

Mieux comprendre pour mieux mesurer. Défis et avancées en calibration de capteurs de pollution en environnement ouvert.

G. Perrin¹, M. Dumon¹, B. Lebental¹

ETICS, 5-10 Octobre, Evian-les-Bains, France | June 2025

¹Université Gustave Eiffel, COSYS, 77420 Champs-sur-Marne, France

La pollution de l'air en France en guelques chiffres

- Amélioration nette depuis 20 ans : entre 2005 et 2024, les concentrations en PM2,5 et NO_2 ont chuté de respectivement 55% et 50%, entraînant une baisse d'un tiers des décès prématurés liés à la pollution de l'air.
- **L'Ozone, une exception persistante** : contrairement aux autres polluants, l'ozone de basse altitude reste problématique, en raison du réchauffement climatique et du transport de pollution à longue distance.
- Des expositions très localisées : en 2024, 800 Franciliens étaient encore exposés à des dépassements réglementaires (vs 5 000 en 2023), principalement près des grands axes routiers et en petite couronne.
- Enjeu des futures normes : si les seuils OMS 2030 étaient déjà en vigueur, 2.6M d'habitants d'IDF seraient concernés par un dépassement en 2024.
- Un poids sanitaire toujours lourd : en 2019, la pollution entraînait encore ~10 mois de vie perdus par adulte et contribuait à 10-20% des maladies respiratoires chroniques et 5-10% des maladies card. ou métaboliques.
- ⇒ besoin d'un suivi beaucoup plus **précis** de la pollution à l'échelle **locale**.

000000

Figure – Concentration movenne annuelle en NO_2 en 2007.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

Figure – Concentration moyenne annuelle en NO_2 en 2010.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

Figure – Concentration movenne annuelle en NO_2 en 2013.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

Figure – Concentration movenne annuelle en NO_2 en 2016.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

000000

Figure – Concentration movenne annuelle en NO_2 en 2019.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

Figure – Concentration movenne annuelle en NO_2 en 2024.

 $^{1. \}quad \text{https://www.airparif.fr/surveiller-la-pollution/bilans-et-cartes-annuels-de-pollution} \\$

000000

Des inégalités d'exposition "très" locales

- Des différences d'exposition très marquées à l'échelle locale : un simple changement de parcours voire de trottoir ainsi qu'une variation de hauteur dans la rue (enfants/adultes) peut réduire fortement l'inhalation de particules fines et de gaz.
- Influence du contexte urbain : la configuration des rues, la présence de bâtiments rapprochés ("rues canyons"), ou encore le sens du vent créent des micro-zones où la pollution stagne et s'accumule.
- Le déploiement d'applications de guidage : AirCHeck (CEA), Walkable ou Bikeable proposent de comparer des itinéraires non seulement sur la distance, mais aussi sur la qualité de l'air et le confort urbain.

Des inégalités d'exposition "très" locales

- Des différences d'exposition très marquées à l'échelle locale : un simple changement de parcours - voire de trottoir - ainsi qu'une variation de hauteur dans la rue (enfants/adultes) peut réduire fortement l'inhalation de particules fines et de gaz.
- Influence du contexte urbain : la configuration des rues, la présence de bâtiments rapprochés ("rues canyons"), ou encore le sens du vent créent des micro-zones où la pollution stagne et s'accumule.
- Le déploiement d'applications de guidage : AirCHeck (CEA), Walkable ou Bikeable proposent de comparer des itinéraires non seulement sur la distance. mais aussi sur la qualité de l'air et le confort urbain.
- ⇒ de nouvelles attentes de personnalisation : en exploitant différentes données en temps réel (capteurs, météo, trafic), on pourrait "imaginer" proposer des recommandations ultra-locales, au jour le jour.

Quelle instrumentation actuelle?

Figure – (seulement) 70 stations de mesure, dont plus d'une cinquantaine de stations permanentes.

⇒ de grandes attentes pour le déploiement de capteurs bas-coûts, performants et fiables.

000000

Les capteurs low-cost

 Exemples : capteurs optiques, électrochimiques, semi-conducteurs, nanocapteurs (nanoparticules métalliques, nanotubes de carbone, graphène...),...

(+) Avantages:

- → grande sensibilité (détection à faible concentration, jusqu'à qq ppb),
- → consommation énergétique faible,
- → miniaturisation possible,
- → faible coût, production de masse possible.

