Region.

Bect J., Ginsbourger D., Li L., Picheny V., Vazquez E. [2012] Sequential design of computer experiments for the estimation of a probability of failure.

Chevalier C., Bect J., Ginsbourger D., Vazquez E., Picheny V., et al. [2014] Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set.

Chevalier C., Picheny V., and Ginsbourger D. [2014] Kriginy: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging.

Bichon B. J., and al. [2008] Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions.

Pronzato L., Müller W. [2012] Design of computer experiments: space filling and beyond.

Chevalier C. [2013] Fast uncertainty reduction strategies relying on Gaussian process models.

Appendix: Explicit formula of the SUR Bichon criterion

Property

Noting $T^{\pm} := T \pm \epsilon(\mathbf{y})$ and $\varepsilon(\mathbf{y}) := \alpha \, \sigma_{n+1}(\mathbf{y})$

$$EFF_{\mathbf{x}}(\mathbf{y}) = (m_n(\mathbf{y}) - T) \left[2 \phi \left(\frac{T - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) - \phi \left(\frac{T^- - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) - \phi \left(\frac{T^+ - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) \right] \\
- \sigma_n(\mathbf{y}) \left[2 \varphi \left(\frac{T - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) - \varphi \left(\frac{T^- - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) - \varphi \left(\frac{T^+ - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) \right] \\
+ \epsilon(\mathbf{y}) \left[\phi \left(\frac{T^+ - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) - \phi \left(\frac{T^- - m_n(\mathbf{y})}{\sigma_n(\mathbf{y})} \right) \right] \tag{10}$$

with φ and ϕ respectively the pdf and cdf of the normal distribution.

This expression can be reinjected in equation (9) to be minimized.

$$\mathscr{J}_n(\mathbf{x}) = \int_{\mathbb{X}} \mathrm{EFF}_{\mathbf{x}}(\mathbf{y}) \, \mathrm{d}\mathbb{P}_{\mathbb{X}}(\mathbf{y})$$

Appendix: Vorob'ev Theory and SUR Vorob'ev criterion

Vorob'ev Theory

- $\Gamma := \{ \mathbf{x} \in \mathbb{X}, \xi(\mathbf{x}) \le T \}$
- Vorob'ev Quantiles: $Q_{\alpha} := \{ \mathbf{x} \in \mathbb{X}, \mathbb{P}(\mathbf{x} \in \Gamma) \geq \alpha \}, \ \forall \alpha \in [0,1]$
- Vorob'ev Expectation: Q_{α*} such as:

$$\forall \alpha > \alpha^*, \, \mathbb{P}_{\mathbb{X}}(Q_{\alpha}) < \mathbb{E}\big[\mathbb{P}_{\mathbb{X}}(\Gamma)\big] \le \mathbb{P}_{\mathbb{X}}(Q_{\alpha^*}) \tag{11}$$

• Vorob'ev Deviation: $\mathbb{E}\left[\mathbb{P}_{\mathbb{X}}(\Gamma\Delta Q_{\alpha^*})\right]$

SUR Vorob'ev criterion

• SUR Strategy with: uncertainty = Vorob'ev Deviation conditionnally to \mathscr{F}_{n-1} .

Appendix: SUR criterion performance: outliers

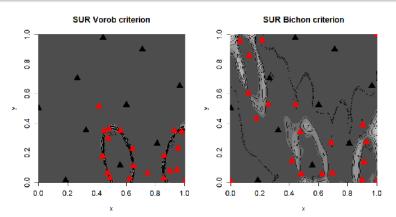


Figure 5: Representation of the Vorob'ev deviation (resp. Bichon uncertainty) for the SUR Vorob'ev (resp. SUR Bichon) criterion, in the case of the inversion of the Branin-rescaled (d=2) function with T=10 and for a particular initial DoE of size 10 and type LHS Maximin, after an enrichment of 20 points.