


Introduction

Sobol’ indices (Sobol 1990) allow for a powerful tool in order to assess input importance on

the variability of the output of a numerical model. They can be interpreted as shares of the

output’s variance, due to individual input effects, or due to their interaction.

However, it relies on an independence assumption on the probabilistic modelling of the

inputs, which may be ill-suited in practice. Whenever dependence comes into play, there

exists solutions (Chastaing, Gamboa, and Prieur 2012; Mara and Tarantola 2012), but no

general decomposition of the output’s variance.
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Sobol’ indices (Sobol 1990) allow for a powerful tool in order to assess input importance on

the variability of the output of a numerical model. They can be interpreted as shares of the

output’s variance, due to individual input effects, or due to their interaction.

However, it relies on an independence assumption on the probabilistic modelling of the

inputs, which may be ill-suited in practice. Whenever dependence comes into play, there

exists solutions (Chastaing, Gamboa, and Prieur 2012; Mara and Tarantola 2012), but no

general decomposition of the output’s variance.

Goal of the presentation:

Build meaningful model output variance decompositions in the context of dependent

inputs using cooperative game theory.

Shapley effects (Owen 2014) are a particular example of such a decomposition.
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Sobol’ indices and dependence: illustration

Let’s take an example (Iooss and Prieur 2019):

G(X ) = X1 + X2X3, X =







X1

X2

X3






∼ N













0

0

0






,







1 0 ρ

0 1 0

ρ 0 1












(2)

Independent case (ρ = 0)

S1 = 0.5 S2 = 0, S3 = 0,

S{1,2} = 0, S{1,3} = 0, S{2,3} = 0.5,

S{1,2,3} = 0

Correlated case (ρ 6= 0)

S1 = 0.5 S2 = 0, S3 = ρ2/2,

S{1,2} = ρ2/2, S{1,3} = −ρ2/2, S{2,3} = 0.5,

S{1,2,3} = −ρ2/2
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S{1,2,3} = −ρ2/2

How can one interpret negative output variance percentages?

Should X1 and X2 be given an interaction effect? Should X3 be given an individual effect?
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Cooperative game theory

In a nutshell, cooperative game theory can

be summarized as “the art of cutting a cake”.

Given a set of players D = {1, . . . , d}, who produces a quantity v(D), how can one allocate

shares of v(D) among the d players ?

The “cake cutting process” is often described through axioms (i.e., desired properties), and

results in an allocation.

Formally, a cooperative game is denoted (D, v) where D is a set of players, and

v : P(D) → R is a value function, mapping every possible subset of players to a real value.
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Cooperative game theory and GSA

In the global sensitivity analysis (GSA) framework, an analogy can be made between

players and input variables. Originally, the chosen value function, for a subset of variables

A ∈ P(D), is (Owen 2014):

v(A) = S
clos
A =

V (E[G(X )|XA])

V(G(X ))
(3)

Sclos
A can be interpreted as a measure of the output’s variability due to the subset of inputs

XA. Since Sclos
D = 1, the cooperative game (D, Sclos) aims at allocating percentages of the

output’s variance to each input variables in D.
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In the global sensitivity analysis (GSA) framework, an analogy can be made between

players and input variables. Originally, the chosen value function, for a subset of variables

A ∈ P(D), is (Owen 2014):

v(A) = S
clos
A =

V (E[G(X )|XA])

V(G(X ))
(3)

Sclos
A can be interpreted as a measure of the output’s variability due to the subset of inputs

XA. Since Sclos
D = 1, the cooperative game (D, Sclos) aims at allocating percentages of the

output’s variance to each input variables in D.

Which allocation to choose ?
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Shapley values

The Shapley values is a particular instance of an allocation. They can be interpreted as

“[...] an a priori assessment of the situation, based on either ignorance or disregard of the social

organization of the players.” - L. S. Shapley (2016)

They can be seen as a uniform prior on the underlying bargaining process, i.e., every player
receives an equal part of the coalitional surplus:

Shapi

(

(D, v)
)

=
∑

A⊂D:i∈A

∑

B⊆A(−1)|A|−|B|v(B)

|A|
.

They are the unique allocation satisfying:

1. (Efficiency)
∑d

j=1 φj = v(D) ;

2. (Symmetry) If v(A ∪ {i}) = v(A ∪ {j}) for all A ∈ P(D), then φi = φj ;

3. (Null player) If v(A ∪ {i}) = v(A) for all A ∈ P(D), then φi = 0 ;

4. (Additivity) If (D, v) and (D, v ′) have Shapley Values φ and φ′ respectively, then the game with

cost function (D, v + v ′) has Shapley values φj + φ′
j for j ∈ {1, . . . , d};

They can also be uniquely characterized by other sets of axioms.
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Shapley’s joke

The averaging property of the Shapley effects can be useful in order to quantify input

influence (i.e., model exploration).

However, they can fail at quantifying input importance (i.e., factor fixing/prioritization):

G(X ) = X1 + X2, X =







X1

X2

X3






∼ N













0

0

0






,







1 0 ρ

0 1 0

ρ 0 1












,

lead to the following Shapley effects:

Sh1 = 0.5− ρ2/4, Sh2 = 0.5, Sh3 = ρ2/4.

