

Optimal designs for discrete least-squares approximation

Cécile Haberstich 1 , Anthony Nouy^2 , Guillaume Perrin^3

ETICS2021 | 13 - 17 septembre 2021

¹ CEA,DAM,DIF, F-91297, Arpajon, France, cecile.haberstich@cea.fr

² Centrale Nantes, LMJL, UMR CNRS 6629, France

³ COSYS, Université Gustave Eiffel, 77420 Champs-sur-Marne, France

Outline

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

Boosted optimal weighted least-squares projection

Objective

• Let u be a function defined on $\mathcal{X} \subset \mathbb{R}^d$,

 $\begin{cases} u: \mathcal{X} \to \mathbb{R} \\ x \mapsto y = u(x) \end{cases}$

- Consider u in $L^2_{\mu}(\mathcal{X})$ the Hilbert space of square-integrable real-valued functions defined on $\mathcal{X} \subset \mathbb{R}^d$.
- We want to construct u^{\star} an approximation of u, using samples $\{x^{i},y^{i}=u(x^{i})\}_{i=1}^{n}$
- \rightarrow with controlled error $\|u u^{\star}\|^2 \leq \varepsilon$,
- \rightarrow while using only a few evaluations n.
- Propose a projection method onto a linear space V_m ⊂ L²_µ(X) which is stable and whose construction requires a number of evaluations n close to dim(V_m) = m.

Least-squares methods

• The best approximation of u by an element of V_m is given by the orthogonal projection :

$$P_{V_m} u = \arg\min_{v \in V_m} \|u - v\|_{L^2_{\mu}}^2.$$

• It is not computable in practice \rightarrow replaced by a weighted least-squares projection :

$$Q_{V_m}u = \arg\min_{v \in V_m} \frac{1}{n} \sum_{i=1}^n w(x^i)(v(x^i) - u(x^i))^2 \text{ where } x^i \sim \rho,$$

where $w \ge 0$ is a weight function and ρ is a measure.

Stability of least-squares methods

- {φ_j}^m_{j=1} is a given orthonormal basis of V_m.
- The stability of Q_{V_m} is measured by the properties of the empirical Gram matrix \hat{G}_n .
- The empirical Gram matrix \hat{G}_n associated to a sample $\{x^i\}_{i=1}^n$ is given by

$$(\hat{\boldsymbol{G}}_n)_{k,l} = \frac{1}{n} \sum_{i=1}^n w(\boldsymbol{x}^i) \varphi_k(\boldsymbol{x}^i) \varphi_l(\boldsymbol{x}^i).$$

- More stability if $\|\hat{G}_n I\|$ closer to 0.
- How to choose the sampling density ρ and weights to have $\|\hat{G}_n I\|$ close to 0 while using few evaluations n?

cea

Optimal least-squares methods [Cohen and Migliorati., 2017]

Theorem 1 (Optimal weighted least-squares)

Let $d\rho(x) = w(x)^{-1}d\mu(x)$ with $w(x)^{-1} = \frac{1}{m}\sum_{j=1}^{m}\varphi_j(x)^2$. Let $\eta \in (0,1)$ and $\delta \in (0,1)$, and x^1, \dots, x^n be i.i.d from ρ . For $n \ge \delta^{-2}m\log(2m\eta^{-1})$, it holds

$$\mathbb{P}(\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| \le \delta) \ge 1 - \eta.$$

The approximation $Q_{V_m}^C u$ defined by $Q_{V_m} u$ if $|\hat{G}_n - I| < \delta$ and 0 otherwise satisfies

$$\mathbb{E}(\|u - Q_{V_m}^C u\|^2) \le (1 - \delta)^{-1} \|u - P_{V_m} u\|^2 + \eta \|u\|^2.$$

FIGURE – Illustration of the optimal measures associated with the uniform and the gaussian distributions (with m = 6).

