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3 / 99Traumabase: an observational French registry2

▷ 40000 trauma patients
▷ 300 heterogeneous features from pre-hospital and in-hospital settings
▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Lactate Blood Pres. Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292000
Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NR yes 318000
Pitie moto 30 w Imp 107 no 211000
...

. . .

⇒ Explain and Predict hemorrhagic shock, need for neurosurgery and
need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests + Quantify uncertainty1

1Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
2www.traumabase.eu - https://www.traumatrix.fr/



4 / 99Missing values3, 4, 5

Missing values are everywhere: unanswered questions in a
survey, lost data, damaged plants, machines that fail...

”The best thing to do with missing values is not to have
any”

Gertrude Mary Cox (1900-1978)

⇒ Still an issue in the ”big data” area (data from different sources)

3Little & Rubin (2019). Statistical Analysis with Missing Data, Third Edition, Wiley.
4Van Buuren (2018). Flexible Imputation of Data. Second Edition, Chapman & Hall.
5Schafer (1997). Analysis of Incomplete Multivariate Data, Chapman & Hall.
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”One of the ironies of Big Data is that missing data play an ever more
significant role”6

Complete case analysis: delete incomplete samples

• Bias: Resulting sample not representative of the target population
• Information loss: Take a matrix with d features where each entry is missing
with probability 1/100, remove a row (of length d) when one entry is missing

d = 5 =⇒ ≈ 95% of rows kept
d = 300 =⇒ ≈ 5% of rows kept

6Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB.
2022.
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”One of the ironies of Big Data is that missing data play an ever more
significant role”6

Complete case analysis: delete incomplete samples

• Bias: Resulting sample not representative of the target population
• Information loss: Take a matrix with d features where each entry is missing
with probability 1/100, remove a row (of length d) when one entry is missing

d = 5 =⇒ ≈ 95% of rows kept
d = 300 =⇒ ≈ 5% of rows kept

6Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB.
2022.



7 / 99Linear models

Linear model

Y = XTβ⋆ + noise

▷ Y ∈ R (regression) outcome is always observed
▷ X ∈ Rd contains missing values!

Three different tasks: imputation, estimation, prediction.

1. Imputation - Replace missing values to obtain a complete data set,
on which any classical analysis can be performed.

2. Estimation - Provide an estimate of β⋆ - allows predicting outputs
of complete data.

3. Prediction - Predict Y for a new X with missing entries

Warning: A good estimate of β⋆ does not lead to a prediction of Y

X = (na, 5,na,−6) X⊤β⋆ = ??
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8 / 99Solutions to handle missing values in the covariates

Abundant literature: Creation of Rmistatic platform7 (> 150 packages)

▷ Imputation: (Single/Multiple) imputation to get a/several complete
data set(s). Ex: (M)ICE

▷ Estimation: Modify the estimation process to deal with missing values
- Maximum likelihood inference: Expectation Maximization algorithms8

▷ Prediction: Predict an outcome with missing data in covariates910.
Solutions: using deterministic (e.g. constant) imputation or Missing
Incorporated in Attributes for trees based methods (grf package)

7Mayer, J. et al. A unified platform for missing values methods and workflows. R journal.
2022.

8Jiang, J. et al. Logistic Regression with Missing Covariates CSDA. 2019. - misaem package
9J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024.

10Le morvan, J. et al. What’s a good imputation to predict with missing values? Neurips2021.

https://rmisstastic.netlify.com/


9 / 99Outline

1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion
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11 / 99Missing values mechanism: Rubin’s taxonomy11,12

• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA
▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

• Realizations: For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed
elements of x and while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

x⋆ = (1, 2, 3, 8, 5)

x = (1,NA, 3, 8,NA)

m = (0, 1, 0, 0, 1)

o(x ,m) = (1, 3, 8), oc(x⋆,m) = (2, 5)

11Rubin. Inference and missing data. Biometrika. 1976.
12What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013.
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• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA
▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed elements of x and
while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

Ex: Simulated missing values according to the 3 mechanisms (Orange points
will be missing) in Systolic Blood Pressure - GCS is always observed
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11Rubin. Inference and missing data. Biometrika. 1976.
12What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013.



12 / 99Two views to model the joint distribution of (X ,M)

▷ Selection Model13: p∗(M = m, x) = P(M = m | x)p∗(x)

Definition: SM-MAR

P(M = m|x) = P(M = m|o(x ,m)) for all m ∈ M, x ∈ X .

The proba. of any m occurring only depends on the obs part of x .

▷ Pattern Mixture Model14: p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition: PMM-MAR

p∗(oc(x ,m) | o(x ,m),M = m) = p∗(oc(x ,m) | o(x ,m)).

for all m ∈ M, x ∈ X . The conditional distrib. of missing given obs. in pattern
m is equal to the unconditional one.a

aMolenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008

• Proposition: SM-MAR is equivalent to PMM-MAR

13Heckman. Sample selection bias as a specification error. Econometrica. 1979
14Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993



13 / 99Testing the missing values mechanism

▷ Can we observe the missing value mechanism from the sample?

Unfortunately, the general answer is no

MCAR vs MAR in Gaussian setting

▷ If we assume MAR is true we can test H0 : MCAR vs HA : MAR.
▷ A classical test is the Little test15 that operates under the assumption

of Gaussianity.

Nonparametric tests

▷ One of the very few (if not only) useable nonparametric test is our
PKLMTest16

▷ There is also interesting theoretical work17

15Little. A Test of Missing Completely at Random for Multivariate Data with Missing Values.
1988

16Michel, Naf, Spohn, Meinshausen. PKLM: a flexible MCAR test using classification,
Psychometrika. 2025

17Berrett, Samworth. Optimal nonparametric testing of missing completely at random and its
connections to compatibility, AoS. 2023
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15 / 99Single imputation18

Generative setting

▷ (X1,X2) ∼ N ((µx1 , µx2),Σ); n = 400
▷ (µx1 , µx2) = (1, 0) and Σ = ((1, 0.3), (0.3, 1))
▷ MCAR missing values on X2 only with probability p = 0.6.

