

Optimal Uncertainty Quantification of a Risk Measurement from a Computer Code A PhD born in Barcelonnette (ETICS'1)

Jérôme Stenger (EDF, IMT) & Fabrice Gamboa (IMT) & Merlin Keller (EDF) & Bertrand Iooss(EDF)

ETICS'10, Evian les bains, octobre 2025

Naissance du sujet

0000

Petite ville de la vallée de l'Ubaye (Alpes de Haute Provence), célèbre pour :

Naissance du sujet

0000

Petite ville de la vallée de l'Ubaye (Alpes de Haute Provence), célèbre pour :

→ Ses activités d'eau vive;

Naissance du sujet

0000

Petite ville de la vallée de l'Ubaye (Alpes de Haute Provence), célèbre pour :

- → Ses activités d'eau vive :
- → Ses belles montagnes;

Naissance du sujet 0000

> Petite ville de la vallée de l'Ubaye (Alpes de Haute Provence), célèbre pour :

- → Ses activités d'eau vive :
- → Ses belles montagnes;
- \rightarrow ses sept cols, dont la Bonnette (2715m);

PETIT QUIZZ UBAYEN

Naissance du sujet

Qu'est-ce qu'un "Choucas" ? (cochez la bonne réponse)

- ☐ Un bar karaoke
- ☐ Une boisson alcoolisée
- □ Un oiseau de la famille des corvidés

PETIT QUIZZ UBAYEN

Naissance du sujet 0000

Qu'est-ce qu'un "Choucas"? (cochez la bonne réponse)

- ✓ Un bar karaoke
- ✓ Une boisson alcoolisée
- ✓ Un oiseau de la famille des corvidés

PROGRAMME SCIENTIFIQUE D'ETICS 2016

Lecturers (source https://uq.math.cnrs.fr/etics):

- → François Bachoc (Université Paul Sabatier) : Calibration of computer experiments
- → Sébastien Da Veiga (SafranTech) : Advanced methods in sensitivity analysis
- → Stéphane Gaïffas (Ecole Polytechnique) : Methods for covariance matrix estimation -
- → Tim Sullivan (Free University of Berlin / Zuse Institute Berlin): Optimal distributionally robust uncertainty quantification

INDUSTRIAL CONTEXT

Naissance du sujet

We study a mock-up of a water pressured nuclear reactor during an intermediate break loss of coolant accident in the primary loop.

Figure: The replica of a water pressured reactor, with the hot and cold leg.

Figure: CATHARE code temperature output for nominal parameters.

Introduction 00000000

Naissance du sujet

Our use-case is a thermal-hydraulic computer code (CATHARE), which simulates a intermediate break loss of coolant accident. The variable of interest is the peak cladding temperature.

Naissance du sujet

Let G be our computer code, the output distribution writes $F_{\mu}(h) = \mathbb{P}_{\mu}(G(X) \leq h).$

Naissance du sujet

Let G be our computer code, the output distribution writes $F_{\boldsymbol{\mu}}(h) = \mathbb{P}_{\boldsymbol{\mu}}(G(X) \leq h).$

Naissance du sujet

The quantity of interest (here a quantile) depends on the input distributions μ .

Naissance du sujet

OUQ consists in finding the optimum of the quantity of interest over a set of input distribution $\mu \in \mathcal{A}$.

UNCERTAINTY MODELIZATION

Naissance du sujet

We consider robustness by finding bounds on a quantity of interest ϕ

$$\mu \in \mathcal{P}(X) \mapsto \phi(\mu)$$

→ We optimize the quantity of interest over a measure space

$$\sup_{\boldsymbol{\mu}\in\mathcal{A}}\phi(\boldsymbol{\mu})$$

 \rightarrow The measure space \mathcal{A} should be compatible with the data, it should effectively represent the uncertainty on the distribution

THE MOMENT CLASS

Naissance du sujet

In this work we will focus on two different optimization space.

→ The moment class :

$$\mathcal{A}^* = \left\{ (\mu_1, \dots, \mu_d) \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \leq c_i^{(j)}, \ j = 1, \dots, N_i \right\},\,$$

→ and the unimodal moment class

$$\mathcal{A}^\dagger = \left\{ \mathsf{Unimodal} \; \boldsymbol{\mu} \in \prod_{i=1}^d \mathcal{P}([l_i, u_i]) \mid \mathbb{E}_{\mu_i}[X^j] \leqq c_i^{(j)} \;, \; j = 1, \dots, N_i \right\} \,,$$

Problem: this is an optimization over an infinite non parametric space...

