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Goals :

We have high-fidelity and low-fidelity data. We want to generate a surrogate model for
the high-fidelity code.

The interaction between code can be non-linear

Quantified uncertainties and in particular the high fidelity uncertainty.

Multi-fidelity surrogate model with time-series output
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We want to predict gX⋆ knowing the data X

Gaussian conditioning theorem Let (X⋆, X = (X1,⋯, Xn)) be a Gaussian vector of

the data and the point to evaluate :

( X⋆

X
) ∼N (( µ

X
⋆

µ
X

) ,( CX⋆ CX⋆X

CXX⋆ CX

))
with µgX⋆ et µ

X
mean vectors of size n and m, the matrix of covariance CX⋆ of size

n × n, CX⋆X of size n ×m, CX⋆X = CT
X⋆X

and CX of size m ×m.

Then the law of X⋆ conditionally to X is also Gaussian :

(X⋆ ∣ X = x) ∼ N (µCond(x), C
Cond(x)),
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Gaussian vector
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We present a BNN with one hidden layer. Let Nn be the number of neurones in the hidden
layer. The output of the hidden layer :

y1 = Φ (w1x + b1) , (1)

with x ∈ Rd the input vector of the BNN, b1 ∈ R
Nn the bias vector, w1 ∈ R

Nn×dthe weight
matrix and y1 ∈ R

Nn the output of the hidden layer. The activation function
Φ ∶ RNn

→ R
Nn is of the form Φ (b) = (ϕ(bi))Ni=1

, where ϕ can be hyperbolic tangent or
ReLU. The second (and last) layer is fully linear :

BNN(x) =w
T
2 y1 + b2, (2)

with w2 ∈ R
Nn the weight matrix, b2 ∈ R the bias vector and the BNN output BNN(x) ∈ R

is the estimation of the output of the function f at a point x. Let the parameter of the BNN
θ = (wi, bi)i=1,2.

Bayesian Neural Network
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The pdf of the prediction of y is :

p(y∣x, θ, σ) = 1√
2πσ

exp(−(y −BNNθ(x))2
2σ2

) , (3)

where σ is the standard deviation of the random noise added to account for the fact the
neural network is an approximation.
We choose a classic prior distribution for (θ, σ) :

wi ∼N (0, σ
2

wi
I) , bi ∼N (0, σ

2

bi
I) , i = 1, 2, σ ∼N (0, 1), (4)

Applying Bayes’ theorem the posterior pdf of (θ, σ) given the data D = (xi, yi)ni=1
is :

p(θ, σ∣D) = N

∏
i=1

p(yi∣xi, θ, σ)p(θ, σ) (5)

up to a multiplicative constant. The posterior distribution of the output at x has pdf :

p(y∣x,D) =x
p(y∣x, θ, σ)p(θ, σ∣D)dθdσ. (6)

Bayesian Neural Network
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Optimization the hyper-parameters :

We have the prior distribution of w, b et σ.

An Hamiltonian Monté-Carlo optimization is used to compute the posterior distribution of
the hyper-parameters using the available data.

How to generate the prediction :

The problem we get with BNN is that the output depend on different complex law for all
parameters. It is impossible to have an analytical expression of the output law depending
on the inputs.

To tackle this issue we need to sample each law and compute the network with all samples.

Bayesian Neural Network
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Objective : model a multi-fidelity system

Idea : Model the low-fidelity code by a Gaussian process and the high-fidelity code by a
bayesian neural network (BNN).

Decomposition of the problem into two parts :

f̃L(x) ∼ GP (fL∣data)
f̃H(x) = BNN(x, f̃L(x))

Multi-fidelity with GP-BNN
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x f̃H(x
GP

BNN

High-fidelity surrogate model

Combination

Sampling
f̃L,i(x)

pS,i

Figure – Schematic of the multi-fidelity model.
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Let zS,i be the roots of the Hermite polynomials HS(x) = (−1)Sex2

∂S
x e−x2

, S ∈ N.

For each input x the GP posterior law has mean µL(x) and covariance CL(x, x).
Therefore, the ith realization in the Gauss-Hermite quadrature formula is :

f̃L,i(x) = µL(x) + zS,i

√
CL(x, x), (7)

the associated weight is pS,i =
2

S−1S!
√

π

S2H2

S−1
(zS,i)

, for i = 1,⋯, S.

