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Objective

● Let u be a function defined on X ⊂ Rd,

⎧⎪⎪⎨⎪⎪⎩
u ∶ X → R

x↦ y = u(x)
● Consider u in L2

µ(X ) the Hilbert space of square-integrable real-valued functions
defined on X ⊂ Rd.

● We want to construct u⋆ an approximation of u, using samples
{xi, yi

= u(xi)}n
i=1

→ with controlled error ∥u − u⋆∥2 ≤ ε,

→ while using only a few evaluations n.

● Propose a projection method onto a linear space Vm ⊂ L2

µ(X ) which is stable and
whose construction requires a number of evaluations n close to dim(Vm) =m.

Boosted optimal weighted least-squares projection
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● The best approximation of u by an element of Vm is given by the orthogonal
projection :

PVm
u = arg min

v∈Vm

∥u − v∥2L2
µ

.

● It is not computable in practice → replaced by a weighted least-squares projection :

QVm
u = arg min

v∈Vm

1

n

n

∑
i=1

w(xi)(v(xi) − u(xi))2 where x
i
∼ ρ,

where w ≥ 0 is a weight function and ρ is a measure.

Least-squares methods
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● {ϕj}m
j=1 is a given orthonormal basis of Vm.

● The stability of QVm
is measured by the properties of the empirical Gram matrix Ĝn.

● The empirical Gram matrix Ĝn associated to a sample {xi}n
i=1 is given by

(Ĝn)k,l =
1

n

n

∑
i=1

w(xi)ϕk(xi)ϕl(xi).

● More stability if ∥Ĝn − I∥ closer to 0.

● How to choose the sampling density ρ and weights to have ∥Ĝn − I∥ close to 0 while
using few evaluations n ?

Stability of least-squares methods
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Theorem 1 (Optimal weighted least-squares)

Let dρ(x) = w(x)−1dµ(x) with w(x)−1
=

1

m ∑m
j=1

ϕj(x)2.

Let η ∈ (0, 1) and δ ∈ (0, 1), and x1,⋯, xn be i.i.d from ρ. For n ≥ δ−2m log(2mη−1), it
holds

P(∥Ĝn − I∥ ≤ δ) ≥ 1 − η.

The approximation QC
Vm

u defined by QVm
u if ∥Ĝn − I∥ < δ and 0 otherwise satisfies

E(∥u −Q
C
Vm

u∥2) ≤ (1 − δ)−1∥u − PVm
u∥2 + η∥u∥2.

Comments

→ Improving stability (smaller δ) and the chance to have this stability (smaller η)
implies higher n.

→ Even if δ is close to 1, n may be high compared to an interpolation method
(n =m).

Next, we propose another measure ρ̃ based on ρ to improve the properties of ∥Ĝn − I∥.

Optimal least-squares methods [Cohen and Migliorati., 2017]
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1. Resampling : draw M independent n-samples {xn,i}M
i=1, with xn,i

= (x1,i,⋯, xn,i),
where all xj,i

∼ ρ are i.i.d. and choose the one which minimizes ∥Ĝn − I∥.
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Figure – Distribution of ∥Ĝn − I∥ for δ = 0.9

Interpretations

→ Resampling improves the stability for a given probability η.

2. Conditioning by rejection : Repeat step 1 until ∥Ĝn − I∥ < δ → output sample
x̃ = (x̃1,⋯, x̃n). This ensures stability almost surely.

Boosted optimal least-squares method (BLS)
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3. Greedy removal of samples : Let ĜK be the empirical Gram matrix associated with
sample {x̃i

∶ i ∈K}. Begin with K = {1,⋯, n} and while ∥ĜK − I∥ ≤ δ successively
remove a sample {k⋆} that minimizes ∥ĜK∖{k⋆} − I∥.
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Figure – Distribution of ∥ĜK − I∥ for δ = 0.9

We do not have any theoretical guarantees to say that we can remove points !

Boosted optimal least-squares method (BLS)
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Theorem 2 (Control of the error bound)

Let η ∈ (0, 1) and δ ∈ (0, 1), and let QVm
u be the boosted optimal least-squares

projection with n ≥ δ−2m log(2mη−1) and #K ≥ n0.
The error of approximation is bounded in expectation

E(∥u −QVm
u∥2) ≤ C∥u − PVm

u∥2
with C = (1 + n

n0
(1 − δ)−1(1 − ηM)−1M).

Further assuming that u is uniformly bounded, we can obtain a better bound.

Comments

→ If n0 =
n

β
, for some β ≥ 1 → quasi-optimality property (in expectation).

→ C increases with M and the number of removed points.

Boosted optimal least-squares (BLS)
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u(x) = 1

(1 − 0.5

2d ∑d
i=1

xi)d+1
defined on X = [−1, 1]d, equipped with the uniform measure

● Hyperbolic cross polynomial approximation spaces with Legendre polynomials for
different m with d = 2.
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● Guaranteed stability with probability greater than 0.99 for the OWLS method and
almost surely for the s-BLS method.

Comments

→ With subsampling (OWLS → s-BLS) n is significantly decreased.

Illustration on a simple example
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Comments

→ Theoretical bound C is high compared to what we observe in numerical
experiments.

→ The offline cost is important (compared to an interpolation method for example).
It is due to two reasons → generate M times a n-samples
→ greedy strategy (even with the approximate technique).

Open questions :

● Theoretical guarantees for the convergence of the greedy subsampling ?

● Improve the error bound (maybe with other sets of points) ?

● Improve the offline cost (in this case with other sets of points) ?