Discard incomplete observations and then estimate parameters

µx2 = 0
σx2 = 1
ρ = 0.3

µ̂x2 = 0.043
σ̂x2 = 0.926
ρ̂ = 0.368

18The code to reproduce the plots is available in Rmistastic

https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020
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Generative setting

▷ (X1,X2) ∼ N ((µx1 , µx2),Σ); n = 400
▷ (µx1 , µx2) = (1, 0) and Σ = ((1, 0.3), (0.3, 1))
▷ MCAR missing values on X2 only with probability p = 0.6.

Impute by the mean and then estimate parameters

µx2 = 0
σx2 = 1
ρ = 0.3

µ̂x2 = 0.043
σ̂x2 = 0.586
ρ̂ = 0.227

Mean imputation deforms joint and marginal distributions



16 / 99Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution xi2 = β0 + β1xi1 + εi , εi ∼ N (0, σ2)

▷ Regression imputation: Estimate β (here with complete data) and impute
x̂i2 = β̂0 + β̂1xi1 ⇒ variance underestimated and correlation overestimated

▷ Stochastic reg. imputation: Estimate β and σ - impute from the predictive

x̂i2 ∼ N
(
β0 + β̂1xi1, σ̂

2
)
⇒ preserve distributions

µx2 = 0
σx2 = 1
ρ = 0.3

0.043

0.926

0.368

0.038

0.647

0.539

0.037

0.909

0.275



17 / 99Impute while preserving distribution. Multivariate case

▷ Assuming a joint distribution

⋄ Gaussian model xi ∼ N (µ,Σ)

⋄ Low rank : Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank

⇒ Different regularization depending on noise regime 18

⇒ Count data19, ordinal data, categorical data, blocks/multilevel data
⋄ Optimal transport 20, deep generative models: GAIN21, MIWAE 22, etc. 23

24

▷ Iterating conditional models (joint distribution implicitly defined)
⋄ with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations 25

⋄ iterative imputation of each variable by random forests 26

18J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
19Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
20Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.
21Yoon et al. GAIN: Missing data imputation using generative adversarial nets. ICML. 2018.
22Mattei & Frellsen. Miwae: Deep generative model & imput. of inc. data. ICML. 2018.
23Deng et al. Extended missing data imput. via gans. DMKD. 2022.
24Fang, Bao. Fragmgan: gan for fragmentary data imputation. STRF 2023.
25van Buuren, S. Flexible Imputation of Missing Data. Chapman & Hall/CRC Press. 2018.
26Stekhoven, Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012.
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▷ Initialization
▷ Number of cycles
▷ Ordering of variables: same order, random order...

▷ Predictive models

⋄ Predictive mean matching (numeric data)
⋄ Logistic regression imputation (binary data)
⋄ Multinomial regression imputation (unordered categorical data)
⋄ Proportional odds model (ordered categorical data)
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⋄ Predictive mean matching (numeric data)27

⋄ Logistic regression imputation (binary data)28

⋄ Multinomial regression imputation (unordered categorical data)
⋄ Proportional odds model (ordered categorical data) 29

27https://stefvanbuuren.name/fimd/sec-pmm.html
28https://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/

mice.impute.logreg
29https://online.stat.psu.edu/stat504/lesson/8/8.4

https://stefvanbuuren.name/fimd/sec-pmm.html
https://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/mice.impute.logreg
https://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/mice.impute.logreg
https://online.stat.psu.edu/stat504/lesson/8/8.4
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Logistic regression imputation - Bayesian logistic regression

▷ Fit a logistic model on the data
▷ Construct β̂ and an estimation of its covariance matrix Σ̂.
▷ Draw β̃ ∼ N (β̂, Σ̂).
▷ Compute the predicted score as σ(X⊤β̃).
▷ Impute by drawing a Bernoulli with parameter σ(X⊤β̃).
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▷ Ordering of variables: same order, random order...
▷ Predictive models

⋄ Predictive mean matching (numeric data)
⋄ Logistic regression imputation (binary data)
⋄ Multinomial regression imputation (unordered categorical data)
⋄ Proportional odds model (ordered categorical data)

Predictive mean matching

▷ Fit a linear model on the data
▷ Construct β̂ and an estimation of its covariance matrix Σ̂.
▷ Draw β̃ ∼ N (β̂, Σ̂).
▷ Compute the predicted scores as X⊤β̃.
▷ Find the k = 5 observations for which X⊤

i β̂ is the closest to X⊤β̃
▷ Impute by drawing uniformly at random one observations among the k
selected observations.
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⋄ Predictive mean matching (numeric data)
⋄ Logistic regression imputation (binary data)
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⋄ Proportional odds model (ordered categorical data)

Random forests - Mice.RF
▷ Fit a random forest on the data
▷ For a given ’missing’ observation, put it down each tree and collect all

observations in all leaves
▷ Impute by drawing at random an observation among the previous set
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▷ Initialization
▷ Number of cycles
▷ Ordering of variables: same order, random order...
▷ Predictive models

⋄ Predictive mean matching (numeric data)
⋄ Logistic regression imputation (binary data)
⋄ Multinomial regression imputation (unordered categorical data)
⋄ Proportional odds model (ordered categorical data)

Random forests - MissForest
▷ Fit a random forest on the data
▷ Impute by predicting the value output by the RF



21 / 99Summary

1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion



22 / 99Single imputation methods

µy = 0
σy = 1
ρ = 0.3

0.043
0.586
0.227

0.038
0.647
0.539

0.037
0.909
0.275

How to build confidence intervals for µy?



22 / 99Single imputation methods

µy = 0
σy = 1
ρ = 0.3

0.043
0.586
0.227

0.038
0.647
0.539

0.037
0.909
0.275

How to build confidence intervals for µy?



23 / 99Confidence interval for a mean

Let Y = (Y1, . . . ,Yn)
′ be i.i.d. independent Gaussian N (µy , σ

2
y ).