OTHER "DISTRIBUTION ROBUSTNESS" METHODS (1/2)

Perturbed Law indices (see Lemaitre et al. 2015)

PLI is a reliability sensitivity index, quantifying the robustness of a QOI to uncertain input law assumptions, typically moments

OTHER "DISTRIBUTION ROBUSTNESS" METHODS (2/2)

Info-gap theory (see Ajenjo et al. 2022)

Info-gap is a none probablistic theory, quantifying the robustness of a QOI when uncertain inputs lie in nested convex sets

QUASI-CONVEX FUNCTION

Naissance du sujet

A function ϕ is said to be quasi-convex if

$$\phi(\lambda x + (1 - \lambda)y) \le \max\{\phi(x); \phi(y)\}\$$

QUASI-CONVEX FUNCTION

Naissance du sujet

From the Bauer maximum principle, a convex function on a compact convex set reaches its maximum on the extreme points

→ The Bauer maximum principle remains true for quasi-convex function.

REDUCTION THEOREM

Reduction theorem

- → The (unimodal) moment class is compact convex.
- \rightarrow The quantity of interest ϕ is a quasi-convex lower semicontinuous function of the measure $\mu \in \mathcal{A}$

Then,

Naissance du sujet

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) \;,$$

where Δ is the set of extreme points of A.

Reduction theorem

- → The (unimodal) moment class is compact convex.
- \rightarrow The quantity of interest ϕ is a quasi-convex lower semicontinuous function of the measure $\mu \in \mathcal{A}$

Then,

Naissance du sujet

$$\sup_{\mu \in \mathcal{A}} \phi(\mu) = \sup_{\mu \in \Delta} \phi(\mu) \;,$$

where Δ is the set of extreme points of A.

→ What are the extreme points of the (unimodal) moment class?

Extreme points of the moment class

If you have N_i constraints on μ_i , then μ_i can be specified as a convex combination of at most N_i+1 Dirac masses

$$\Delta^* = \left\{ \mu \in \mathcal{A}^* \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \delta_{\mathrm{x}_k}, \; \mathrm{x}_k \in [l_i, u_i]
ight\}$$

First approach

Naissance du sujet

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x=0.

 \rightarrow How much mass can you pur on the region x > a?

First approach

Naissance du sujet

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x=0.

 \rightarrow How much mass can you pur on the region x > a?

First approach

Naissance du sujet

You are given 1kg of sand to arrange however you wish on a seesaw balanced around x=0.

 \rightarrow How much mass can you pur on the region x > a?

Extreme points of the unimodal moment class

If you have N_i constraints on μ_i , then μ_i can be specified as a convex combination of at most $N_i + 1$ uniform distributions

$$\Delta^\dagger = \left\{ \mu \in \mathcal{A}^\dagger \mid \mu_i = \sum_{k=1}^{N_i+1} \omega_k \, \mathcal{U}(heta_i, z_k), \; z_k \in [l_i, u_i]
ight\}$$

where θ_i denotes the mode of μ_i .

REDUCTION THEOREM FOR A PROBABILITY OF FAILURE

Consider the quantity of interest to be a probability of failure (PoF).

→ it is a linear function of the input measure, thus is quasi-convex.

Over the moment class \mathcal{A}^* , the optimal PoF can be computed on the set of discrete finite input distributions :

$$\sup_{\mu \in \mathcal{A}^*} \phi(\mu) = \sup_{\mu \in \mathcal{A}^*} F_{\mu}(h) ,$$

$$= \sup_{\mu \in \Delta^*} \mathbb{P}_{\mu} \left(G(X_1, \dots, X_d) \le h \right) ,$$

$$= \sup_{\mu \in \Delta^*} \sum_{i_1 = 1}^{N_1 + 1} \dots \sum_{i_2 = 1}^{N_d + 1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(\mathbf{x}_{i_1}^{(1)}, \dots, \mathbf{x}_{i_p}^{(p)}) \le h\}} .$$

Let enforce N moment constraints on a measure $\mathbb{E}_{n}[X^{j}] = c_{j}$. OUQ theorem guaranties the optimal measure to be supported on at most N+1 points :

$$\mu = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x_i}}$$

We have the following system of constraint equations:

$$\begin{cases} \omega_{1} & + & \dots & + & \omega_{N+1} & = 1 \\ \omega_{1}x_{1} & + & \dots & + & \omega_{N+1}x_{N+1} & = c_{1} \\ \vdots & & & \vdots & & \vdots \\ \omega_{1}x_{1}^{N} & + & \dots & + & \omega_{N+1}x_{N+1}^{N} & = c_{N} \end{cases}$$

→ The weights are uniquely determined by the positions.

