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BARCELONNETTE!!

Petite ville de la vallée de 'Ubaye (Alpes de Haute Provence),
célébre pour :

Ses activités d’eau vive;

ses sept cols, dont la Bonnette (2 715m);

N
— Ses belles montagnes;
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INTRODUCTION



INDUSTRIAL CONTEXT

We study a mock-up of a water pressured nuclear reactor
during an intermediate break loss of coolant accident in the

primary loop.
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Figure : The replica of a water
pressured reactor, with the hot
and cold leg.
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Figure : CATHARE code
temperature output for nominal
parameters.



DETERMINISTIC METHOD

(#1,...,44)  ~ | COMPUTER MODEL | ~
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Our use-case is a thermal-hydraulic computer code (CATHARE),
which simulates a intermediate break loss of coolant accident. The
variable of interest is the peak cladding temperature.



PROBABILISTIC MODELIZATION

(Xi,...,Xq) ~ | COMPUTER MODEL | ~ Y
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Let G be our computer code, the output distribution writes
Fu(h) = Pu(G(X) < h).
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PROBABILISTIC MODELIZATION
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The quantity of interest (here a quantile) depends on the input
distributions .



PROBABILISTIC MODELIZATION

(Xi,...,Xs) ~ | COMPUTER MODEL | =~ VY
N —
~
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OUQ consists in finding the optimum of the quantity of interest
over a set of input distribution p € A.



UNCERTAINTY MODELIZATION

We consider robustness by finding bounds on a quantity of
interest ¢

p € P(X) = o(p)

— We optimize the quantity of interest over a measure space
A

sup ¢(p)
peA

— The measure space A should be compatible with the data,
it should effectively represent the uncertainty on the
distribution.



THE MOMENT CLASS

In this work we will focus on two different optimization space.

— The moment class :

d
A = {(m,...,ud) e [P wi)) | B X < e, = lN} ,

=1
— and the unimodal moment class
=1

d
Al = {Unimodal pe [Pk w]) | EuX) <7, j=1,.. N} ,

Problem : this is an optimization over an infinite non parametric
space...

"



OTHER "DISTRIBUTION ROBUSTNESS" METHODS (1/2)

Perturbed Law indices (see Lemaitre et al. 2015)
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OTHER "DISTRIBUTION ROBUSTNESS" METHODS (2/2)

Info-gap theory (see Ajenjo et al. 2022)

13



REDUCTION THEOREM



QUASI-CONVEX FUNCTION

A function ¢ is said to be quasi-convex if

p(Az+ (1 —N)y) < max{¢(z); d(y)}

Convexity Quasi-convexity

max
e mex

15



QUASI-CONVEX FUNCTION

From the Bauer maximum principle, a convex function on a
compact convex set reaches its maximum on the extreme
points

Convexity Quasi-convexity

max
i e

a b a b

~ The Bauer maximum principle remains true for quasi-convex
function.

15



REDUCTION THEOREM

Reduction theorem




REDUCTION THEOREM

Reduction theorem

~ What are the extreme points of the (unimodal) moment
class?




EXTREME POINTS CHARACTERIZATION (1/2)

Extreme points of the moment class




PHYSICAL ILLUSTRATION

First approach

You are given 1kg of sand to arrange however you wish on a seesaw
balanced around z = 0.

— How much mass can you pur on the region x > a?

18
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EXTREME POINTS CHARACTERIZATION (2/2)

Extreme points of the unimodal moment class




REDUCTION THEOREM FOR A PROBABILITY OF FAILURE

Consider the quantity of interest to be a probability of failure
(PoF).

~ it is a linear function of the input measure, thus is
quasi-convex.