(-) Limites:

- → faible sélectivité.
- → sensibilité à l'humidité, à la température, ...
- → calibration difficile.
- → dérives dans le temps.
- ⇒ des capteurs souvent encore en développement, en phase de transfert entre recherche et marché.

00000

Un exemple de capteur développé à UGE

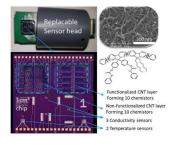


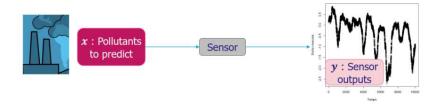
Figure – Sensibilités probables d'après la littérature : Température, Humidité relative (RH), CO, CO_2 , O_3 , NO, NO_2 ,...

- Comment exploiter les sorties renvoyées par de tels capteurs?
- Peut-on évaluer l'effet de la fonctionnalisation?
- Quelles futures fonctionnalisations proposer?

Plan de la présentation

- 1 Introduction
- 2 Formalisation du déploiement d'un capteur innovant
- 3 Difficulté 1 : une manque de sélectivité
- 4 Difficulté 2 : des entrées incertaines
- 5 Difficulté 3 : la prise en compte du temps
- 6 Conclusions

Formalisation du déploiement d'un capteur innovant



Une approche en deux-temps

Calibration

- 1. Calibration du capteur ↔ Problème direct.
 - Recueil d'observations $\mathcal{D}_n = (x_i, y_i)_{i=1}^n$.
 - Approximation de la relation $x \to y$ (loi de calibration).
- 2. **Exploitation** du capteur ↔ Problème **inverse**.
 - Observation d'une sortie capteur y_{+} .
 - Estimation de la valeur associée de x_{\star} à partir de la loi de calibration.

Un exemple simple

Cas linéaire gaussien univarié : $y_i = ax_i + b + \varepsilon_i$, $1 \le i \le n$. $\mathcal{D}_n = (x_i, y_i)_{i=1}^n$.

Calibration (Formalisme bayésien)

Calibration

0000000

- Priors: $\beta = (a, b) \sim \mathcal{N}(\beta_0, C_0) \perp \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.
- Posterior : $y_n = (y_1, ..., y_n)$, $H_n = [x_n \ 1_n]$, $x_n = (x_1, ..., x_n)$.

$$\boldsymbol{\beta}|\mathcal{D}_n \sim \mathcal{N}\left(\boldsymbol{R}^{-1}\left(\sigma^{-2}\boldsymbol{H}_n^T\boldsymbol{y}_n + \boldsymbol{C}_0^{-1}\boldsymbol{\beta}_0\right), \ \boldsymbol{R}^{-1}\right), \quad \boldsymbol{R} = \sigma^{-2}\boldsymbol{H}_n^T\boldsymbol{H}_n + \boldsymbol{C}_0^{-1}.$$

Exploitation (Formalisme bayésien)

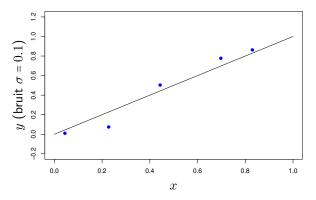
- Priors : $x_{\star} \sim \mathcal{U}(0,1) \perp \varepsilon_{\star} \sim \mathcal{N}(0,\sigma^2)$.
- Posterior : $h_{\star} = (x_{\star}, 1)$, $Q(x_{\star}) = R + \sigma^{-2} h_{\star} h_{\star}^{T}$, $\widetilde{\beta}(x_{\star}, y_{\star}) = \sigma^{-2} (H_{n}^{T} y_{n} + h_{\star} y_{\star}) + C_{0}^{-1} \beta_{0}$.

$$\pi[x_{\star}|y_{\star},\mathcal{D}_n] \propto 1_{[0,1]}(x_{\star})\sqrt{\det(\boldsymbol{Q}(x_{\star}))}\exp\left(\frac{1}{2}\widetilde{\boldsymbol{\beta}}(x_{\star},y_{\star})^T\boldsymbol{Q}(x_{\star})^{-1}\widetilde{\boldsymbol{\beta}}(x_{\star},y_{\star})\right).$$

Calibration

0000000

Illustration graphique - approximation de $x \mapsto y(x)$



■ Points bleus

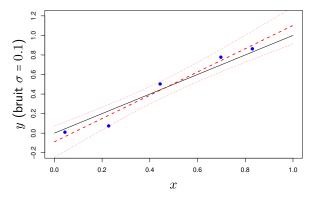
Info. dispo. / Ligne noire

"vraie" fonction de calibration.