▷ Unknown variance:
µ̂y − µy

σ̂µ̂y

∼ T (n − 1)

▷ Unknown variance:

√
n

(
µ̂y − µy

σ̂y

)
∼ T (n − 1)

▷ CI for µy at level α:
[
µ̂y − σ̂y√

n
qt1−α/2(n − 1) , µ̂y +

σ̂y√
n
qt1−α/2(n − 1)

]
Simulation - Computing coverage

1. Generate bivariate Gaussian data (µy = 0, σy = 1, ρ = 0.6)
2. Put MCAR missing values on y and impute missing entries
3. Compute the confidence interval of µy

4. Count if the true value µy = 0 is in the confidence interval
5. Repeat the steps 1-4, 10000 times

Code available on Rmistatic.

https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020
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σy = 1
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0.996
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⇒ Standard errors σ̂µ̂y based on the imputed data set are underestimated
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µy = 0
σy = 1
ρ = 0.6
CIµy95%

-0.005
0.629
0.189
56.0

-0.004
0.673
0.443
57.7

-0.004
0.996
0.301
73.4

⇒ Standard errors σ̂µ̂y based on the imputed data set are underestimated

The idea of imputation is both seductive and dangerous (Dempster and

Rubin, 1983)
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Asymptotic confidence interval for µy :
[
µ̂y − zα/2

σ̂y√
n
; µ̂y − z1−α/2

σ̂y√
n

]
Consider MCAR values and

▷ Impute missing values on via (stochastic) linear regression
▷ µ̂y is the average of y computed on the imputed data set

Asymptotic variance (Little & Rubin, 2019. p158)

Var [µ̂y − µy ] ≃
σ̂2
y

nfull

(
1− ρ̂2

n − nfull
n

)
,

where σ̂y is estimated on the complete observations only and nfull the
number of complete observations.

▷ If there are few missing data (nfull ∼ (n)), then Var [µ̂y − µy ] ∼ σ̂2
y/n,

the ACI has the correct asymptotic coverage (Idem if ρ = 1).

▷ But, in general, coverage of single imputation is too low: need to
take into account the uncertainty associated to the predictions.



26 / 99Multiple imputation: correct standard errors

1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s
-6 45 6 s
0 4 30 no s
-4 32 35 s
1 63 40 s
-2 15 12 no s

X1 X2 X3 Y

-7 20 10 s
-6 45 9 s
0 12 30 no s
13 32 35 s
1 63 40 s
-2 10 12 no s

X1 X2 X3 Y

7 20 10 s
-6 45 12 s
0 -5 30 no s
2 32 35 s
1 63 40 s
-2 20 12 no s

2) Perform the analysis on each imputed data set: β̂m, V̂ar
(
β̂m

)
3) Combine the results (Rubin’s rules)27:

β̂ =
1

M

M∑
m=1

β̂m

T =
1

M

M∑
m=1

V̂ar
(
β̂m

)
︸ ︷︷ ︸

Within-imputation variance

+
(
1 + 1

M

) 1

M − 1

M∑
m=1

(
β̂m − β̂

)2
︸ ︷︷ ︸

Between-imputation variance

27see Chapter 14 of Semiparametric Theory and Missing Data. A.A. Tsiatis. 2006.



27 / 99Multiple imputation: bivariate case28

MI based on stochastic regression

1. Generate M imputed data sets: for m = 1, ...,M,

▷ draw ŷi from N (xi β̂, σ̂
2)

2. Performe the analysis on each imputed data set
3. Compute the variance (= within + between imputation variance)

M = 1 M = 50
µy = 0 -0.004 -0.004
σy = 1 0.996 0.996
ρ = 0.3 0.301 0.301
CIµy95% 73.4 92

▷ Variability of the parameters is missing: ”improper” imputation
▷ Prediction variance = estimation variance plus noise

28Code available on Rmistatic.

https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020
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MI based on stochastic regression

1. Generate M imputed data sets: for m = 1, ...,M,

▷ Generate β̂1, ..., β̂M by bootstrap or via posterior distribution
(Data Augmentation, Tanner & Wong, 1987))

▷ Impute missing values ŷm
i by drawing N (xi β̂

m, (σ̂2)m)

2. Performe the analysis on each imputed data set
3. Compute the variance (= within + between imputation variance)

M = 1 M = 50 M = 50 with boot.
µy = 0 -0.004 -0.004 -0.004
σy = 1 0.996 0.996 0.996
ρ = 0.3 0.301 0.301 0.301
CIµy95% 73.4 92 96

▷ Variability of the parameters is missing: ”improper” imputation
▷ Prediction variance = estimation variance plus noise

28Code available on Rmistatic.

https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020
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⇒ Aim: provide an estimation of all parameters with their estimated
variance.

Parametric Multiple imputation

1. Generating M imputed data sets, taking into account:

▷ structural noise (e.g. σ2 via stochastic regression)
▷ parameter variance (e.g. via bootstrapping)

2. Performing the analysis on each imputed data seta,
3. Compute the variance (= within + between imputation variance)

β̂ = 1
M

∑M
m=1 β̂m T = 1

M

∑
V̂ar

(
β̂m

)
+
(
1 + 1

M

)
1

M−1

∑(
β̂m − β̂

)2
aThe analysis model may be ”in agreement” with the imputation model: congeniality.

29Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley
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⇒ Aim: provide an estimation of all parameters with their estimated
variance.

NonParametric Multiple imputation

1. Generating M imputed data sets, taking into account:

▷ structural noise (e.g. σ2 via stochastic regression)
▷ parameter variance (e.g. via bootstrapping)

2. Performing the analysis on each imputed data seta,
3. Aggregate the result of each analysis (e.g. taking the mean of

predicted output values)

aThe analysis model may be ”in agreement” with the imputation model: congeniality.

29Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley
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⇒ Hypothesis xi ∼ N (µ,Σ)

Expectation Maximization Bootstrap

1. Bootstrap rows: X 1, ... , XM

2. EM algorithm: (µ̂1, Σ̂1), ... , (µ̂M , Σ̂M)

3. Imputation: x̂mi,miss drawn from N
(
µ̂m
miss|obs , Σ̂

m
miss|obs

)

Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell

http://gking.harvard.edu/amelia


30 / 99Multiple imputation by chained equations or FCS32

• Impute variables 1 by 1 using all other variables as inputs (round-robin)
• One model/variable: flexible for different types of variables
• Cycle through variables: iteratively refining imputations

MICE
1. Initial imputation: mean imputation
2. For a variable j

• (β̂−j , σ̂−j) drawn from a Bootstrap: (β̂1
−j , σ̂

1
−j), ..., (β̂

M
−j , σ̂

M
−j)

• Impute Xm
j via stochastic regression N

(
(xi,−j)

′β̂m
−j , σ̂

m
−j

)
3. Cycling through variables

⇒ With continuous variables & regression/variable: gibbs N (µ,Σ) 30 31

“There is no clear-cut method for determining whether MICE has converged”
Implemented in R package mice & IterativeImputer from scikitlearn (de-
fault iterative ridge regression)

Stef van Buuren

30 Monte Carlo statistical methods (Robert, Casella, 2004) (p344),
31 The EM algorithm and extensions (McLachlan, et al. 1998) (p243)
32 van Buuren. 2018. Flexible Imputation of Missing Data. Second Edition. CRC Press



31 / 99Joint versus Conditional modeling

Conditional modeling takes the lead?