Over the moment class A*, the optimal PoF can be computed
on the set of discrete finite input distributions :

sup ¢(p) = sup Fy(h),
HEA* pEA*

= sup }P’H(G(Xl,...,Xd) < h) ,
pHEA*

Ni+1 Ng+1



DISCRETE MEASURES

Let enforce N moment constraints on a measure E,[X/] = ¢; .
OuUQ theorem guaranties the optimal measure to be supported
on at most N + 1 points :

N+1

n= Z wiéir;
=1

We have the following system of constraint equations :

w1 + ... + WwWN+1 =1

w1 + ...+ WNH1TN41 =cC
N o N

w1 + ... + WN+1TN1 =cCN

~» The weights are uniquely determined by the positions.
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Let enforce N moment constraints on a measure E,[X/] = ¢; .
OuUQ theorem guaranties the optimal measure to be supported
on at most N + 1 points :

N+1

n= Z wiéir;
=1

We have the following system of constraint equations :

w1 + ... + WwWN+1 =1
w1 + ...+ WNH1TN41 =cC
N oo N
w1 + ... + WN+1TN1 =cCN
0< w; <1 A



GEOMETRICAL INTERPRETATION

Example : Let ;. be supported on [0,1] such that E,[X] = 0.5
and E,[X?] = 0.3.

3
A = {u =Y wid,, € P([0,1]) | E,[X] = 0.5, E,[X?] = 0.3} :
=1
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GEOMETRICAL INTERPRETATION

Example : Let ;. be supported on [0,1] such that E,[X] = 0.5
and E,[X?] = 0.3.

3
A* = {u =Y wid,, € P([0,1]) | E,[X] = 0.5, E,[X?] = 0.3} :

v x=1(0.1,0.4,0.9) gives weights w = (0.05,0.73,0.22)
x x=(0.1,0.3,0.9) gives weights w = (—0.19,0.92,0.27)

3
Vax = {x = (21,29, 23) € [0,1 | u = Zwiéwi € A*}

i=1

How to optimize over and explore the manifold VA ?



POSSIBLE WAYS OF OPTIMIZING

— Optimization under constraints : the position and the
weight must satisfy the Vandermonde system.

— Optimization by rewriting the objective function : changing
the parameterization of the problem so that the constraint
are naturally enforced in the objective function.



POSSIBLE WAYS OF OPTIMIZING

— Optimization under constraints : the position and the
weight must satisfy the Vandermonde system.

— Optimization by rewriting the objective function : changing
the parameterization of the problem so that the constraint
are naturally enforced in the objective function.

Canonical moments allows to efficiently ex-
plore the set of optimization A*.



CANONICAL MOMENTS
PARAMETERIZATION



CLASSICAL MOMENTS PROBLEM
1 11
57 57 Z, ..

~~ Moment sequence of 1[0, 1]



CLASSICAL MOMENTS PROBLEM
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57 57 Z, ..

~~ Moment sequence of 1[0, 1]

(252
1, -, 2 ...
3

~» Moment sequence of U0, 2]

Conclusion : there is no relation between the classical moments
and the intrinsic structure of the distribution.



MOMENT SPACE

We define the moment space M,, =
{en(p) = (c1,.. -, cn) | e P([0,1])}

Given ¢,, € intM,,, we define the ex-
treme values

¢f iy =max{c: (c1,...,cn, ) € Myi1}

Cpp1 =min{c: (c1,...,¢ny¢) € Mpy1}

They represent the maximum and
minimum value of the (n+ 1)th mo-
ment a measure can have, when its
moments up to order n equal to ¢,,.
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Figure :

First moment

representation of Mo



CANONICAL MOMENTS

The nth canonical moment is defined as

Properties of canonical moments

- pn E [07 1]:

— The canonical moments are invariants by affine transforma-
tion. Which means we can always transform a measure sup-
ported on [a, b] to [0, 1]

27



LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure = Z?jf w;0.., we have two representations

of the same polynomial P;,_; :
— Its roots are the measure support points :

n+1

Poii(z) = H(z - ) .

i=1



LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure . = Z?jll w;0,,, we have two representations

of the same polynomial P;,  ; :
— lIts roots are the measure support points :

n+1

OES | [CEOF

i=1
— Its coefficients are function of a sequence of the measure
canonical moments p = (p1,...,Pon+1) :

Pr 1 (2) = o) + p1(P)z + - + pui1(p) 2" .