Calibration

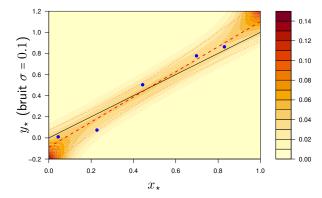
0000000

Illustration graphique - approximation de $x \mapsto y(x)$



■ Points bleus ↔ Info. dispo. / Ligne noire ↔ "vraie" fonction de calibration. Rouge ↔ fonction de calibration approchée + IC 95%.

Illustration graphique - inversion de $x \mapsto y(x)$



Calibration

Illustration graphique - inversion de $x \mapsto y(x)$

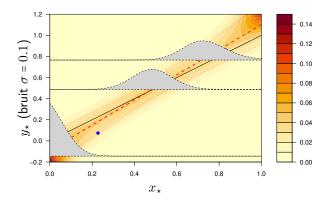


Illustration graphique - inversion de $x \mapsto y(x)$

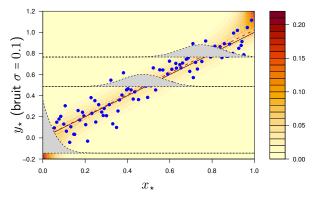


Illustration graphique - inversion de $x \mapsto y(x)$

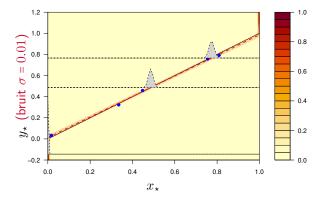
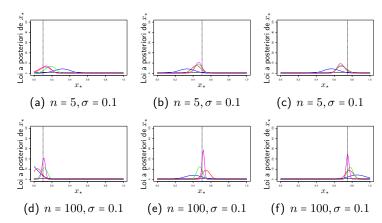
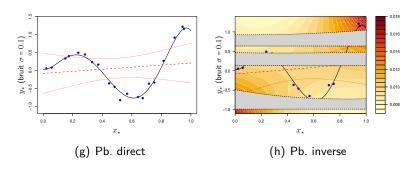


Illustration graphique - extension multi-capteurs

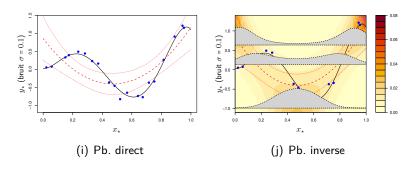


 $n\leftrightarrow \text{nombre de points pour l'apprentissage}$. Ligne noire verticale $\leftrightarrow x_{\star}^{\text{vrai}}$ / bleu \leftrightarrow une seule mesure / rouge ↔ 5 répétitions de mesure / vert ↔ 10 répétitions de mesure / magenta ↔ 100 répétitions de mesure.

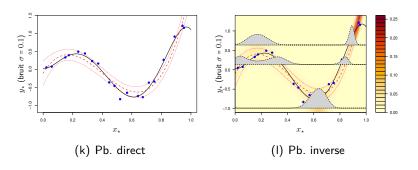
Approximation poly. d'ordre 1.



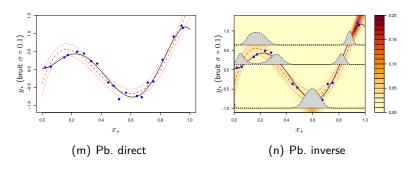
Approximation poly. d'ordre 2.



Approximation poly. d'ordre 3.

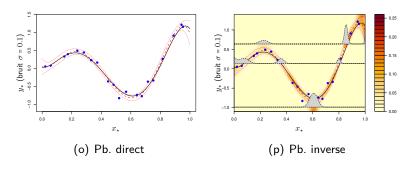


Approximation poly. d'ordre 4.



■ Points bleus ↔ Info. dispo. / Ligne noire ↔ "vraie" fonction de calibration. Rouge ↔ fonction de calibration approchée. Isoniveaux ↔ PDF de $x_\star|y_\star,\mathcal{D}_n$. Aires grisées ↔ zooms sur les PDF de $x_\star|y_\star,\mathcal{D}_n$ pour des valeurs spécifiques de y_\star .

Approximation poly. d'ordre 5.