▷ Flexible: one model/variable. Easy to deal with interactions and
variables of different nature (binary, ordinal, categorical...)

▷ Many statistical models are conditional models
▷ Tailor to your data - Super powerful in practice
⇒ Drawbacks: one model/variable. Computational costlya

aImprovement on mice pmm for large sample size, see mice github repo - still costly for large d

What to do with high correlation or when n < p

▷ JM shrinks the covariance Σ + kI (selection of k?)
▷ CM: ridge regression or predictors selection/variable

Challenges with multiple imputation

▷ MI in high dimension? Theory with small n, large p?
▷ Aggregating lasso regressions? clustering?

https://github.com/amices/mice/issues/236
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▷ Aim: imputed data must resemble complete data.

Original data set
Age Inc. Gen.
34 NA F
18 12 NA

NA 14 M
NA NA F
34 NA M
22 28 F
29 10 NA

34 NA F
80 NA NA

68 15 F
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What is the quality of data imputation?
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▷ Aim: imputed data must resemble complete data.

Original data set Additional missing values Imputed missing values
Age Inc. Gen.
34 NA F
18 12 NA

NA 14 M
NA NA F
34 NA M
22 28 F
29 10 NA

34 NA F
80 NA NA

68 15 F

Age Inc. Gen.
34 NA F
NA NA NA

NA 14 NA

NA NA F
34 NA M
22 NA F
NA 10 NA

34 NA F
80 NA NA

68 NA NA

Age Inc. Gen.
34 12 F
46 12 F
46 14 F
46 12 F
34 12 M
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46 10 F
34 12 F
80 12 F
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Compared initial vs imputed values via predictive metrics (MSE, MAE...)



34 / 99Measures related to imputation quality

Pointwise predictive measure such as MSE rank highest imputation close
to the conditional expectation

▷ Favor imputation with small variability

Imputation is a distributional task so one should use distributional
measures3334 to assess its quality.

Imputation method Mean Sample Mice-CART
Renormalized RMSE 0 -0.18 -0.22

33Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
34Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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▷ Energy score (distribution vs a point)

es(H, x) =
1

2
EX ,X ′∼H [∥X − X ′∥Rd ]− EX∼H [∥X − x∥Rd ]

▷ The energy score can be used to score distributional
prediction/imputation

Controlled simulation setting

▷ Generate complete data
▷ Mask some data according to MCAR/MAR/MNAR mechanism
▷ Learn a distributional imputation method H
▷ For any x ∈ Rd , sample imputed values from H to estimate es(H, x)
▷ Average over X ∼ P∗ (complete data distribution) to estimate

S(H,P∗) := EY∼P∗ [es(H,Y )]

▷ The question of how to evaluate imputation methods becomes much
harder when the true underlying values are not available.



36 / 99A new procedure

▷ Consider a distribution κ on the subsets of {1, . . . , d}
▷ For each A ⊂ {1, . . . , d}, we let PM

A be the marginal distribution of M
on A. We denote MA ∼ PM

A .
▷ We also let HA|MA = mA, i.e. the distribution of an imputation H,

given the missingness pattern mA on the projection A.
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▷ For each A ⊂ {1, . . . , d}, we let PM

A be the marginal distribution of M
on A. We denote MA ∼ PM

A .
▷ We also let HA|MA = mA, i.e. the distribution of an imputation H,

given the missingness pattern mA on the projection A.

Imputation score of imputation H

S⋆
NA(H,P) = EA∼κ,MA∼PM

A ,XA∼HMA

[
log

(
pA(XA|MA = 0)

hMA
(XA)

)]
.
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Group observations into J groups according to their missing data pattern
M1, . . . ,MJ .

Procedure
For each missing pattern m among M1, . . . ,MJ

1. Choose num.proj projections on {1, . . . , d} such that each projection
contains at least one observed and one missing component.

2. Obtain the imputed data from pattern m, denoted by X̂i . Split them into
two halves X̂ 0

i and X̂ 1
i

3. For each projection Ak (k = 1, . . . , num.proj),

a) Get the complete data X comp
Ak

from the projected data XAk

b) Get the projected imputed data X̂ 0
i,Ak

c) Fit a forest with num.trees.per.proj to discriminate X comp
Ak

from

X̂ 0
i,Ak

(ensuring balanced classes).

4. Aggregate all forests and let ĝA(x) be the probability output by the forest
at x .

5. Compute the individual scores log ĝA(x) for x ∈ X̂ 1
i

6. Average all scores across all observations, missing patterns and imputed
data sets (multiple imputation) to get the final imputation score.



37 / 99Measures related to imputation quality

Imputation is a distributional task so one should use distributional
measures3536 to assess its quality.

Imputation method Mean Sample Mice-CART
Renormalized RMSE 0 -0.18 -0.22

Renormalized Energy score

35Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
36Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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Imputation is a distributional task so one should use distributional
measures3536 to assess its quality.

Imputation method Mean Sample Mice-CART
Renormalized RMSE 0 -0.18 -0.22

Renormalized Energy score -22.4 -1.39 0

35Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
36Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007



38 / 99Major characteristics of imputations

Imputation should

(1) be a distributional regression method,
(2) be able to capture nonlinearities in the data,
(3) be able to deal with distributional shifts in the observed variables,

▷ Conditional and marginal distribution shifts can occur for different patterns
under MAR

▷ Conditional shifts are handled with FCS

Method (1) (2) (3)

missForest (Stekhoven & Bühlmann, 2011) ✓

mice-cart (Burgette & Reiter, 2010) ✓ ✓

mice-RF (Doove et al., 2014) ✓ ✓

mice-DRF (Näf et al., 2024) ✓ ✓

mice-norm.nob (Gaussian) ✓ ✓

mice-norm.predict (Regression) ✓



39 / 99MAR with shift in cond. distribution between patterns

• Example: two patterns m1 = (0, 0) and m2 = (1, 0), with
Σ = ((2, 1), (1, 1))) and a shift:

X | M = m1 ∼ N ((0, 0),Σ))

X | M = m2 ∼ N ((5, 5),Σ)) .