An exogenous variable can have a non-zero Shapley effect.
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lead to the following Shapley effects:

Sh1 = 0.5− ρ2/4, Sh2 = 0.5, Sh3 = ρ2/4.

An exogenous variable can have a non-zero Shapley effect.

Is there another allocation that circumvents this

phenomenon?

8/19



Proportional marginal values

The proportional values are another example of an allocation, which can be interpreted as

“[...] splitting the coalitional surplus so each player gains in equal proportion to that which could be

obtained by each alone.” - B. Feldman (1999)

They can be seen as a proportional redistribution, i.e., every player receives a part of the
coalitional surplus proportional to their marginal contribution over all coalitions. The
formulation is defined recursively:

PMVi

(

(D, v)
)

=
P(D,w)

P(D \ {i},w)

with w(A) = v(D)− v(D \ A), P(A,w) = w(A)





∑

j∈A

1

P(A \ {j},w)





−1

, and P(∅,w) = 1

They are the unique allocation φ
(

(D, v)
)

satisfying (Ortmann 2000):

1. (Efficiency)
∑d

j=1 φj = v(D) ;

2. (Ratio preservation) ∀A ⊆ D,
φi (A,v)

φi (A\{j},v)
=

φj (A,v)

φj (A\{i},v)
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Figure 1: Comparison between the Shapley effects and the proportional marginal effects, with

respect to ρ.

11/19



Exclusion equivalency property of the PME

The Shapley values allow for a zero allocation only if a player i is a null player:

∀A ⊂ D \ {i}, v(A ∪ {i})− v(A) = 0,

meaning that adding i to any coalition does not increase the coalition’s production.

The proportional values, in the other hand, fixes a player i allocation to zero if it is in every

coalition A ∈ P(D) such that:

v(D)− v(D \ A) = 0, and |A| = max

B⊆D
{|B| : v(D)− v(D \ B) = 0}

meaning that i is in all the biggest coalitions with zero marginal contribution.

Moreover, if Xi is a spurious variable (i.e., not in the model G(.)), then automatically PMEi = 0.
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Shapley’s joke

Recall the previous example:

G(X ) = X1 + X2, X =


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In this case, one has the following allocations:

Shapley effects:

Sh1 = 0.5− ρ2/4

Sh2 = 0.5

Sh3 = ρ2/4

Proportional marginal effects:

PME1 = 0.5

PME2 = 0.5

PME3 = 0
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In this case, one has the following allocations:

Shapley effects:

Sh1 = 0.5− ρ2/4

Sh2 = 0.5

Sh3 = ρ2/4

Proportional marginal effects:

PME1 = 0.5

PME2 = 0.5

PME3 = 0

The proportional marginal effects allow to detect exogenous inputs

in a correlated setting.
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Figure 2: PME (left) and Shapley effects (right) for the ultrasonic control of a weld.

The indices have been computed on a 103 i.i.d. sample using a K -NN approach with K = 5 (Broto, Bachoc, and Depecker 2020). 15/19



Conclusion

GSA indices inspired from cooperative game theory are not absolute, and their use need to

be contextualized by the chosen allocation process.

Some allocations allow for a better understanding of the modeled phenomena (e.g.,

Shapley effects), while others prioritize factor prioritization (e.g., proportional marginal

effects).

Other promising allocation results can allow for better insights on the modeled phenomena

such as weighted Shapley values (Kalai and Samet 1987).

Robust and fast estimation of such indices, in particular on a unique i.i.d. sample

(i.e., data-driven), remain one of the main challenge in regards of these methods.

16/19



References i

Broto, B, F Bachoc, and M Depecker. 2020. “Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input

Distribution” [in en]. SIAM/ASA Journal on Uncertainty Quantification 8, no. 2 (January): 693–716. issn: 2166-2525, accessed

December 2, 2020. https://doi.org/10.1137/18M1234631. https://epubs.siam.org/doi/10.1137/18M1234631.

Chastaing, G., F. Gamboa, and C. Prieur. 2012. “Generalized Hoeffding-Sobol Decomposition for Dependent Variables - Application to

Sensitivity Analysis.” Electronic Journal of Statistics 6:2420–2448.

Feldman, B. 1999. The Proportional Value of a Cooperative Game, December. http://fmwww.bc.edu/repec/es2000/1140.pdf.

Feldman, B. E. 2007. “A Theory of Attribution” [in en]. SSRN Electronic Journal, issn: 1556-5068, accessed January 16, 2021.

https://doi.org/10.2139/ssrn.988860. http://www.ssrn.com/abstract=988860.

Iooss, B., and C. Prieur. 2019. “Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol’ Indices, Numerical

Estimation and Applications.” International Journal for Uncertainty Quantification 9 (5): 493–514. issn: 2152-5080.

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019028372.

Kalai, E., and D. Samet. 1987. “On weighted Shapley values” [in en]. International Journal of Game Theory 16, no. 3 (September): 205–222.

issn: 1432-1270, accessed August 31, 2021. https://doi.org/10.1007/BF01756292. https://doi.org/10.1007/BF01756292.