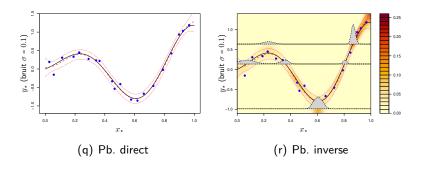


Calibration

000000

Illustration graphique - extension non-linéaire

Approximation par régression par processus gaussien (moyenne nulle, Matern-5/2).

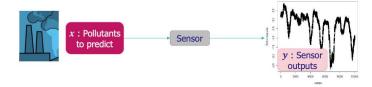


■ Points bleus ↔ Info. dispo. / Ligne noire ↔ "vraie" fonction de calibration. Rouge ↔ fonction de calibration approchée. Isoniveaux ↔ PDF de $x_\star|y_\star,\mathcal{D}_n$. Aires grisées ↔ zooms sur les PDF de $x_\star|y_\star,\mathcal{D}_n$ pour des valeurs spécifiques de y_\star .

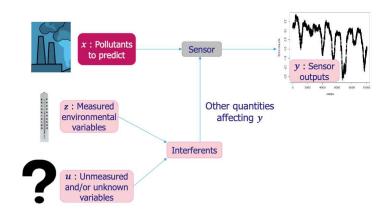
Plan de la présentation

- 1 Introduction
- 2 Formalisation du déploiement d'un capteur innovant
- 3 Difficulté 1 : une manque de sélectivité
- 4 Difficulté 2 : des entrées incertaines
- 5 Difficulté 3 : la prise en compte du temps

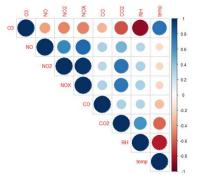
Le problème du manque de sélectivité...

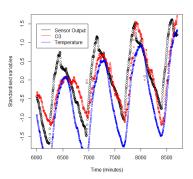


Le problème du manque de sélectivité...



...avec des variables environnementales fortement corrélées





- (s) Un exemple de corrélations
- (t) Evolutions temporelles associées
- ⇒ difficile d'identifier les variables ayant un "vrai" impact sur les sorties des capteurs.

Un exemple analytique

$$y = \frac{3}{2}\log(x+4) + \operatorname{atan}\left(\frac{z_1}{2}\right)\left(1 + 0.1\frac{z_1}{2}\right) + \operatorname{atan}\left(\frac{z_2}{2}\right)\left(1 + 0.1\frac{z_2}{2}\right) + 0.1\operatorname{atan}\left(\frac{z_3}{2}\right)\left(1 + 0.1\frac{z_3}{2}\right) + 3\cos\left(\frac{z_1 + z_3}{6}\right) + 2\cos\left(\frac{x + z_2}{6}\right) + 0z_4 + 0z_5 + \alpha_u u$$

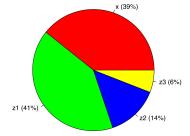


Figure – Décomposition de variance (PME) du vrai modèle

Entrées :

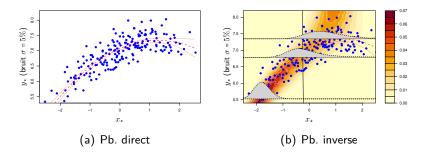
- 200 observations (bruitées) de $x, z_1, z_2, z_3, z_4, z_5$
- 5% noise, 0.8 de correlation

■ Résultats attendus :

- Sélection de z_1, z_2, z_3 ,
- Reconstruction de la décomposition de variance pour identifier les variables attendues.

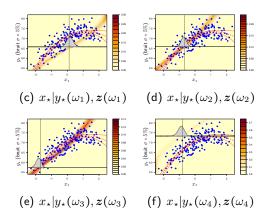
Calibration

Un exemple analytique



le fait de ne pas intégrer la dépendance en z réduit fortement l'utilité du capteur.

Un exemple analytique



en intégrant les mesures de $(z_1, z_2, z_3, z_4, z_5)$, on améliore sensiblement la précision du capteur.