Sampling of f̃L,i(x)
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The inputs : x and f̃L,i(x)
Output : BNN θ(x, f̃L,i(x))
The estimator of the predictive mean of the output of the high-fidelity model is :

f̃H(x) = 1

Nv

Nv

∑
j=1

S

∑
i=1

pS,iBNN θj
(x, f̃L,i(x)), (8)

and the estimator of the predictive variance is :

C̃H(x) = 1

Nv

Nv

∑
j=1

( S

∑
i=1

pS,iBNN θj
(x, f̃L,i(x)))

2

− f̃
2

H(x) + 1

Nv

Nv

∑
j=1

( S

∑
i=1

p
2

S,i)σ
2

j . (9)

The High-fidelity BNN
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Step 1, Gaussian process regression for low-fidelity

Step 2, Sampling data with Gauss quadrature for high-fidelity input

Step 3, Training the BNN with sampled data

Step 4, Sampling the all GP-BNN and get uncertainty quantification

The evaluation of S depending on the problem.

Optimisation part
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We evaluate the error Q2 is Q2

T = 1 −
∑

N
T

i=1
[f̃H(x

(i)
T
)−fH(x

(i)
T
)]2

NTVT(fH)
.

For the Methods :
Simple fidelity Gaussian Process regression. (GP 1F)
Auto-Regressive Multi-fidelity Co-Kriging. (AR(1))
Multi-fidelity Deep Gaussian Process (Deep GP)
Multi-Fidelity combination of Neural Network and Bayesian Neural Network (MBK)
Our method (GP-BNN)

Table – Q2

T
for different methods and segments Ī of missing low-fidelity values.

Ī GP 1F AR(1) Deep GP MBK GP-BNN
∅ 0.12 −0.29 0.99 0.99 0.99[ 3

4
, 1] 0.12 −0.29 0.93 0.90 0.99[ 1

3
, 2

3
] 0.13 −0.34 0.98 0.90 0.98

Compareason with known methods

Baptiste Kerleguer septembre 2021 18 / 23



Context and Goals Surrogate models Multi-fidelity GP-BNN model Illustration Conclusion Large Dimension Output

We evaluate the Coverage Probability at α (evaluation of the uncertainty accuracy) is

CPα =
1

NT

NT

∑
i=1

1
fH(x

(i)
T
)∈Iα(x(i)

T
)

.And The mean predictive interval at α (size of the uncertainty) is

MPIWα =
1

NT

NT

∑
i=1

∥Iα(x(i)T
)∥.

For the Methods :
Simple fidelity Gaussian Process regression. (GP 1F)
Auto-Regressive Multi-fidelity Co-Kriging. (AR(1))
Multi-fidelity Deep Gaussian Process (Deep GP)
Multi-Fidelity combination of Neural Network and Bayesian Neural Network (MBK)
Our method (GP-BNN)

Table – Coverage probability CPα and mean predictive interval width MPIWα (between the square
brackets) for α = 80% and for different methods and segments Ī of missing low-fidelity values.

Ī GP 1F AR(1) Deep GP MBK GP-BNN
∅ 0.82 [0.44] 0.82 [0.55] 0.99 [0.002] - 0.88 [0.083][ 3

4
, 1] 0.78 [0.44] 0.82 [0.45] 0.62 [0.097] - 0.78 [0.084][ 1

3
, 2

3
] 0.78 [0.42] 0.79 [0.45] 0.60 [0.010] - 0.83 [0.082]

Compareason with known methods
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Conclusion :

The model is efficient in small data

Good uncertainty prediction in high-fidelity

Ongoing :

Growing the dimension of output (time-series)

Wavelet representation for time-series output

Future :

Structure with full BNN

Using a more complex structure for the BNN

Perspectives
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Replace the 1 dimension GP in GP-BNN by tensorised covariance GP :

The Neural Network can solve the curve of dimensionality.

but for BNN it is more complex and in particular a good choice of prior will be very useful.

The solution is to put train a neural network with a last Bayesian layer.

Reduce the dimension :

If the reduction of dimension is linear then the best model with be the linear model

For a non-linear model we train multiple GP-BNN. In particular, we can use autoencoders.

The number of parameters to choose will be big.

Extention Large Dimension
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