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Boosted optimal weighted least-squares projection

Objective
o Let u be a function defined on X c R?,
u: X >R
z—y=u(z)

o Consider u in Li(X ) the Hilbert space of square-integrable real-valued functions
defined on X c R,

e We want to construct u* an approximation of u, using samples
{z',y" = u(z") i
— with controlled error |u —u*||* <&,

— while using only a few evaluations n.

e Propose a projection method onto a linear space V,, c Li(X ) which is stable and
whose construction requires a number of evaluations n close to dim(V,,) = m.
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Boosted least-squares
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Least-squares methods

e The best approximation of u by an element of V,,, is given by the orthogonal
projection :

Py u=arg min |u—-v|22.
Vin g min |u-vfL;
e |t is not computable in practice — replaced by a weighted least-squares projection :
L& i i i\ 2 i
Qv,,u =arg min — > w(z")(v(z") - u(z"))” where 2" ~ p,
veVi, M =

where w > 0 is a weight function and p is a measure.




Boosted least-squares
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Stability of least-squares methods

o {@;}jL1 is a given orthonormal basis of V.

o The stability of Q)v,, is measured by the properties of the empirical Gram matrix Ghn.

e The empirical Gram matrix G, associated to a sample {,L7 1 is given by
n

(Gl = = 3 0@ )or ()i ().

i=1

More stability if |G, — I| closer to 0.

How to choose the sampling density p and weights to have |G, — I| close to 0 while
using few evaluations n 7




Optimal least-squares methods [Cohen and Migliorati., 2017]

Theorem 1 (Optimal weighted Ieast—squares‘l

Let dp(w) = wlx)Y Tdu(x) with u'( Bt =L D @y 21
tetne(0,1) andde(0,1), and &', 2 be iidfrom p Fornzd tmlog(2my "), it
hofds

B(|G. I|<d)z1 .

The approximation Q%‘ .t defined by Gy, u if | G-I | <& and () otherwise satisfies

QF, ul?) < (1 -8) |u- Py
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I'icURE — lllustration of the optimal measures associated with the uniform and the gaussian

distributions (with m = ).




Optimal least-squares methods [Cohen and Migliorati., 2017]

Theorem 1 (Optimal weighted least-squares)

Let dp(x) = w(z)  du(z) with w(z)™ = Ly, N
Let e (0,1) and 6 € (0,1), and z',--, 2™ be i.i.d from p. For n > 6 >mlog(2mn™"), it
holds

P(|Gr-I|<8)21-n.

The approximation ngu defined by Qv,, u if Hé’n —1I| <0 and 0 otherwise satisfies

E(Jlu - QV,,ul®) < (1= 8) " u~ Py, ul® + nllul*.

Comments
— Improving stability (smaller ) and the chance to have this stability (smaller 1)
implies higher n.

— Even if § is close to 1, n may be high compared to an interpolation method

(n=m).

Next, we propose another measure j based on p to improve the properties of ||f¥n -1
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Boosted least-squares
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Boosted optimal weighted least-squares projection

m Boosted optimal weighted least-squares method.

Towards a new criteria to choose the set of samples.




Boosted optimal least-squares method (BLS)

1. Resampling : draw M independent n-samples {z™%}M,, with ™" = (2!, ..., ™"

where all 27" ~ p are i.i.d. and choose the one which minimizes |G, - I|.

15F

BLS (M =1) —
BLS (M =10) —
ol BLS (M = 100) —

I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7

|G -1

FIGURE — Distribution of |G, — I| for § = 0.9
Interpretations

— Resampling improves the stability for a given probability 7). J

2. Conditioning by rejection : Repeat step 1 until |G, - I| <& — output sample
Z = (&', -, ™). This ensures stability almost surely.




Boosted least-squares
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Boosted optimal least-squares method (BLS)

3. Greedy removal of samples : Let Gk be the empirical Gram matrix associated with
sample {Z* : i € K}. Begin with K = {1,---,n} and while |Gk — I| < successively

remove a sample {k*} that minimizes HCAJK\{,C*} -1I].

15[ 1 15F

BLS (M = 100)

s-BLS (few points removed)
s-BLS (many points removed)

=

P .
01 02 03 04 05 06 071 0.2 0.4 0.6
1G. - 11 |Gx ~1|

FIGURE — Distribution of |G — I| for 6 = 0.9

We do not have any theoretical guarantees to say that we can remove points!