Sélection des paramètres pertinents de z

Pour ne sélectionner que les composantes influentes de z, nous avons proposé¹ une méthode reposant sur :

- l'exploration d'un grand nombre de modèles polynomiaux fonction de l'ensemble des sous ensembles de composantes z_{α} de z, avec $\alpha \in \{1, \ldots, d_z\}$ le vecteur des indices conservées.
- la sélection de modèles *optimaux* via un compromis variance de prédiction/complexité de modèle à travers un critère BIC :

$$\mathsf{BIC}(\boldsymbol{\alpha}, \boldsymbol{f}_{\boldsymbol{\alpha}}) = n \times \log \left(V(\boldsymbol{\alpha}, \boldsymbol{f}_{\boldsymbol{\alpha}}) \right) + \sharp \boldsymbol{f}_{\boldsymbol{\alpha}} \times \log(n),$$

- $\rightarrow V(\alpha, f_{\alpha}) \leftrightarrow \text{variance de prédiction du modèle } f_{\alpha}$
- $\rightarrow \sharp f_{\alpha} \leftrightarrow \text{nombre de paramètres sur lequel repose le modèle } f_{\alpha}$,
- $\rightarrow n \leftrightarrow \text{nombre de points d'apprentissage}$.

^{1.} M. Dumon, Addressing uncertainties in uncontrolled environments, Thèse 2025.

Résultats sur le cas analytique

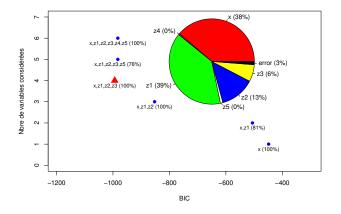


Figure – Fréquence des variables sélectionnées (100 répétitions) : z_1, z_2, z_3 : 100% / z_4 : 8% / z_5 : 10%. Triangle rouge : modèle sélectionné.

Retour au capteur développé à UGE

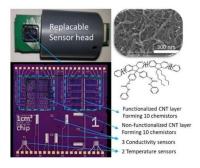
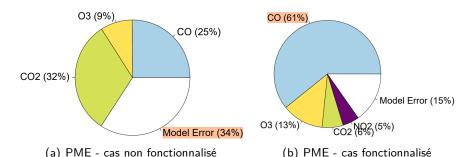


Figure – Variables environnementales mesurées : Température, Humidité relative (RH), CO, CO_2 , O_3 , NO, NO_2 ,..., Vitesse du vent,...

- ⇒ Peut-on évaluer l'effet de la fonctionnalisation?
- ⇒ Quelle instrumentation complémentaire minimale?

Retour au capteur développé à UGE



- ⇒ La fonctionnalisation semble avoir amélioré la sélectivité du capteur :
 - réduction de l'erreur de modèle (moins d'influence des variables non-mesurée?),
 - augmentation de la part attribuée au CO (au détriment de CO_2 ?),
 - mais apparition de NO_2 dans les quantités à mesurer...

Quelques détails sur les PME (1/3)

Le calcul du Proportional Marginal Effect (PME) de la j^{th} composante de $W = (x, z_1, \dots, z_5)$ est donné par :

$$\mathsf{PME}_{j} = \sum_{\pi \in \mathcal{S}_{D}} p(\pi) \left[S^{T} \left(C_{\pi(j)}(\pi) \right) - S^{T} \left(C_{\pi(j)-1}(\pi) \right) \right],$$

Incertitudes entrées

- $\blacksquare D = \{1, \ldots, d\} \leftrightarrow \text{ensemble des indices},$
- \blacksquare $\mathcal{S}_D \leftrightarrow$ ensemble des permutations de D,
- $\blacksquare \pi = (\pi_1, \dots, \pi_d) \leftrightarrow \text{élément particulier de } \mathcal{S}_D$
- \blacksquare $\pi(j)$ est la position de j dans π telle que $\pi_{\pi(j)} = j$,
- $C_i(\pi) = \{\pi_k : k \leq j\}$ est l'ensemble des j premiers indices dans l'ordre fourni par π avec la convention $C_0(\pi) = \emptyset$,
- **p** pour tout $A \subset D$, et $S^T(A)$ est l'indice de Sobol total associé à A,
- $\mathbf{p}(\pi)$ est une fonction de poids telle que :

$$p(\pi) = \frac{L(\pi)}{\sum_{\sigma \in S_D} L(\sigma)}, \quad L(\pi) = \left(\prod_{k \in D} S^T(C_k(\pi))\right)^{-1}.$$

Quelques détails sur les PME (2/3)

Quelques propriétés intéressantes des PMEs¹ :

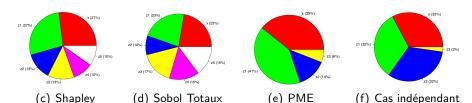
- Positivité et interprétabilité : les valeurs PME sont non négatives et somment à la variance totale du modèle.
- Pertinence causale : une variable sans effet causal aura un PME égal à zéro, même si elle est statistiquement corrélée à la sortie.
- Hiérarchie d'influence : une valeur PME élevée correspond à une forte influence sur la sortie du modèle, dans le sens où la proportion de variance qui lui est attribuée est élevée.