• A special case of MAR: conditional distributions are the same across
patterns:

X1|X2,M = m1 = X1|X2,M = m2.

Definition (Conditional indep. MAR - CIMAR)

For all m,m′ ∈ M, x ∈ X ,

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m)).

Beware! Even in this case, the joint distribution varies across pattern,
since the marginal distribution of X2 changes



39 / 99MAR with shift in cond. distribution between patterns

• Example: two patterns m1 = (0, 0) and m2 = (1, 0), with
Σ = ((2, 1), (1, 1))) and a shift:

X | M = m1 ∼ N ((0, 0),Σ))

X | M = m2 ∼ N ((5, 5),Σ)) .

• A special case of MAR: conditional distributions are the same across
patterns:

X1|X2,M = m1 = X1|X2,M = m2.

Definition (Conditional indep. MAR - CIMAR)

For all m,m′ ∈ M, x ∈ X ,

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m)).

Beware! Even in this case, the joint distribution varies across pattern,
since the marginal distribution of X2 changes



39 / 99MAR with shift in cond. distribution between patterns

• Example: two patterns m1 = (0, 0) and m2 = (1, 0), with
Σ = ((2, 1), (1, 1))) and a shift:

X | M = m1 ∼ N ((0, 0),Σ))

X | M = m2 ∼ N ((5, 5),Σ)) .

• A special case of MAR: conditional distributions are the same across
patterns:

X1|X2,M = m1 = X1|X2,M = m2.

Definition (Conditional indep. MAR - CIMAR)

For all m,m′ ∈ M, x ∈ X ,

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m)).

Beware! Even in this case, the joint distribution varies across pattern,
since the marginal distribution of X2 changes



40 / 99Forests generalize poorly outside of the training set

• Example: two patterns m1 = (0, 0) and m2 = (1, 0), with Σ = ((2, 1), (1, 1))
and a shift X | M = m1 ∼ N ((0, 0),Σ)), X | M = m2 ∼ N ((5, 5),Σ)).

Figure: True distribution against a draw from different imputation methods.

DRF, a distributional method, fails to deal with covariate shift

▷ Imputation should be centered around 5.



41 / 99MAR with shifts in cond. distribution between patterns

Consider X ∈ R3 with three different missing patterns:

m1 = (0, 0, 0), m2 = (1, 0, 0) and m3 = (1, 1, 0).

MCAR: No change allowed.

For all m,m′ ∈ M, x ∈ X , p∗(x) = p∗(x | M = m) = p∗(x | M = m′)

CIMAR: No conditional changes allowed

p∗(x1, x2 | x3,M = m1) = p∗(x1, x2 | x3,M = m2) = p∗(x1, x2 | x3,M = m3) =
p∗(x1, x2 | x3)
Distrib. of X1,X2 | X3 is not allowed to change from one pattern to
another, though the marginal distrib. of X3 can change.

PMM-MAR: many changes allowed

p∗(x1, x2 | x3,M = m3) = p∗(x1, x2 | x3)
Both distrib. of observed variables and conditional ones can change from
pattern to pattern.



42 / 99Relationships between the M(N)AR conditions37

37Naf, Scornet J.. (2024). What is a good imputation under MAR. Submitted.



43 / 99Benchmarking imputation methods

▷ 65 methods (R & Python)
▷ 14 datasets: 100-50000 observations and 3-400 features
▷ 10-30 % NA MCAR, MAR, Standardized energy distance

mnmf

bayesmetab

knn
corknntknn

nlpca

minProb

llsImpute

pemm

zero

miracle

halfmin
mai

mice_gamlss

cmmin

impSeq

vim_pca_robust

miwae

FEFI
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FHDI

impSeqRob

median

meanbcv_svd
gain

softimpute

nipals

vim_pca

sinkhorn

random

SVDImpute

autocomplete

svdeucknn
bpcappcamissmda_em

metabimpute_bpca

hyperimpute_em

vim_knn

sklearn_iterative_post

mice_boot

mice_rf

missforest

metabimpute_rf

amelia

regimpute

mice_midastouch

mice_norm

mice_mixed
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mice_norm_predict
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sklearn_iterative
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mice_CALIBER
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▷ Mice-cart38, aregImpute (close to mice+splines+pmm)39, Hyperimpute (mice
+ model selection RF, XGBoost, Logistic Reg., etc)40, Mice mixed41

38Buuren & Groothuis-O. (2011). Multivariate imputation by chained equations in R. JSS.
39Harrell & Dupont (2018). Hmisc: Harrell miscellaneous. R package. Stat. Comput.
40Jarrett et al. (2022). Hyperimpute: Gen. iter. imput. with automatic model selection. ICML.
41Varga (2020). missCompare: Intuitive Missing Data Imputation. R package. Stat. Comput.



44 / 99Take home message on inference & imputation

▷ Different missing data scenario designed for likelihood inference (e.g.
EM algorithm) but that can be very complex (distribution shift in
MAR).

▷ Use single imputation only for point estimates
▷ In general, look for an imputation that preserve the joint distribution of

the data
▷ Compare imputation methods with distributional metrics like energy

distance
▷ Multiple imputation aims at estimating the parameters and their

variability taking into account the uncertainty of the missing values
▷ Use Multiple imputation to get confidence intervals
▷ mice-DRF promising (code available) - mice-Engression42

42Shen & Meinshausen (2024). Engression: extrapolation through the lens of distributional
regression. JRSS B.



45 / 99Summary

1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion



46 / 99Formalizing the problem

▷ Assumption - The response Y is a function of the (unavailable)
complete data plus some noise:

Y = f ⋆(X ) + ε, X ∈ Rd , Y ∈ R.

▷ Optimization problem:

min
f :(R∪{NA})d 7→R

R(f ) := E
[(

Y − f (X̃ )
)2

]
▷ A Bayes predictor is a minimizer of the risk. It is given by:

f̃ ⋆(X̃ ) := E
[
Y |Xobs(M),M

]
= E

[
f (X )|Xobs(M),M

]
where M ∈ {0, 1}d is the missingness indicator.