Boosted least-squares
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Boosted optimal least-squares (BLS)

Theorem 2 (Control of the error bound)

Let ne (0,1) and § € (0,1), and let Qv,,u be the boosted optimal least-squares
projection with n > 6 *mlog(2mn™") and #K > no.
The error of approximation is bounded in expectation

E(Jlu~Qv,ul®) < Clu~ Py, ul®

with C = (1+ = (1-6)"" (1 -n™)7" M).
Further assuming that w is uniformly bounded, we can obtain a better bound.

Comments
— Ifno = 5, for some 3 > 1 — quasi-optimality property (in expectation).

— (' increases with M and the number of removed points.




Boosted optimal least-squares distribution (example)

= Empirical boosted least-squares distribution is represented by the histograms.

= Dashed lines represent the optimal distribution [Cohen and Migliorati., 2017].

o0

an

- . . . . % . . .
Ficiv e — Gaussian distribution, Hermite polynomial approximation spaces.

Comments
— Boosted distribution is peaked.

— Gauss-Hermite quadrature points are represented in black. They may be aligned
with the modes of the boosted distribution.




Boosted least-squares
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lllustration on a simple example

1

(-5 2l )™

defined on X =[-1, l]d, equipped with the uniform measure

u(z) =

e Hyperbolic cross polynomial approximation spaces with Legendre polynomials for
different m with d = 2. ‘

owLs  ——
s-BLS (M = 100) ——

I I
10% 10°
n

e Guaranteed stability with probability greater than 0.99 for the OWLS method and
almost surely for the s-BLS method.

Comments
— With subsampling (OWLS — s-BLS) n is significantly decreased. J




Limits of boosted least-squares... :(

Comments
— Theoretical bound C' is high compared to what we observe in numerical
experiments.
— The offline cost is important (compared to an interpolation method for example).
It is due to two reasons — generate M times a n-samples
— greedy strategy (even with the approximate technique).

Open questions :
e Theoretical guarantees for the convergence of the greedy subsampling ?
e Improve the error bound (maybe with other sets of points) ?

e Improve the offline cost (in this case with other sets of points) ?




Boosted least-squares
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Boosted optimal weighted least-squares projection

m Optimal sampling for L2 approximation.

Towards a new criteria to choose the set of samples.




Boosted least-squares

There is hope ... Recent works [Cohen and Dolbeault, 2021]

Theorem 3 (Optimal sampling for L2 approx [Cohen and Dolbeault, 2021])

For some universal constants C, B and for any m-dimensional space Vi, ¢ L?, there
exists a random sampling © = x*,---,x™, with n < Sm such that for any u € L?, for

Qv;, u = arg minyey,, $i2y w(z")u(z") - v(a")

E(Ju - Qv,,ul®) < Cllu~ Py, ul*

’

Comments
— Intuitive justification for boosted least-squares (subsampling step makes sense).

— Open questions : construct the random sampling, find thigher bounds for the
constants ?
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m lllustration in higher dimension




Observations and intuitions
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(a) M =1

= Distributions of the x*, = 1,6 with & sampled from the boosted method for
Vi = Fs and g the uniform measure.

= |n black, are represented the Gauss-Legendre nodes.




Observations and intuitions
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(b) M =10

= Distributions of the 2.1 =1,-,6 with % sampled from the boosted method for
V. = Ps and g the uniform measure.

= In black, are represented the Gauss-Legendre nodes.




Observations and intuitions
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(¢) M =50

= Distributions of the ", i = - & with @ sampled from the boosted method for
Ve = P53 and g the uniform measure.

= In black, are represented the Gauss-Legendre nodes.




Observations and intuitions
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(d) M — 100

= The more repetitions, the more concentrate are these distributions around the black
nodes.

= Can we summarize the distribution with a set of points?




Support points
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Support points [Mak and Joseph, 2018]

Support points

New way to compact a continuous probability distribution p into a set of
representative points.

"Support points can be viewed as optimal sampling points in p (in the sense of
maximum energy) for any desired sample size n".

Theoretical guarantees

Support points converge in distribution to p.

Points obtained by minimizing an energy distance — quite efficient in high-dimensions.
There exist a lot of theoretical results...