EFFECTIVE PARAMETERIZATION

Let pu € A ={ St wis, €P((abl) | EulXi)=c;, 1§an}



EFFECTIVE PARAMETERIZATION

e A*

The support of 1 is the roots of a polynomial
Proy =TT (o = )

*
Pn+1
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e A*

The support of 1 is the roots of a polynomial
e = 12 (2 = x0)

*

Pn+1

Coefficients are defined with a sequence of canonical moments
Priy=@o(p) +@1(p)z + - + np1(p) 2"

Y :(p17‘ -y Pns Pty - - 7p2n+1)
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e A*
The support of 1 is the roots of a polynomial
* n+1 .
1 = Lz (2 =)
*
Pn+1

Coefficients are defined with a sequence of canonical moments
Priy=@o(p) +@1(p)z + - + np1(p) 2"

Y :(p17‘ -y Pns Pty - - 7p2n+1)

set by constraints in ]0, 1[*+1




EFFECTIVE PARAMETERIZATION

e A*
pr / We can explore the whole set A*
n+1 . . . . n+1
\ using a parameterization in |0, 1[""".

p:(pl,...,pn@l,...,pgg

set by constraints in ]0, 1[*+1




GENERATION OF ADMISSIBLE MEASURES

Theorem




SET OF ADMISSIBLE MEASURES

max(ps, pi. ps)

02
2, 03 1 06

— Consider p in [0, 1] and two moment constraints : ¢; = 0.5 and ¢; = 0.3
equivalent to p; = 0.5 and py = 0.2.

— We generate randomly (ps, ps, ps) € [0, 1] and compute for every
sequence P; whose roots constitute the coordinates of the points.

— The point coordinates correspond to the support of a discrete measure in
A.

31



SET OF ADMISSIBLE MEASURES

< X

max(ps, pi. ps)

02
2, 03 1 06

(p37 yZ9 p5) € [07 1]5

— Consider p in [0, 1] and two moment constraints : ¢; = 0.5 and ¢; = 0.3
equivalent to p; = 0.5 and py = 0.2.

— We generate randomly (ps, ps, ps) € [0, 1] and compute for every
sequence P; whose roots constitute the coordinates of the points.

— The point coordinates correspond to the support of a discrete measure in
A.

31



GORITHM

Algorithm 1 : P.O.F COMPUTATION

Inputs : - lower bounds, 1 = (I, ..., ls)

- upper bounds, u = (u1,. .., uq)

- constraints sequences of moments, ¢; = (cEl), NN (N ) and
its corresponding sequences of canonical moments, p;, = (pﬁ”, . ,qu >)
forl <i<d.
function PO F(p§Nl+]) p(12N1+1) p(de+J) p(dQNd+]))

0. s s s

fori:l,...7ddo
fork=1,..., N;do
PV = (X — b= (= )G+ ¢V P — (a -
l) C(Qk 1)<(2k)P(k 1)
g N = roots(P*“V 1y
<1),...,w§N"+1) weight(z("), ... 2N

Ni+1 Ng+1 (i1) (w)
return 3000 3T w L wy L

32



ILLUSTRATION



INDUSTRIAL CONTEXT

Our use-case is a thermal-hydraulic computer code
(CATHARE), which simulates a intermediate break loss Of
coolant accident. The variable of interest is the peak cladding
temperature.
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Figure : The replica of a water Figure : CATHARE code
pressured reactor, with the hot temperature output for nominal

and cold leg. parameters. w



MOMENT CONSTRAINTS FOR CATHARE

Variable Bounds Initial distribution Mean Second order
(truncated) moment
n°10 [0.1,10] LogNormal(0,0.76) 1.33 3.02
n°22 [0,12.8] Normal(6.4,4.27) 6.4 45.39
n°25 [11.1,16.57] Normal(13.79  13.83 192.22
n°2 [~44.9,63.5]  Uniform(—44.9,63.5) 9.3 1065
n°12 [0.1,10] LogNormal(0,0.76) 1.33 3.02
n°9 [0.1, 10] LogNormal(0,0.76) 1.33 3.02
n°14 [0.235,3.45]  LogNormal(—0.1,0.45) 0.99 1.19
n°15 [0.1,3] LogNormal(—0.6,0.57) 0.64 0.55
n°13 [0.1, 10] LogNormal(0,0.76) 1.33 3.02