▷ The Bayes rate R⋆ is the risk of the Bayes predictor: R⋆ = R(f̃ ⋆).

▷ A Bayes optimal function f achieves the Bayes rate, i.e, R(f ) = R⋆.



47 / 99Supervised learning with missing values

X̃ = X ⊙ (1−M) + NA⊙M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6
7.9
8.3
4.6

 X̃ =


9.1 NA 1
2.1 NA 3
NA 9.6 2
NA 5.5 6

 X =


9.1 8.5 1
2.1 3.5 3
6.7 9.6 2
4.2 5.5 6

 M =


0 1 0
0 1 0
1 0 0
1 0 0



Finding the Bayes predictor.

f ⋆ ∈ argmin
f : R̃d→R

E
[(

Y − f (X̃ )
)2]

.

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d) (Rubin, 1984, generalized propensity score)
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48 / 99Make prediction with missing data great again

Bayes predictor.

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

▷ Difficulty due to the half nature of the input space
▷ Worst case: 2d models to learn

Two common strategies:

▷ Impute-then-regress strategies - impute the data then learn on the
imputed data set

⋄ Computationally efficient but possibly inconsistent

▷ Pattern-by-pattern strategies - use a different predictor for each
missing pattern

⋄ Consistent by design but intractable in most situations
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50 / 99CART (Classification And Regression Tree, 1984)

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j⋆, the threshold z⋆ which minimises the loss

(j⋆, z⋆) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ⩽ z]

)2 · 1Xj⩽z +
(
Y − E[Y |Xj > z]

)2 · 1Xj>z

]
.
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50 / 99CART (Classification And Regression Tree, 1984)

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j⋆, the threshold z⋆ which minimises the loss

(j⋆, z⋆) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ⩽ z]

)2 · 1Xj⩽z +
(
Y − E[Y |Xj > z]

)2 · 1Xj>z

]
.

Two difficulties with missing data

▷ How to find the best split?
▷ How to propagate missing data down the tree?



51 / 99CART with missing values

X1 X2 Y

1

2 NA

3 NA

4
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X1 X2 Y

1

2 NA

3 NA

4

Two steps:

1. For each variable, compute the splitting criterion on observed values only
(e.g., 1 & 4 for X1)

E
[(

Y − E[Y |Xj ⩽ z,Mj = 0]
)2 · 1Xj⩽z,Mj=0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2 · 1Xj>z,Mj=0

]
.



51 / 99CART with missing values

X1 X2 Y

1

2 NA

3 NA

4

Two steps:

1. For each variable, compute the splitting criterion on observed values only
(e.g., 1 & 4 for X1)

E
[(

Y − E[Y |Xj ⩽ z,Mj = 0]
)2 · 1Xj⩽z,Mj=0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2 · 1Xj>z,Mj=0

]
.

2. Propagate observations (2 & 3) with missing values?

▷ Probabilistic split: Bernoulli(#L/(#L+#R)) (C4.5)
▷ Block: Send all to a side by minimizing the error (lightgbm)
▷ Surrogate split: Search another variable that gives a close

partition (rpart)



52 / 99Missing incorporated in attribute (MIA)43

One step: select the variable, the threshold and propagate missing values

1. {X̃j ⩽ z or X̃j = NA} vs {X̃j > z}
2. {X̃j ⩽ z} vs {X̃j > z or X̃j = NA}
3. {X̃j ̸= NA} vs {X̃j = NA}.

▷ The splitting location z depends on the missing values
▷ Missing values treated like a category (well to handle R ∪ NA)
▷ Good for informative pattern, target one model per pattern:

E
[
Y
∣∣∣X̃] = ∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

▷ Implementations grf/partykit package, XGBoost
▷ Extremely good performances in practice for any mechanism

43Twala et al. (2008). Methods for coping with missing data in decision trees. Pattern Recog.
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1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion



54 / 99Impute-then-Regress procedures

▷ Impute-then-Regress procedures consist in

1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.

▷ More formally, define Impute-then-Regress procedures as functions of
the form:

g ◦ Φ, where Φ ∈ F I , g : Rd 7→ R.

where imputation functions
Φ ∈ F I are of the form:

x2

x3

x2

x3

φ
(m)
1 (x2, x3)

φ
(m)
4 (x2, x3)

Can Impute-then-Regress procedures be Bayes optimal?
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55 / 99Impute-then-Regress procedures are Bayes optimal

Given an imputation function Φ, we define g⋆
Φ the minimizer of

the population risk on imputed data as

g⋆
Φ ∈ argmin

g :Rd 7→R
E
[(

Y − g ◦ Φ(X̃ )
)2]

.

Theorem ( Le Morvan et al., 2021 )
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Assume that X admits a density, the response Y is generated as
Y = f ⋆(X ) + ε and Φ ∈ F I

∞ (C∞ imputation functions). Then,

• for all missing data mechanisms,
• and for almost all imputation functions,

g⋆
Φ ◦ Φ is Bayes optimal.
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g⋆
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[(
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)2]

.

Theorem ( Le Morvan et al., 2021 )

Assume that X admits a density, the response Y is generated as
Y = f ⋆(X ) + ε and Φ ∈ F I

∞ (C∞ imputation functions). Then,

• for all missing data mechanisms,
• and for almost all imputation functions,

g⋆
Φ ◦ Φ is Bayes optimal.

For almost all imputation functions, and all missing data
mechanisms, a universally consistent algorithm trained on the
imputed data is a consistent procedure.



56 / 99Which imputation function should one choose?

Why bother!

From now on I use constant 
imputations!

 
May be a good imputation 
would still provide an 
easier learning problem?

Question Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

From now on, we suppose f ⋆ (Byes predictor with complete data) is
smooth and consider the conditional expectation ΦCI .
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57 / 99Learning on conditionally imputed data

Question What can we say about the optimal predictor on the
conditionally imputed data: g⋆

ΦCI ◦ ΦCI ?

Theorem ( Le Morvan et al., 2021 )

Suppose that f ⋆ ◦ ΦCI is not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., P(M = 0,X = x) > 0, for
all x. Then there is no continuous function g such that g ◦ ΦCI is Bayes
optimal.

▷ In the above setting, g⋆
ΦCI is not continuous. Thus, imputing via

conditional expectation leads to a difficult learning problem.