Computation

Easy to compute (just need to sample a lot of points from the distribution p.)
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Support points

Energy distance between two distributions

Definition 4 (Energy distance)

Let p and u be two probability distributions. Let X, X' ~p and Y,Y' ~ u. The energy
distance between p and p is defined as

E(p,) = 2E|X - Y2 ~E| X - X|2 ~E|Y - Y|

Also, when p = p,,, is the e.d.f for {z;}].;, this energy distance becomes :

2 n
E(p.pn) = — 2 E[lwi - Y2 - — ZZH% il —E[Y - Y|
i=1

i=1j=

Definition 5

Let p be a probability distribution. Let Y ~ p. For a fixed points set size n, the support
points of p are defined as :

{2}y carg_min E(p, p,,)

1
{z:}i: -1 €arg mm { ZE |zi =Y |2 - 2

i=1

éi\m—%”a}




Support points
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Boosted optimal weighted least-squares projection

Towards a new criteria to choose the set of samples.

m lllustration in dimension 1




Support points of the aptimal distributions

‘ & support aaints fer the oatimal uniform disribtion
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Histograms of the boosted distribution, black dots : quadrature points, in red optimal
weighted distribution and in blue its & support points.
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Histograms of the boosted distribution, black dots : quadrature points, in red optimal
weighted distribution and in blue its 6 support points.




Support points of the optimal distributions

1
u(xr) = ———< defined on X =[-1,1], equipped with the uniform measure
(z) ) [-1,1], equipp

e Polynomial approximation spaces with Legendre polynomials for different m.

support —
s-BLS (M = 100) ——

log o (VE(Ju = Qv,ul?))

e Given cost (n =m) for the s-BLS method.
Comments
— In dimension 1, approximation error is slightly better with the support points.

— In dimension 1, the support points are equal to the point set with minimal
Lo-discrepancy.

— But in general in dimension 1, things are quite simple.




Support points
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Boosted optimal weighted least-squares projection

Towards a new criteria to choose the set of samples.

m lllustration in higher dimension




Support points with the optimal distributions in higher

dimensions
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Support points
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lllustration on a first example

1

T -E R )

o Full polynomial approximation spaces with Legendre polynomials for different m with
d=2.

defined on X =[-1,1]¢, equipped with the uniform measure

s-BLS (M = 100) ——

support  ——

I I I
50 100 150 200 250
n

e n =m for both methods

Comments

— In the case where n = m, the boosted least-squares are slightly better than approx.
with support points.




Support points
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lllustration on a second example

1
(10 +x1 + 0.5%2)2

e Full polynomial approximation spaces with Hermite polynomials for different m with
d=2. ‘ ‘ ‘ ‘ ‘

-4 s-BLS (M = 100) ——
support —_

u(zl,mz) = defined on X = RQ, equipped with the gaussian measure

log1(VE([[u - Qv,ul*))

I I I |
50 100 150 200 250
n

e n =m for both methods.

Comments

— In the case where n = m, the support points are better than the boosted
least-squares for higher values of m.




Support points
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Work perspectives

e Theoretical analysis is clearly not straightforward.

o Koksma-Hlawaka inequality — upper bound on the integration error I :
1
10.p.00) = [, 9(@)dp(x) - o) < 12 11,D. o) with © %=1

— How to bound the term D, (p, pn)?
e [Mak and Joseph, 2018] with hypotheses on p and g, propose a bound in

(9( 7z (logn)~ (a_l)/Q) with a > 1




Support points
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Work perspectives

e In [Migliorati and Nobile, 2015] discrete least-squares approximation on multivariate
polynomial space with evaluations at low-discrepancy point sets is stable and accurate if
n~m?log(m).

e Talk by Chris. J. Oates this week.

¢ [Gruber, 2004] gives the minimum error of numerical integration formulae for classes
of Holder continuous functions and optimum sets of nodes — but asymptotic results
(n — o).

e ( In [Pagés, 1998], with an optimal grid for the quadratic quantization and if u is C*
with Lipschitz continuous differential Du

L2 1
E(Ju - Qu,ul) < 0 ()
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Conclusions

Recent works from [Cohen and Dolbeault, 2021] provide some intuitive justification to
the boosted least-squares methods.

However, it remains some offline computational issues.

We use the support points from [Mak and Joseph, 2018] combined with the optimal
measure from [Cohen and Migliorati., 2017] to propose a new design for L2
approximation, that is very fast to generate (in particular compared to BLS).

On numerical experiments we see that

for d =1, this is very efficient.

for d > 1, this is competitive with boosted least-squares.
But theoretical analysis is not straightforward.

For now, it seems that more hypotheses on the functions are necessary (compared to
the boosted least-squares).
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Cea Thank you for your attention.

Do you have any questions ?
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