Optimal least-squares methods [Cohen and Migliorati., 2017]

Theorem 1 (Optimal weighted least-squares)

Let $d\rho(x) = w(x)^{-1}d\mu(x)$ with $w(x)^{-1} = \frac{1}{m}\sum_{j=1}^{m}\varphi_j(x)^2$. Let $\eta \in (0,1)$ and $\delta \in (0,1)$, and x^1, \dots, x^n be i.i.d from ρ . For $n \ge \delta^{-2}m\log(2m\eta^{-1})$, it holds

$$\mathbb{P}(\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| \le \delta) \ge 1 - \eta.$$

The approximation $Q_{V_m}^C u$ defined by $Q_{V_m} u$ if $\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| < \delta$ and 0 otherwise satisfies

$$\mathbb{E}(\|u - Q_{V_m}^C u\|^2) \le (1 - \delta)^{-1} \|u - P_{V_m} u\|^2 + \eta \|u\|^2.$$

Comments

- → Improving stability (smaller δ) and the chance to have this stability (smaller η) implies higher n.
- → Even if δ is close to 1, n may be high compared to an interpolation method (n = m).

Next, we propose another measure $\tilde{\rho}$ based on ρ to improve the properties of $\|\hat{G}_n - I\|$.

Outline

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

Boosted optimal least-squares method (BLS)

1. Resampling : draw M independent n-samples $\{x^{n,i}\}_{i=1}^{M}$, with $x^{n,i} = (x^{1,i}, \cdots, x^{n,i})$, where all $x^{j,i} \sim \rho$ are i.i.d. and choose the one which minimizes $\|\hat{G}_n - I\|$.

Interpretations

 $\rightarrow\,$ Resampling improves the stability for a given probability $\eta.$

Boosted optimal least-squares method (BLS)

3. Greedy removal of samples : Let \hat{G}_K be the empirical Gram matrix associated with sample $\{\tilde{x}^i : i \in K\}$. Begin with $K = \{1, \dots, n\}$ and while $\|\hat{G}_K - I\| \le \delta$ successively remove a sample $\{k^*\}$ that minimizes $\|\hat{G}_{K \smallsetminus \{k^*\}} - I\|$.

We do not have any theoretical guarantees to say that we can remove points !

Boosted optimal least-squares (BLS)

Theorem 2 (Control of the error bound)

Let $\eta \in (0,1)$ and $\delta \in (0,1)$, and let $Q_{V_m}u$ be the boosted optimal least-squares projection with $n \ge \delta^{-2}m \log(2m\eta^{-1})$ and $\#K \ge n_0$. The error of approximation is bounded in expectation

$$\mathbb{E}(\|u - Q_{V_m} u\|^2) \le C \|u - P_{V_m} u\|^2$$

with $C = (1 + \frac{n}{n_0}(1 - \delta)^{-1}(1 - \eta^M)^{-1}M)$. Further assuming that u is uniformly bounded, we can obtain a better bound.

Comments

 \rightarrow If $n_0 = \frac{n}{\beta}$, for some $\beta \ge 1 \rightarrow$ quasi-optimality property (in expectation).

 $\rightarrow C$ increases with M and the number of removed points.

cea

Boosted optimal least-squares distribution (example)

- Empirical boosted least-squares distribution is represented by the histograms.
- Dashed lines represent the optimal distribution [Cohen and Migliorati., 2017].

FIGURE – Gaussian distribution, Hermite polynomial approximation spaces.

Comments

- → Boosted distribution is peaked.
- $\rightarrow\,$ Gauss-Hermite quadrature points are represented in black. They may be aligned with the modes of the boosted distribution.

Illustration on a simple example

$$u(x) = \frac{1}{\left(1 - \frac{0.5}{2d}\sum_{i=1}^{d}x_i\right)^{d+1}} \text{ defined on } \mathcal{X} = [-1,1]^d, \text{ equipped with the uniform measure}$$

• Hyperbolic cross polynomial approximation spaces with Legendre polynomials for different m with d = 2.

• Guaranteed stability with probability greater than 0.99 for the OWLS method and almost surely for the s-BLS method.

Comments

 \rightarrow With subsampling (OWLS \rightarrow s-BLS) n is significantly decreased.

Limits of boosted least-squares... :(

Comments

- → Theoretical bound C is high compared to what we observe in numerical experiments.
- → The offline cost is important (compared to an interpolation method for example).
 It is due to two reasons → generate M times a n-samples
 → greedy strategy (even with the approximate technique).

Open questions :

- Theoretical guarantees for the convergence of the greedy subsampling?
- Improve the error bound (maybe with other sets of points)?
- Improve the offline cost (in this case with other sets of points)?