Table : Corresponding moment constraints of the 9 most influential
inputs of the CATHARE model. Two moment constraints are
enforced, that correspond to the mean and the variance of each input
distribution.



QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure ?

Let denote @, (1) the quantile of order p of a distribution .

I

h 4

Qu(,”’l) Q(y(,”/Z)
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QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure ?

Let denote @, (1) the quantile of order p of a distribution .

I

2

Qu(/l’l) Qa<)\/111-|"(1—)\)/12) Q(Y(III'2)
S maX{Qa (Ml); Qa (:u2)}

~ For the same reason, the superquantile is a quasi-convex
function of the measure.

[Q
7

36



OPTIMIZATION FOR CATHARE

Initial distribution -
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700 720 740 760 780 800 820 840

Peak cladding temperature 7' (in °C)
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OPTIMIZATION FOR CATHARE

Initial distribution -

Predictor - - 0.5

T T T T T T T
700 720 740 760 780 800 820 840

Peak cladding temperature 7' (in °C)

QP =760°C LR, =T788°C

qop tim



UNCERTAINTY TAINTING THE METAMODEL (1/2)

We recall the probability of failure F,(h) is computed as

fF,(h)=inf P,(G(X1,...,Xy) <h
ulIElA () ;}gA M((17 7d)—)7

Ni+1 Ng+1

:Jggz Zw d)ﬂ{(l(ll)"

i1=1 ig=1

z?)<h} *
~» The simple approach replaces uncertain G(x) by the
predictor of the kriging metamodel ¢(x, ), that is, the GP
expectation.



UNCERTAINTY TAINTING THE METAMODEL (2/2)

~+ We propose to compute F,(h) for several trajectories of the
metamodel, and minimize a quantile of the resulting sample,
rather than the expectation.

f Fu(h,0)= inf P, (49 (X1,...,X4,0) <h
;2 (7 ) ;}2./4 ,u( ( 1, y AAd )_ )7
Ni+1 Ng+1

(1) (d)
= inf Wy Wy .
uEA Z Z Wiy {g(mg),...,mg),e)gh}

=1 ig=1

get a sample for different realization of the gaussian process



Initial distribution

OPTIMIZATION FOR CATHARE

Median

Predictor

5%-Quantile

T T T T T T T
700 720 740 760 780 800 820 840

Peak cladding temperature 7' (in °C)

Gt = T60°C ~ o, =T88°C ~ gy, =830°C
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CONCLUSION AND PERSPECTIVES

— The reduction theorem gives the basis for numerical optimization of
the quantity of interest.

— The moment class and unimodal moment class have very
interesting topological structure.

— The canonical moment parameterization is well suited for exploring
the extreme points, thus fastening the global optimization.

— Inequality moment constraints can also be enforced.



CONCLUSION AND PERSPECTIVES

— The reduction theorem gives the basis for numerical optimization of
the quantity of interest.

— The moment class and unimodal moment class have very

interesting topological structure.

The canonical moment parameterization is well suited for exploring

the extreme points, thus fastening the global optimization.

Inequality moment constraints can also be enforced.

!

!

Limited to classical moment constraints.

Possible extension to quantile classes.

Need to account for metamodel uncertainty

Raw global optimization to be refined by computing gradient of the
quantity of interest.

Computation subject to curse of dimensionality : reducing the input
dimension is a mandatory first step.

Ll

!
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