^{1.} M. Herin et al. PME for Global Sensitivity Analysis, 2024

Quelques détails sur les PME (3/3)

$$\begin{split} y &= \frac{3}{2} \log (x+4) + \operatorname{atan} \left(\frac{z_1}{2} \right) \left(1 + 0.1 \frac{z_1}{2} \right) + \operatorname{atan} \left(\frac{z_2}{2} \right) \left(1 + 0.1 \frac{z_2}{2} \right) \\ &+ 0.1 \operatorname{atan} \left(\frac{z_3}{2} \right) \left(1 + 0.1 \frac{z_3}{2} \right) + 3 \cos \left(\frac{z_1 + z_3}{6} \right) + 2 \cos \left(\frac{x + z_2}{6} \right) + 0 z_4 + 0 z_5 + \alpha_u u \end{split}$$

Comparaison à d'autres indices.



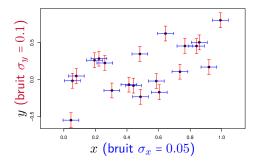
Plan de la présentation

- 1 Introduction
- 2 Formalisation du déploiement d'un capteur innovant
- 3 Difficulté 1 : une mangue de sélectivité
- 4 Difficulté 2 : des entrées incertaines
- 5 Difficulté 3 : la prise en compte du temps

Un exemple simple

Cas linéaire gaussien : $\mathcal{D}_n = (x_i^{\text{mes}}, z_i^{\text{mes}}, y_i^{\text{mes}})_{i=1}^n$, avec pour tout $1 \le i \le n$:

$$\left\{ \begin{array}{l} y_i^{\mathsf{mes}} = \beta_0 + \beta_x x_i + \beta_z z_i + \varepsilon_i^{\mathcal{Y}}, \\ x_i^{\mathsf{mes}} = x_i + \varepsilon_i^{x}, \quad z_i^{\mathsf{mes}} = z_i + \varepsilon_i^{z}, \\ \left(\varepsilon_i^{x}, \varepsilon_i^{z}, \varepsilon_i^{y}\right) \sim \mathcal{N} \left(\mathbf{0}, \mathsf{diag} \left(\sigma_x^2, \sigma_z^2, \sigma_y^2\right), \end{array} \right. \left(\begin{array}{l} x_i \\ z_i \end{array} \right) \sim \mathcal{N} \left(\mathbf{0}, S^2 \left[\begin{array}{c} 1 & \rho_{xz} \\ \rho_{xz} & 1 \end{array} \right] \right).$$



Un exemple simple

Estimation pratique de β = $(\beta_0, \beta_x, \beta_z)$ à partir de \mathcal{D}_n :

$$\begin{aligned} \boldsymbol{y}_{n}^{\text{mes}} &= \beta_{0} \boldsymbol{1}_{n} + \beta_{x} \boldsymbol{x}_{n} + \beta_{z} \boldsymbol{z}_{n} + \boldsymbol{\varepsilon}_{n}^{y} \\ &= \beta_{0} \boldsymbol{1}_{n} + \beta_{x} \boldsymbol{x}_{n}^{\text{mes}} + \beta_{z} \boldsymbol{z}_{n}^{\text{mes}} + \boldsymbol{\varepsilon}_{n}^{y} - \beta_{x} \boldsymbol{\varepsilon}_{n}^{x} - \beta_{z} \boldsymbol{\varepsilon}_{n}^{z} \\ &= \beta_{0} \boldsymbol{1}_{n} + \beta_{x} (\boldsymbol{x}_{n}^{\text{mes}} - \overline{\boldsymbol{x}}_{n}^{\text{mes}} \boldsymbol{1}_{n}) + \beta_{z} (\boldsymbol{z}_{n}^{\text{mes}} - \overline{\boldsymbol{z}}_{n}^{\text{mes}} \boldsymbol{1}_{n}) + (\boldsymbol{e}_{n}^{x,z,y} - \overline{\boldsymbol{e}}_{n}^{x,z,y} \boldsymbol{1}_{n}) \\ &= \boldsymbol{H}_{n} \boldsymbol{\beta} + (\boldsymbol{e}_{n}^{x,z,y} - \overline{\boldsymbol{e}}_{n}^{x,z,y} \boldsymbol{1}_{n}) \quad (\boldsymbol{e}_{n}^{x,z,y} = \boldsymbol{\varepsilon}_{n}^{y} - \beta_{x} \boldsymbol{\varepsilon}_{n}^{x} - \beta_{z} \boldsymbol{\varepsilon}_{n}^{z}). \end{aligned}$$