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

There is hope ... Recent works [Cohen and Dolbeault, 2021]

Theorem 3 (Optimal sampling for L2 approx [Cohen and Dolbeault, 2021])

For some universal constants $\widetilde{C}, \widetilde{\beta}$, and for any m-dimensional space $V_m \subset L^2$, there exists a random sampling $x = x^1, \dots, x^n$, with $n \leq \widetilde{\beta}m$ such that for any $u \in L^2$, for $Q_{V_m} u = \arg \min_{v \in V_m} \sum_{i=1}^m w(x^i) |u(x^i) - v(x^i)|$,

$$\mathbb{E}(\|u - Q_{V_m}u\|^2) \le \widetilde{C} \|u - P_{V_m}u\|^2$$

Comments

- \rightarrow Intuitive justification for boosted least-squares (subsampling step makes sense).
- → Open questions : construct the random sampling, find thigher bounds for the constants ?

Outline

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

- Distributions of the $x^{(i)}, i = 1, \dots, 6$ with x^6 sampled from the boosted method for $V_m = \mathbb{P}_5$ and μ the uniform measure.
- In black, are represented the Gauss-Legendre nodes.

- Distributions of the $x^{(i)}, i = 1, \dots, 6$ with x^6 sampled from the boosted method for $V_m = \mathbb{P}_5$ and μ the uniform measure.
- In black, are represented the Gauss-Legendre nodes.

- Distributions of the $x^{(i)}, i = 1, \dots, 6$ with x^6 sampled from the boosted method for $V_m = \mathbb{P}_5$ and μ the uniform measure.
- In black, are represented the Gauss-Legendre nodes.

- The more repetitions, the more concentrate are these distributions around the black nodes.
- Can we summarize the distribution with a set of points?

Support points [Mak and Joseph, 2018]

Support points

- New way to compact a continuous probability distribution ρ into a set of representative points.
- "Support points can be viewed as optimal sampling points in ρ (in the sense of maximum energy) for any desired sample size n".

Theoretical guarantees

- Support points converge in distribution to ρ .
- Points obtained by minimizing an energy distance \rightarrow quite efficient in high-dimensions.
- There exist a lot of theoretical results...

Computation

• **Easy to compute** (just need to sample a lot of points from the distribution ρ .)

Energy distance between two distributions

Definition 4 (Energy distance)

Let ρ and μ be two probability distributions. Let $X, X' \sim \rho$ and $Y, Y' \sim \mu$. The energy distance between ρ and μ is defined as

$$E(\rho,\mu) = 2\mathbb{E} \|\boldsymbol{X} - \boldsymbol{Y}\|_2 - \mathbb{E} \|\boldsymbol{X} - \boldsymbol{X}'\|_2 - \mathbb{E} \|\boldsymbol{Y} - \boldsymbol{Y}'\|_2$$

Also, when $\mu = \rho_n$, is the e.d.f for $\{x_i\}_{i=1}^n$, this energy distance becomes :

$$E(\rho, \rho_n) = \frac{2}{n} \sum_{i=1}^n \mathbb{E}[\|x_i - Y\|_2 - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|_2 - \mathbb{E}\|Y - Y'\|$$

Definition 5

Let ρ be a probability distribution. Let $Y \sim \rho$. For a fixed points set size n, the support points of ρ are defined as :

$${x_i}_{i=1}^n \in \arg\min_{x_1,\dots,x_n} E(\rho, \rho_n)$$

$$\{x_i\}_{i=1}^n \in \arg\min_{x_1, \cdots, x_n} \{\frac{2}{n} \sum_{i=1}^n \mathbb{E}[\|x_i - Y\|_2 - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \|x_i - x_j\|_2\}$$

Outline

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

Histograms of the boosted distribution, black dots : quadrature points, in red optimal weighted distribution and in blue its 6 support points.

Histograms of the boosted distribution, black dots : quadrature points, in red optimal weighted distribution and in blue its 6 support points.

Suppor

Support points of the optimal distributions

 $u(x) = \frac{1}{(1+5x^2)}$ defined on $\mathcal{X} = [-1,1]$, equipped with the uniform measure

 $\bullet\,$ Polynomial approximation spaces with Legendre polynomials for different m.

• Given cost (*n* = *m*) for the s-BLS method.

Comments

- $\rightarrow\,$ In dimension 1, approximation error is slightly better with the support points.
- \rightarrow In dimension 1, the support points are equal to the point set with minimal $L_2\text{-discrepancy.}$
- \rightarrow But in general in dimension 1, things are quite simple.