Mara, T., and S. Tarantola. 2012. “Variance-based sensitivity indices for models with dependent inputs.” Reliability Engineering & System

Safety 107:115–121.

17/19

https://doi.org/10.1137/18M1234631
https://epubs.siam.org/doi/10.1137/18M1234631
http://fmwww.bc.edu/repec/es2000/1140.pdf
https://doi.org/10.2139/ssrn.988860
http://www.ssrn.com/abstract=988860
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019028372
https://doi.org/10.1007/BF01756292
https://doi.org/10.1007/BF01756292


References ii

Ortmann, K. M. 2000. “The proportional value for positive cooperative games” [in English]. Mathematical Methods of Operations Research

(ZOR) 51, no. 2 (April). issn: 1432-2994, 1432-5217, accessed December 4, 2020. https://doi.org/10.1007/s001860050086.

Owen, A. B. 2014. “Sobol’ Indices and Shapley Value” [in English]. SIAM/ASA Journal on Uncertainty Quantification 2, no. 1 (January):

245–251. issn: 2166-2525, accessed December 2, 2020. https://doi.org/10.1137/130936233.

Shapley, L. S. 2016. “17. A Value for n-Person Games.” In Contributions to the Theory of Games (AM-28), Volume II, edited by

Harold William Kuhn and Albert William Tucker, 307–318. Princeton University Press.

https://doi.org/doi:10.1515/9781400881970-018.

Sobol, I M. 1990. “On sensitivity estimation for nonlinear mathematical models” [in Russian]. Mathematical Modelling and Computational

Experiments 2 (1): 112–118.

18/19

https://doi.org/10.1007/s001860050086
https://doi.org/10.1137/130936233
https://doi.org/doi:10.1515/9781400881970-018


Thank you for your attention!

Any question?
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Random model representations

Let R(D) be the set of all d! permutations (orderings) of D, let r = (r1, . . . , rd), and denote r(i)

the position of the player i in a permutation r (i.e., rr(i) = i). Then:

Shapi
(

(D, v)
)

=
∑

r∈R(D)

1

d!
(v(r1, .., rr(i))− v(r1, .., rr(i)−1))

PV
(

(D, v)
)

i
=

∑

r∈R(D)

p(r)(v(r1, .., rr(i))− v(r1, .., rr(i)−1))

with:

p(r) =
L(r)

∑

m∈R(D) L(m)
, L(r) =

1

v({r1})v({r1, r2})...v(D)

and since, by monotony assumption, one has that:

v({r1}) ≤ v({r1, r2}) ≤ .. ≤ v({r1, r2, .., rn}), ∀r ∈ R(N)

L(r) will take relatively high values for order of increasing values.





Extension of the proportional values

The proportional values (Feldman 1999) are originally defined on strictly positive games (i.e.,
v(A) > 0), which has then been extended to some non-strictly positive games (Feldman
2007). The following results (Margot Hérin) allow to extend the proportional values to any
non-strictly positive games:

Theorem (Continuity in zero of the proportional values)

Let (N, v) be a monotonic cooperative game. Consider the associated sequence of cost functions (vp) defined

by:

∀p ∈ N, ∀S ⊂ N, vp(S) =







v(S) if v(S) > 0

ǫp −−−−→
p→∞

0 if v(S) = 0.
(4)

Then one can define the extended proportional values as:

∀i ∈ N, φ̃Pv
i (v) = lim

p→∞
φPv
i (vp) (5)

...



Extension of the proportional values

Theorem
...

• If there exists a null coalition of cardinality n − 1:

lim
p→∞

φPv
i (vp) =







v(N)
|{j∈N|v(N

−j )=0}|
if ∃S ⊆ N−i s.t |S | = kM(N), v(S) = 0 i.e., v(N−i ) = 0

0 otherwise.

• if kM(N) < n − 1, i.e., if there exists no null coalition of cardinality n − 1:

lim
p→∞

φPv
i (vp) =



































∑

r∈R(N
−i )

kr=kM (N)

n−1∏

m=kr+1
v(Sr

m)
−1

∑

r∈R(N)
kr=kM (N)

n∏

m=kr+1
v(Sr

m)
−1

if ∃S ⊆ N−i s.t |S | = kM(N), v(S) = 0

0 otherwise.

where ∀S ⊆ N, vS : P(N\S) → R
+ is defined by: ∀T ⊂ N\S , vS (T ) = v(S ∪ T ).



Consequences of the extension

Corollary

Let (N, v) be a non null monotonic cooperative game. A player gets null proportional value if and

only if it is included in all the null coalitions of maximal cardinality. Equivalently, a player gets a

strictly positive proportional value if and only if one can find a null coalition of maximum cardinality

which do not include him.

Corollary

If i ∈ N is a variable that is not in the model G(.), i.e., such that one can find a measurable function

f : (R,B(R))n−1 → (R,B(R)) such that Y = f (XN\{i}), then:

PMEi = 0.
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