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{H}_n^T \boldsymbol{H}_n)^{-1} \boldsymbol{H}_n^T \boldsymbol{y}_n^{\mathsf{mes}}, \quad \boldsymbol{H}_n \coloneqq \begin{bmatrix} \boldsymbol{1}_n \ (\boldsymbol{x}_n^{\mathsf{mes}} - \overline{\boldsymbol{x}}_n^{\mathsf{mes}} \boldsymbol{1}_n) \ (\boldsymbol{z}_n^{\mathsf{mes}} - \overline{\boldsymbol{z}}_n^{\mathsf{mes}} \boldsymbol{1}_n) \end{bmatrix}.$$

On peut alors montrer que :

$$\operatorname{Var}(\widehat{\beta}_x) \approx \frac{1}{n} \frac{\sigma_y^2 + \sigma_x^2 \beta_x^2 + \sigma_z^2 \beta_z^2}{S^2 (1 - \rho_{xz}^2)}.$$

Gestion des entrées incertaines

La prise en compte des incertitudes sur les entrées a pour conséquence :

- → sur le problème direct (calibration) :
 - une perte du caractère explicite de la loi de $\beta | \mathcal{D}_n$,
 - une augmentation de variance de $\beta | \mathcal{D}_n$, un besoin réduit de δ_i^{mod} ,
- → sur le problème inverse (exploitation) :
 - une vraisemblance difficile à calculer (espérance sur β , produit/composition de gaussiennes),
 - la possibilité de prédire x_{\star} plutôt que sa valeur bruitée (et donc une potentielle **réduction** de variance d'estimation).
- ⇒ des simplifications sont possibles lorsque les erreurs sur les entrées sont petites (développements de Taylor, approximations gaussiennes,...).

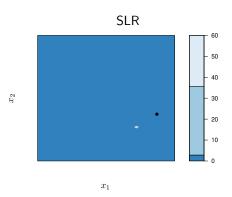


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

 x_2

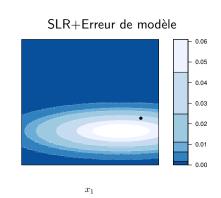


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

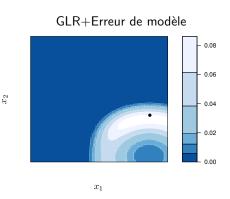


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

GLR+Erreur de modèle+Incertitudes sur les entrées

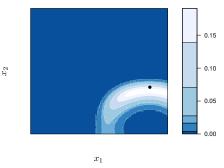


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

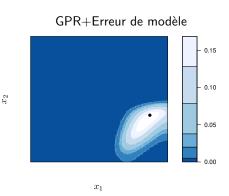


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

 x_2

GPR+Erreur de modèle+Incertitudes sur les entrées

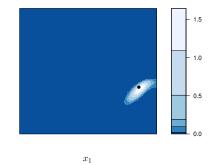


Figure – Point noir \leftrightarrow vraie valeur de x_{\star} . Aires colorées \leftrightarrow régions de prédiction de niveaux 25%, 50%, 75%, 90%, 95%, 99% and 100%.

Retour au capteur développé à UGE

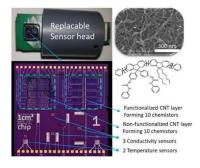


Figure – Variables environnementales considérées : Température, pH, HCIO.

- ⇒ Peut-on utiliser le capteur pour surveiller les valeurs de pH et HCIO dans l'eau?
- ⇒ Quel effet du modèle de calibration et de la prise en compte des incertitudes sur les entrées sur les résultats?

Retour au capteur développé à UGE

Method	$MAE_1(HCIO)$	$MAE_2(pH)$
SLR	0.056	1.36
SLR+ME	0.054	1.75
GLR + ME	0.064	0.872
GLR + ME + IU	0.068	1.057
GPR + ME	0.054	1.75
GPR+ME+IU	0.039	0.254

Table – Comparaison des valeurs MAE obtenues pour différentes méthodes de calibration (approche LOO).