Outline

Boosted optimal weighted least-squares projection

- Optimal weighted least-squares
- Boosted optimal weighted least-squares method.
- Optimal sampling for L2 approximation.

2 Towards a new criteria to choose the set of samples.

- Support points
- Illustration in dimension 1
- Illustration in higher dimension

cea

Support points with the optimal distributions in higher dimensions

22 Illustration on a first example

 $u(x) = \frac{1}{\left(1 - \frac{0.5}{2d}\sum_{i=1}^{d} x_i\right)^{d+1}} \text{ defined on } \mathcal{X} = [-1,1]^d \text{, equipped with the uniform measure}$

• Full polynomial approximation spaces with Legendre polynomials for different m with d = 2.

• n = m for both methods

Comments

 \rightarrow In the case where n = m, the boosted least-squares are slightly better than approx. with support points.

cea

Illustration on a second example

$$u(x_1, x_2) = \frac{1}{(10 + x_1 + 0.5x_2)^2}$$
 defined on $\mathcal{X} = \mathbb{R}^2$, equipped with the gaussian measure

• Full polynomial approximation spaces with Hermite polynomials for different m with d = 2.

• n = m for both methods.

Comments

 \rightarrow In the case where n = m, the support points are better than the boosted least-squares for higher values of m.

.

Support points

Work perspectives

- Theoretical analysis is clearly not straightforward.
- Koksma-Hlawaka inequality \rightarrow upper bound on the integration error I:

$$I(g,\rho,\rho_n) = \left| \int_{\mathcal{X}} g(x) d\rho(x) - \sum_{i=1}^n g(x^i) \right| \le \left\| \frac{\partial^p g}{\partial x} \right\|_{L_q} D_r(\rho,\rho_n) \text{ with } \frac{1}{q} + \frac{1}{r} = 1$$

- \rightarrow How to bound the term $D_r(
 ho,
 ho_n)$?
- [Mak and Joseph, 2018] with hypotheses on ρ and g, propose a bound in

$$\mathcal{O}\left(\frac{1}{n^{1/2}}(\log n)^{-(\alpha-1)/2}\right)$$
 with $\alpha > 1$

Support points

Work perspectives

- In [Migliorati and Nobile, 2015] discrete least-squares approximation on multivariate polynomial space with evaluations at low-discrepancy point sets is stable and accurate if n ≈ m² log(m).
- Talk by Chris. J. Oates this week.
- [Gruber, 2004] gives the minimum error of numerical integration formulae for classes of Hölder continuous functions and optimum sets of nodes → but asymptotic results (n → ∞).
- (In [Pagès, 1998], with an optimal grid for the quadratic quantization and if u is C¹ with Lipschitz continuous differential Du

$$\mathbb{E}(\|u - Q_{V_m}u\|^2) \le \mathcal{O}\left(\frac{1}{n^{2/d}}\right)$$

- Recent works from [Cohen and Dolbeault, 2021] provide some intuitive justification to the boosted least-squares methods.
- However, it remains some offline computational issues.
- We use the **support points** from [Mak and Joseph, 2018] combined with the optimal measure from [Cohen and Migliorati., 2017] to propose a **new design for** *L*2 **approximation**, that is very fast to generate (in particular compared to BLS).
- On numerical experiments we see that
- \rightarrow for d = 1, this is very efficient.
- \rightarrow for d > 1, this is competitive with boosted least-squares.
- But theoretical analysis is not straightforward.
- For now, it seems that more hypotheses on the functions are necessary (compared to the boosted least-squares).

References

Cohen, A. and Dolbeault, M. (2021).

Optimal pointwise sampling for I2 approximation.

Cohen, A. and Migliorati., G. (2017). Optimal weighted least-squares methods. SMAI Journal of Computational Mathematics, 86(3) :181–203.

Gruber, P. M. (2004). Optimum quantization and its applications. *Advances in Mathematics*, 186(2) :456–497.

Haberstich, C., Nouy, A., and Perrin, G. (2020). Boosted optimal weighted least-squares methods. *arXiv* :1912.07075.

Mak, S. and Joseph, V. R. (2018). Support points.

Support points

References

Migliorati, G. and Nobile, F. (2015).

Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets.

Journal of Complexity, 31(4) :517–542.

Pagès, G. (1998).

A space quantization method for numerical integration. Journal of Computational and Applied Mathematics, 89(1) :1–38.

Thank you for your attention. Do you have any questions?