▷ Almost all imputations lead to consistent estimators but some ease the
training of the supervised learning algorithm.
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58 / 99Imputation-then-regress: does imputation matter?

Adding the mask to the input (one mask per feature):


X1 X2

1 2
3 NA

NA 4

 →


X1 X2 M1 M2

1 2 0 0
3 NA 0 1

NA 4 1 0


From an empirical study over 19 datasets44:

▷ Imputation accuracy matters less when using expressive models or when
incorporating the mask as complementary inputs45

▷ Imputation accuracy matters much more for generated linear outcomes than
for real-data outcome

▷ Adding the mask as input is beneficial for prediction performances even for
MCAR settings, where missingness is uninformative.

Investing in more flexible models is more efficient than investing in
more complex imputations.

44M. Le Morvan, G. Varoquaux, Imp. for pred.: beware of diminish. returns. (ICLR2025)
45Mike et al. (2023). The Missing Indicator Method: From Low to High Dimensions. SIGKDD.
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59 / 99Summary so far

Bayes predictor

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

Two common strategies:

▷ Impute-then-regress strategies - impute the data then learn on the
imputed data set

⋄ Computationally efficient but possibly inconsistent
⋄ Consistent if used with a non-parametric learning algorithm (forests,

tree boosting, nearest neighbor...)

▷ Pattern-by-pattern strategies - use a different predictor for each
missing pattern

⋄ Consistent by design but intractable in most situations
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62 / 99Missing data and linear models

Our aim
Predict on new data, which may
contain missing entries.

MCAR
(missing completely at random)

P(M|X ) = P(M)

MAR (missing at random)
P(M|X ) = P(M|X (obs))

MNAR (missing not at random)

Linear model

Y = XTβ⋆ + noise

▷ Y ∈ R (regression) outcome is always observed
▷ X ∈ Rd contains missing values!
▷ β⋆ model parameter



63 / 99Linear models do not remain linear

Let
Y = X1 + X2 + ε,

where X2 = exp(X1) + ε1. Now, assume that only X1 is observed. Then,
the model can be rewritten as

Y = X1 + exp(X1) + ε+ ε1,

where f (X1) = X1 + exp(X1) is the Bayes predictor.

Here, the submodel for which only X1 is observed is not linear.

⇒ There exists a large variety of submodels for a same linear model.
⇒ Submodel natures depend on the structure of X and on the
missing-value mechanism.



64 / 99Handling missing values in linear models for prediction

2 possible approaches

▷ Patter-by-pattern methods
▷ Impute-then-regress procedures
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67 / 99Specific methods: formalization

▷ Dataset Dn = {(Zi ,Yi ), i ∈ [n]} where

Zi = (Xobs(Mi ),Mi ).

▷ New test point Z = (Xobs(M),M) (with unknown target Y ).

Goal in prediction

Find a linear function f̂ that minimizes the risk

Rmiss(f̂ ) = E
[(

f̂ (Z )− Y
)2]

.



68 / 99Pattern-by-pattern Bayes predictor

Consider either

▷ X ∼ N (µ,Σ) Gaussian (G)

or,

▷ X |(M = m) ∼ N (µm,Σm) Gaussian pattern mixture model (GPMM)

Decompose the Bayes predictor

f ⋆(Z ) =
∑
m∈M

f ⋆m(Xobs(m))1M=m,

with f ⋆m the Bayes predictor conditionally on the event (M = m).

Proposition [Le Morvan et al 2020]

If [(MCAR or MAR) and G] or GPMM then, for all m ∈ M,

f ⋆m is linear.



69 / 99A missing-distribution-free upper bound

Predictor f̂ (Z ) =
∑

m∈M f̂m(Xobs(m))1M=m (pattern-by-pattern OLS)

where f̂m is a modified least-square regression rule trained on

Dm =
{
(Xi,obs(m),Yi ),Mi = m

}
.

Theorem (simplified) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S.
2022]

If [(MCAR or MAR) and G] or GPMM then

E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)2d
d

n

where the constant depends on the level of noise.

▷ This result does not depend on the distribution of missing patterns.
▷ Number of parameters is p := d2d . This result suffers from the curse

of dimensionality even with small d .
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70 / 99A missing pattern distribution adaptive bound

Idea: Regression only on high frequency missing patterns

f̂ (Z ) =
∑
m∈M

f̂m(Xobs(m))1M=m1|Dm|⩾d .

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep (d/n) ,

with Ep (d/n) :=
∑

m min(pm, d/n).

▷ Valid for MCAR, MAR and MNAR settings.
▷ Adaptive to missing data distribution via Ep (d/n) ⩽ Card(M)(d/n).

Examples

1. Uniform distribution: Ep
(
d
n

)
= 2dd/n

2. Bernoulli distribution: Mj ∼ B(ε) with ε ⩽ d/n: Ep
(
d
n

)
= d2/n
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Let Pp be a class of data distributions


X |(M = m) ∼ N (µm,Σm)
Linear model
P[M = m] = pm

Minimax
error (p) = min

f̃︸ ︷︷ ︸
Best algo

max
P∈Pp︸ ︷︷ ︸

Worst case on a class
Pp of problems

EP

[
(f̃ (Z )− f ⋆(Z ))2

]

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

σ2Ep
(
1

n

)
≲ Minimax

error (p) ⩽ E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep
(
d

n

)
Examples

▷ Uniform distribution Ep

(
1
n

)
= 2d/n Ep

(
d
n

)
= 2dd/n

▷ Bernoulli distribution Mj ∼ B(ε) Ep

(
1
n

)
= d/n Ep

(
d
n

)
= d2/n
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71 / 99A lower bound

Let Pp be a class of data distributions


X |(M = m) ∼ N (µm,Σm)
Linear model
P[M = m] = pm

Minimax
error (p) = min

f̃︸ ︷︷ ︸
Best algo

max
P∈Pp︸ ︷︷ ︸

Worst case on a class
Pp of problems

EP

[
(f̃ (Z )− f ⋆(Z ))2

]

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

σ2Ep
(
1

n

)
≲ Minimax

error (p) ⩽ E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep
(
d

n

)