Limits of boosted least-squares... :(
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Theorem 3 (Optimal sampling for L2 approx [Cohen and Dolbeault, 2021])

For some universal constants C̃, β̃, and for any m-dimensional space Vm ⊂ L2, there
exists a random sampling x = x1,⋯, xn, with n ≤ β̃m such that for any u ∈ L2, for
QVm

u = arg minv∈Vm ∑m
i=1

w(xi)∣u(xi) − v(xi)∣,
E(∥u −QVm

u∥2) ≤ C̃∥u − PVm
u∥2

Comments

→ Intuitive justification for boosted least-squares (subsampling step makes sense).

→ Open questions : construct the random sampling, find thigher bounds for the
constants ?

There is hope ... Recent works [Cohen and Dolbeault, 2021]
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Support points

● New way to compact a continuous probability distribution ρ into a set of
representative points.

● "Support points can be viewed as optimal sampling points in ρ (in the sense of
maximum energy) for any desired sample size n".

Theoretical guarantees

● Support points converge in distribution to ρ.

● Points obtained by minimizing an energy distance → quite efficient in high-dimensions.

● There exist a lot of theoretical results...

Computation

● Easy to compute (just need to sample a lot of points from the distribution ρ.)

Support points [Mak and Joseph, 2018]
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Boosted least-squares Support points

Definition 4 (Energy distance)

Let ρ and µ be two probability distributions. Let X, X ′
∼ ρ and Y , Y ′

∼ µ. The energy
distance between ρ and µ is defined as

E(ρ, µ) = 2E∥X −Y ∥2 − E∥X −X
′∥2 − E∥Y −Y

′∥2
Also, when µ = ρn, is the e.d.f for {xi}n

i=1, this energy distance becomes :

E(ρ, ρn) = 2

n

n

∑
i=1

E[∥xi −Y ∥2 − 1

n2

n

∑
i=1

n

∑
j=1

∥xi − xj∥2 − E∥Y −Y
′∥

Definition 5

Let ρ be a probability distribution. Let Y ∼ ρ. For a fixed points set size n, the support
points of ρ are defined as :

{xi}n
i=1 ∈ arg min

x1,⋯,xn

E(ρ, ρn)

{xi}n
i=1 ∈ arg min

x1,⋯,xn

{ 2

n

n

∑
i=1

E[∥xi −Y ∥2 − 1

n2

n

∑
i=1

n

∑
j=1

∥xi − xj∥2}

Energy distance between two distributions
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u(x) = 1

(1 + 5x2) defined on X = [−1, 1], equipped with the uniform measure

● Polynomial approximation spaces with Legendre polynomials for different m.
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● Given cost (n =m) for the s-BLS method.

Comments

→ In dimension 1, approximation error is slightly better with the support points.

→ In dimension 1, the support points are equal to the point set with minimal
L2-discrepancy.

→ But in general in dimension 1, things are quite simple.

Support points of the optimal distributions
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u(x) = 1

(1 − 0.5

2d ∑d
i=1

xi)d+1
defined on X = [−1, 1]d, equipped with the uniform measure

● Full polynomial approximation spaces with Legendre polynomials for different m with
d = 2.
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● n =m for both methods

Comments

→ In the case where n =m, the boosted least-squares are slightly better than approx.
with support points.

Illustration on a first example
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u(x1, x2) = 1

(10 + x1 + 0.5x2)2 defined on X = R2, equipped with the gaussian measure

● Full polynomial approximation spaces with Hermite polynomials for different m with
d = 2.
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● n =m for both methods.

Comments

→ In the case where n =m, the support points are better than the boosted
least-squares for higher values of m.

Illustration on a second example
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● Theoretical analysis is clearly not straightforward.

● Koksma-Hlawaka inequality → upper bound on the integration error I :

I(g, ρ, ρn) = ∣∫
X

g(x)dρ(x) − n

∑
i=1

g(xi)∣ ≤ ∥∂
pg

∂x
∥Lq

Dr(ρ, ρn) with
1

q
+

1

r
= 1

→ How to bound the term Dr(ρ, ρn) ?

● [Mak and Joseph, 2018] with hypotheses on ρ and g, propose a bound in

O ( 1

n1/2
(log n)−(α−1)/2) with α > 1

.

Work perspectives
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● In [Migliorati and Nobile, 2015] discrete least-squares approximation on multivariate
polynomial space with evaluations at low-discrepancy point sets is stable and accurate if
n ≈m2 log(m).

● Talk by Chris. J. Oates this week.

● [Gruber, 2004] gives the minimum error of numerical integration formulae for classes
of Hölder continuous functions and optimum sets of nodes → but asymptotic results
(n→∞).

● ( In [Pagès, 1998], with an optimal grid for the quadratic quantization and if u is C1

with Lipschitz continuous differential Du

E(∥u −QVm
u∥2) ≤ O ( 1

n2/d
)

Work perspectives
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● Recent works from [Cohen and Dolbeault, 2021] provide some intuitive justification to
the boosted least-squares methods.

● However, it remains some offline computational issues.

● We use the support points from [Mak and Joseph, 2018] combined with the optimal
measure from [Cohen and Migliorati., 2017] to propose a new design for L2

approximation, that is very fast to generate (in particular compared to BLS).

● On numerical experiments we see that

→ for d = 1, this is very efficient.

→ for d > 1, this is competitive with boosted least-squares.

● But theoretical analysis is not straightforward.

● For now, it seems that more hypotheses on the functions are necessary (compared to
the boosted least-squares).

Conclusions
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Thank you for your attention.
Do you have any questions ?
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