DISCRETE MEASURES

Naissance du sujet

Let enforce N moment constraints on a measure $\mathbb{E}_{\mu}[X^j]=c_j$. OUQ theorem guaranties the optimal measure to be supported on at most N+1 points :

$$\mu = \sum_{i=1}^{N+1} \omega_i \delta_{\mathbf{x_i}}$$

We have the following system of constraint equations:

GEOMETRICAL INTERPRETATION

Naissance du sujet

Example : Let μ be supported on [0,1] such that $\mathbb{E}_{\mu}[X]=0.5$ and $\mathbb{E}_{\mu}[X^2] = 0.3$.

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

GEOMETRICAL INTERPRETATION

Example : Let μ be supported on [0,1] such that $\mathbb{E}_{\mu}[X]=0.5$ and $\mathbb{E}_{\mu}[X^2]=0.3$.

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

- \checkmark x = (0.1, 0.4, 0.9) gives weights ω = (0.05, 0.73, 0.22)
- $\mathbf{x} = (0.1, 0.3, 0.9)$ gives weights $\boldsymbol{\omega} = (-0.19, 0.92, 0.27)$

GEOMETRICAL INTERPRETATION

Example : Let μ be supported on [0,1] such that $\mathbb{E}_{\mu}[X]=0.5$ and $\mathbb{E}_{\mu}[X^2]=0.3$.

$$\Delta^* = \left\{ \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \mathcal{P}([0,1]) \mid \mathbb{E}_{\mu}[X] = 0.5, \ \mathbb{E}_{\mu}[X^2] = 0.3 \right\} ,$$

$$\checkmark \quad \mathbf{x} = (0.1, 0.4, 0.9) \text{ gives weights } \boldsymbol{\omega} = (0.05, 0.73, 0.22)$$

$$\times \quad \mathbf{x} = (0.1, 0.3, 0.9) \text{ gives weights } \boldsymbol{\omega} = (-0.19, 0.92, 0.27)$$

$$\checkmark \quad \mathcal{V}_{\Delta^*} = \left\{ \mathbf{x} = (x_1, x_2, x_3) \in [0, 1]^3 \mid \mu = \sum_{i=1}^3 \omega_i \delta_{x_i} \in \Delta^* \right\}$$

How to optimize over and explore the manifold \mathcal{V}_{Δ} ?

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.

POSSIBLE WAYS OF OPTIMIZING

- → Optimization under constraints : the position and the weight must satisfy the Vandermonde system.
- → Optimization by rewriting the objective function : changing the parameterization of the problem so that the constraint are naturally enforced in the objective function.

Canonical moments allows to efficiently explore the set of optimization Δ^* .

CANONICAL MOMENTS PARAMETERIZATION

CLASSICAL MOMENTS PROBLEM

Naissance du sujet

$$\left(\frac{1}{2},\,\frac{1}{3},\,\frac{1}{4},\,\ldots\right)$$

 \rightsquigarrow Moment sequence of $\mathcal{U}[0,1]$

$$\left(1,\,\frac{4}{3},\,2,\,\ldots\right)$$

CLASSICAL MOMENTS PROBLEM

$$\left(\frac{1}{2},\,\frac{1}{3},\,\frac{1}{4},\,\ldots\right)$$

 \sim Moment sequence of $\mathcal{U}[0,1]$

$$\left(1,\,\frac{4}{3},\,2,\,\ldots\right)$$

 \rightsquigarrow Moment sequence of $\mathcal{U}[0,2]$

Conclusion: there is no relation between the classical moments and the intrinsic structure of the distribution.