Figure – Deux capteurs installés dans une conduite d'eau potable et connectés via un câble USB à des ordinateurs de contrôle.

Plan de la présentation

- 1 Introduction
- 2 Formalisation du déploiement d'un capteur innovant
- 3 Difficulté 1 : une manque de sélectivité
- 4 Difficulté 2 : des entrées incertaines
- 5 Difficulté 3 : la prise en compte du temps

Sensibilité temporelle des capteurs

■ Jusqu'à présent, nous nous sommes limités au cas où

$$y_t = \mathcal{M}(\boldsymbol{z}_t, \boldsymbol{x}_t, \boldsymbol{u}_t), \quad t \geq 0.$$

- \rightarrow la réponse capteur à l'instant t ne dépend que des grandeurs environnementales au même instant t.
- → **stabilité temporelle** de la loi de calibration.
- Une formulation plus générale (et plus réaliste) serait :

$$y_t = \mathcal{M}_t \left(\left\{ \boldsymbol{z}_{\tau}, \boldsymbol{x}_{\tau}, \boldsymbol{u}_{\tau}, \ t - t_{\mathsf{rep}} \leq \boldsymbol{\tau} \leq t \right\} \right), \quad t \geq 0.$$

- \rightarrow potentielle **dérive temporelle** : la loi de calibration dépend a priori de t(dégradation progressive,...).
- → potentiel temps de réponse non négligeable : la sortie capteur dépend de l'évolution des variables environnementales sur la durée t_{rep} .

Corrélation des quantités environnementales

■ Jusqu'à présent, nous nous sommes limités à l'estimation de la loi de :

$$x_{\star}|y_{\star}, \boldsymbol{z}_{\star}, \mathcal{D}_{n}.$$

- \rightarrow l'estimation de x_{\star} à l'instant \star ne dépend **que** des mesures disponibles (capteur+variables environnementales) **au même instant** \star .
- Pour une estimation plus générale (et sûrement plus précise), on pourrait chercher à estimer :

$$x_{\star}|(y_{\star-k},\boldsymbol{z}_{\star-k}),\ldots,(y_{\star},\boldsymbol{z}_{\star}),\ldots,(y_{\star+k'},\boldsymbol{z}_{\star+k'}),\mathcal{D}_{n}.$$

- \rightarrow on utilise pour reconstituer x_{\star} , en plus des mesures à \star , les k mesures passées (et potentiellement les k' mesures futures),
- → approche "processus" pour exploiter de potentielles **corrélations temporelles** entre variables évoluant dans le temps.

Corrélation des quantités environnementales

■ Jusqu'à présent, nous nous sommes limités à l'estimation de la loi de :

$$x_{\star}|y_{\star}, \boldsymbol{z}_{\star}, \mathcal{D}_{n}.$$

- \rightarrow l'estimation de x_{\star} à l'instant \star ne dépend **que** des mesures disponibles (capteur+variables environnementales) **au même instant** \star .
- Pour une estimation plus générale (et sûrement plus précise), on pourrait chercher à estimer :

$$x_{\star}|(y_{\star-k},\boldsymbol{z}_{\star-k}),\ldots,(y_{\star},\boldsymbol{z}_{\star}),\ldots,(y_{\star+k'},\boldsymbol{z}_{\star+k'}),\mathcal{D}_{n}.$$

- \rightarrow on utilise pour reconstituer x_{\star} , en plus des mesures à \star , les k mesures passées (et potentiellement les k' mesures futures),
- → approche "processus" pour exploiter de potentielles corrélations temporelles entre variables évoluant dans le temps.
- ⇒ Présentation de Mouad vendredi pour de premiers travaux sur ce sujet.

Plan de la présentation

- 1 Introduction
- 2 Formalisation du déploiement d'un capteur innovant
- 3 Difficulté 1 : une manque de sélectivité
- 4 Difficulté 2 : des entrées incertaines
- 5 Difficulté 3 : la prise en compte du temps
- 6 Conclusions

Conclusions

- De grandes attentes pour des capteurs bon-marché, précis et fiables, susceptibles de pouvoir être déployés finement sur le territoire.
- Des difficultés de (trop forte) sensibilité et de (trop faible) sélectivité.
- Une difficile intégration des dépendances temporelles.
- Encore beaucoup de questions par rapport au nombre de réponses...