MOMENT SPACE

Naissance du sujet

We define the moment space $M_n = \{\mathbf{c}_n(\mu) = (c_1, \dots, c_n) \mid \mu \in \mathcal{P}([0, 1])\}$

Given $\mathbf{c}_n \in \mathrm{int} M_n$, we define the extreme values

$$c_{n+1}^+ = \max \{c : (c_1, \dots, c_n, c) \in M_{n+1}\}\$$

$$c_{n+1}^- = \min \{c : (c_1, \dots, c_n, c) \in M_{n+1}\}\$$

They represent the maximum and minimum value of the (n+1)th moment a measure can have, when its moments up to order n equal to c_n .

Figure : representation of M_2

CANONICAL MOMENTS

Naissance du sujet

The nth canonical moment is defined as

$$p_n = p_n(\mathbf{c}) = \frac{c_n - c_n^-}{c_n^+ - c_n^-}$$

Properties of canonical moments

- → The canonical moments are invariants by affine transformation. Which means we can always transform a measure supported on [a, b] to [0, 1]

LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$, we have two representations of the same polynomial P_{n+1}^* :

→ Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - \mathbf{x_i}) .$$

$$P_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}.$$

LINK BETWEEN SUPPORT AND CANONICAL MOMENTS

Given a measure $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i}$, we have two representations of the same polynomial P_{n+1}^* :

→ Its roots are the measure support points :

$$P_{n+1}^*(z) = \prod_{i=1}^{n+1} (z - \mathbf{x_i}) .$$

→ Its coefficients are function of a sequence of the measure canonical moments $\mathbf{p} = (p_1, \dots, p_{2n+1})$:

$$P_{n+1}^*(z) = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}.$$

Let
$$\mu \in \Delta^* = \left\{ \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \in \mathcal{P}([a,b]) \mid \mathbb{E}_{\mu}[X^j] = c_j, \ 1 \leq j \leq n \right\}$$

$$\mu\in\Delta^*$$

$$\bigvee_{p_{n+1}^*}$$
 The support of μ is the roots of a polynomial
$$P_{n+1}^*=\prod_{i=1}^{n+1}(x-\textbf{\textit{x}}_i)$$

$$P_{n+1}^*$$

EFFECTIVE PARAMETERIZATION

$$\mu \in \Delta^*$$

$$\bigvee_{P_{n+1}^* = \prod_{i=1}^{n+1} (x-x_i)} \text{The support of } \mu \text{ is the roots of a polynomial}$$

$$P_{n+1}^* = \prod_{i=1}^{n+1} (x-x_i)$$

$$\bigvee_{P_{n+1}^* = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}} \text{Coefficients are defined with a sequence of canonical moments}$$

$$P_{n+1}^* = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}$$

$$\mathbf{p} = (p_1, \dots, p_n, p_{n+1}, \dots, p_{2n+1})$$

EFFECTIVE PARAMETERIZATION

$$\mu \in \Delta^*$$

$$\bigvee_{p_{n+1}} P_{n+1}^* = \prod_{i=1}^{n+1} (x - \underline{x_i})$$
 The support of μ is the roots of a polynomial
$$P_{n+1}^* = \prod_{i=1}^{n+1} (x - \underline{x_i})$$

$$\bigvee_{p_{n+1}^*} P_{n+1}^* = \varphi_0(\mathbf{p}) + \varphi_1(\mathbf{p})z + \dots + \varphi_{n+1}(\mathbf{p})z^{n+1}$$

$$\mathbf{p} = (\underbrace{p_1, \dots, p_n, p_{n+1}, \dots, p_{2n+1}}_{\text{in }]0, 1[^{n+1}]}$$
 set by constraints
$$\mathsf{p} = (\underbrace{p_1, \dots, p_n, p_{n+1}, \dots, p_{2n+1}}_{\text{in }]0, 1[^{n+1}]}$$

EFFECTIVE PARAMETERIZATION

We can explore the whole set Δ^* using a parameterization in $]0,1[^{n+1}.$

GENERATION OF ADMISSIBLE MEASURES

Theorem

Naissance du sujet

The manifold

$$\mathcal{V}_{\Delta^*} = \left\{ \mathbf{x} = (x_1, \dots, x_{n+1}) \in [0, 1]^{n+1} \text{ s.t.}
ight.$$
 $\mu = \sum_{i=1}^{n+1} \omega_i \delta_{x_i} \text{ satisfies the constraints}
ight\}$

is an algebraic variety, it is the zero locus of the set of polynomials

$$\left\{P_{n+1}^* \mid (p_{n+1}, \dots, p_{2n+1}) \in [0, 1]^{n+1} \right\}$$

SET OF ADMISSIBLE MEASURES

- \rightarrow Consider μ in [0, 1] and two moment constraints : $c_1 = 0.5$ and $c_2 = 0.3$ equivalent to $p_1 = 0.5$ and $p_2 = 0.2$.
- \rightarrow We generate randomly $(p_3, p_4, p_5) \in [0, 1]^3$ and compute for every sequence P_3^* whose roots constitute the coordinates of the points.
- → The point coordinates correspond to the support of a discrete measure in Α.

SET OF ADMISSIBLE MEASURES

- \rightarrow Consider μ in [0, 1] and two moment constraints : $c_1 = 0.5$ and $c_2 = 0.3$ equivalent to $p_1 = 0.5$ and $p_2 = 0.2$.
- \rightarrow We generate randomly $(p_3, p_4, p_5) \in [0, 1]^3$ and compute for every sequence P_3^* whose roots constitute the coordinates of the points.
- → The point coordinates correspond to the support of a discrete measure in Α.

Algorithm 1: P.O.F COMPUTATION

- **Inputs**: lower bounds, $l = (l_1, \ldots, l_d)$
 - upper bounds, $\mathbf{u} = (u_1, \dots, u_d)$
 - constraints sequences of moments, $\mathbf{c}_i = (c_i^{(1)}, \dots, c_i^{(N_i)})$ and

its corresponding sequences of canonical moments, $\mathbf{p}_i = (p_i^{(1)}, \dots, p_i^{(N_i)})$ for 1 < i < d.

```
function P.O.F(p_1^{(N_1+1)}, \dots, p_1^{(2N_1+1)}, \dots, p_d^{(N_d+1)}, \dots, p_d^{(2N_d+1)})
        for i = 1, \ldots, d do
                for k = 1, \ldots, N_i do
        P_{i*}^{(k+1)} = (X - l_i - (u_i - l_i)(\zeta_i^{2k} + \zeta_i^{(2k+1)}))P_{i*}^{(k)} - (u_i - l_i)^2 \zeta_i^{(2k-1)} \zeta_i^{(2k)} P_{i*}^{(k-1)};
              x_i^{(1)}, \dots, x_i^{(N_i+1)} = \mathsf{roots}(P_i^{*(N_i+1)}):
        \omega_i^{(1)}, \dots, \omega_1^{(N_i+1)} = \mathsf{weight}(x_i^{(1)}, \dots, x_1^{(N_i+1)}, \mathbf{c}_i);
       return \sum_{i_1=1}^{N_1+1} \dots \sum_{i_d=1}^{N_d+1} \omega_1^{(i_1)} \dots \omega_d^{(i_d)} \mathbb{1}_{\{G(x_i^{(i_1)},\dots,x_i^{(i_d)}) \leq h\}};
```


INDUSTRIAL CONTEXT

Our use-case is a thermal-hydraulic computer code (CATHARE), which simulates a intermediate break loss Of coolant accident. The variable of interest is the peak cladding temperature.

Figure : The replica of a water pressured reactor, with the hot and cold leg.

Figure : CATHARE code temperature output for nominal parameters.

MOMENT CONSTRAINTS FOR CATHARE

Naissance du sujet

Variable	Bounds	Initial distribution (truncated)	Mean	Second order moment
$n^{\circ}10$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}22$	[0, 12.8]	Normal(6.4, 4.27)	6.4	45.39
$n^{\circ}25$	[11.1, 16.57]	Normal(13.79)	13.83	192.22
$n^{\circ}2$	[-44.9, 63.5]	Uniform(-44.9, 63.5)	9.3	1065
$n^{\circ}12$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}9$	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02
$n^{\circ}14$	[0.235, 3.45]	LogNormal(-0.1, 0.45)	0.99	1.19
$n^{\circ}15$	[0.1, 3]	LogNormal(-0.6, 0.57)	0.64	0.55
n°13	[0.1, 10]	LogNormal(0, 0.76)	1.33	3.02

Table: Corresponding moment constraints of the 9 most influential inputs of the CATHARE model. Two moment constraints are enforced, that correspond to the mean and the variance of each input distribution

QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure? Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .

QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure? Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .

QUASI-CONVEXITY OF THE QUANTILE (HEURISTIC)

Why is the quantile a quasi-convex function of the measure? Let denote $Q_p(\mu)$ the quantile of order p of a distribution μ .

→ For the same reason, the superquantile is a quasi-convex function of the measure.

OPTIMIZATION FOR CATHARE

$$q_{init}^{0.95} = 760^{\circ} C$$

$$q_{init}^{0.95} = 760^{\circ} C \qquad \rightsquigarrow \quad q_{optim}^{0.95} = 788^{\circ} C$$

UNCERTAINTY TAINTING THE METAMODEL (1/2)

We recall the probability of failure $F_n(h)$ is computed as

$$\inf_{\mu \in \mathcal{A}} F_{\mu}(h) = \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \left(G(X_1, \dots, X_d) \le h \right) ,$$

$$= \inf_{\mu \in \Delta} \sum_{i_1=1}^{N_1+1} \dots \sum_{i_d=1}^{N_d+1} \omega_{i_1}^{(1)} \dots \omega_{i_d}^{(d)} \mathbb{1}_{\{G(x_{i_1}^{(1)}, \dots, x_{i_p}^{(p)}) \le h\}} .$$

 \rightarrow The simple approach replaces uncertain $G(\mathbf{x})$ by the predictor of the kriging metamodel $\mathscr{G}(\mathbf{x}, \boldsymbol{\theta})$, that is, the GP expectation.

UNCERTAINTY TAINTING THE METAMODEL (2/2)

 \rightsquigarrow We propose to compute $F_u(h)$ for several trajectories of the metamodel, and minimize a *quantile* of the resulting sample, rather than the expectation.

$$\inf_{\mu \in \mathcal{A}} F_{\mu}(h, \boldsymbol{\theta}) = \inf_{\mu \in \mathcal{A}} \mathbb{P}_{\mu} \left(\mathscr{G}(X_{1}, \dots, X_{d}, \boldsymbol{\theta}) \leq h \right) ,$$

$$= \inf_{\mu \in \Delta} \sum_{i_{1}=1}^{N_{1}+1} \dots \sum_{i_{d}=1}^{N_{d}+1} \omega_{i_{1}}^{(1)} \dots \omega_{i_{d}}^{(d)} \mathbb{1}_{\{\mathscr{G}(x_{i_{1}}^{(1)}, \dots, x_{i_{p}}^{(p)}, \boldsymbol{\theta}) \leq h\}} .$$

get a sample for different realization of the gaussian process

OPTIMIZATION FOR CATHARE

CONCLUSION AND PERSPECTIVES

- → The reduction theorem gives the basis for numerical optimization of the quantity of interest.
- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.

CONCLUSION AND PERSPECTIVES

→ The reduction theorem gives the basis for numerical optimization of the quantity of interest.

Canonical Moments Parameterization

- → The moment class and unimodal moment class have very interesting topological structure.
- → The canonical moment parameterization is well suited for exploring the extreme points, thus fastening the global optimization.
- → Inequality moment constraints can also be enforced.
- → Limited to *classical* moment constraints.
- → Possible extension to quantile classes.
- → Need to account for metamodel uncertainty
- → Raw global optimization to be refined by computing gradient of the quantity of interest.
- → Computation subject to curse of dimensionality: reducing the input dimension is a mandatory first step.

SOME REFERENCES

- [1] J. Stenger, F. Gamboa, M. Keller, B. looss, Optimal Uncertainty Quantification of a risk measurement from a thermal-hydraulic code using canonical moments, International Journal of Uncertainty Quantification (2019).
- J. Stenger, F. Gamboa, M. Keller, Optimization Of Quasi-convex Function Over Product Measure Sets, SIAM Journal on Optimization, 31(1), p.425-447 (2021).
- H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns, M. Ortiz, Optimal Uncertainty Quantification, SIAM Rev. 55(2), p.271–345, (2013).
- [4] P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. looss. Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85, p.1200-1223, (2015).
- [5] A. Ajenjo, E. Ardillon, V. Chabridon, B. Iooss, S. Cogan, E. Sadoulet-Reboul, An info-gap framework for robustness assessment of epistemic uncertainty models in hybrid structural reliability analysis. Structural Safety, 96, (2022).
- [6] B. looss, A. Marrel, Advanced methodology for uncertainty propagation in computer experiments with large number of inputs, Nuclear Technology, pp. 1-19, (2019).

THANK YOU FOR YOUR ATTENTION!