Examples

▷ Uniform distribution Ep

(
1
n

)
= 2d/n Ep

(
d
n

)
= 2dd/n

▷ Bernoulli distribution Mj ∼ B(ε) Ep

(
1
n

)
= d/n Ep

(
d
n

)
= d2/n

with ε ⩽ d/n



71 / 99A lower bound

Let Pp be a class of data distributions


X |(M = m) ∼ N (µm,Σm)
Linear model
P[M = m] = pm

Minimax
error (p) = min

f̃︸ ︷︷ ︸
Best algo

max
P∈Pp︸ ︷︷ ︸

Worst case on a class
Pp of problems

EP

[
(f̃ (Z )− f ⋆(Z ))2

]

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

σ2Ep
(
1

n

)
≲ Minimax

error (p) ⩽ E
[(

f̂ (Z )− f ⋆(Z )
)2]

≲ log(n)Ep
(
d

n

)
Examples

▷ Uniform distribution Ep

(
1
n

)
= 2d/n Ep

(
d
n

)
= 2dd/n

▷ Bernoulli distribution Mj ∼ B(ε) Ep

(
1
n

)
= d/n Ep

(
d
n

)
= d2/n

with ε ⩽ d/n



72 / 99Take-home messages

☞ For data regimes where n is large, several problems can be learned,
even for MNAR.

☞ The procedure can be modified to adapt to the distribution of missing
patterns.

☞ The dimension is an issue, even under the classical assumptions
(MAR)
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1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values
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74 / 99Impute-then-regress?

▷ Impute-then-regress method

1. Impute the missing values by 0 to get Ximp (e.g., via
df.fillna(0))

2. Perform a SGD regression

▷ Focus on MCAR values: M1, . . . ,Md ∼ B(ρ)
ρ = probability to be observed

MCAR
(missing completely at random)

P(M|X ) = P(M)

MAR (missing at random)
P(M|X ) = P(M|X (obs))

MNAR (missing not at random)

impute by 0= doesn’t exploit observed values?
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75 / 99Risk decomposition

▷ R⋆ = optimal risk without missing data
▷ R⋆

miss = optimal risk with missing data

∆miss := R⋆
miss − R⋆ (missing data error)

▷ Rimp(θ) = the risk of fθ(Xobs,M) = θ⊤Ximp

▷ Rimp(θ
⋆
imp) = optimal risk of linear prediction after imputation by 0

∆imp/miss := Rimp(θ
⋆
imp)− R⋆

miss (imputation error)

▷ Risk decomposition:

Rmiss(fθ) = R⋆ + ∆miss +∆imp/miss︸ ︷︷ ︸
missing data and imputation error

+Rmiss(fθ)− Rimp(θ
⋆
imp)︸ ︷︷ ︸

estimation/optimization error



76 / 99Toy example: how imputed inputs disturb learning

▷ Complete model

⋄ Y = X1

⋄ X = (X1, . . . ,X1)
⋄ R⋆ = 0
⋄ M1, . . . ,Md ∼ B(1/2)

▷ With imputed inputs and θ1 = (1, 0, . . . , 0)⊤

⋄ X⊤
impθ1 = X1M1

⋄ Rimp(θ1) =
1
2E
[
Y 2
]

▷ With imputed inputs and θ2 = 2(1/d , 1/d , . . . , 1/d)⊤

⋄ X⊤
impθ2 =

2
dX1

∑
j Mj

⋄ Rimp(θ2) =
1
dE
[
X 2
1

]
⋄ ∆miss +∆imp/miss ⩽ Rimp(θ2)− R⋆ ⩽ 1

dE
[
Y 2
]

correlation ⇒ low imputation/missing values error ?
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77 / 99Learning w/ imputed-by-0 data = ridge reg?

▷ Ridge-regularized risk with complete data

Rλ(θ) = R(θ) + λ∥θ∥22
▷ Standard in high-dimension settings

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under the MCAR Bernoulli model of probability ρ of observation and
Var(Xj) = 1 ∀j ,

Rimp(θ) = R(ρθ) + ρ(1− ρ)∥θ∥22

Consequences

1. ∆miss +∆imp/miss = ridge bias for λ = 1−ρ
ρ

2. θ⋆imp on a small ball around 0 (implicit regularization)

☞ Imputed MCAR missing values seem to be at the same price of ridge
regularization



78 / 99Learning with low-rank and imputed-by-0 data

▷ Low-rank data: covariance matrix Σ = [XX⊤] is

Σ =
r∑

j=1

λjvjv
⊤
j ,

with λ1 = · · · = λr and r ≪ d .
▷ Bias on low-rank data:

∆miss +∆imp/miss ≲
1− ρ

ρ

r

d
E[Y 2]

correlation ⇒ low imputation/missing values error !



79 / 99Learning with imputed-by-0 data via SGD

▷ Averaged SGD iterates:{
θimp,t =

[
I − γXimp,tX

⊤
imp,t

]
θimp,t−1 + γYtXimp,t

θ̄imp,n = 1
n+1

∑n
t=1 θimp,t

▷ Why use SGD ?

1. Streaming online (one pass only)
2. Minimizes directly the generalization

risk R
3. Friendly assumptions
4. Leverage the implicit regularization

of naive imputations choosing
θimp,0 = 0 and γ = 1/d

√
n.



80 / 99Learning with imputed-by-0 data via SGD

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

E
[
Rimp(θ̄imp,n)

]
−R⋆ ⩽ ∆miss+∆imp/miss+

d√
n
∥θ⋆imp∥22+

noise variance√
n

▷ Example: low-rank setting

E
[
Rimp(θ̄imp,n)

]
− R⋆ ≲

(
1

ρ
√
n
+

1− ρ

d

)
r

d
EY 2 +

noise variance√
n

▶ Imputation bias vanishes for d ≫
√
n
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81 / 99Naive imputation implicitly regularizes HD linear models

▷ MCAR inputs
(observation rate=ρ)

▷ All in all

Performing
standard linear regression
on imputed-by-0 data =

Adding a ridge
regularization w/ parameter

λ = 1-observation rate
observation rate
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LDA

Let P(Y = 1) = 0.5 and ∀k ∈ {−1, 1}, X |Y = k ∼ N (µk ,Σ).

Bayes predictor for the complete case:

h⋆comp(x) := sign

(
(µ1 − µ−1)

⊤ Σ−1

(
x − µ1 + µ−1

2

))
.

46A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet
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Bayes predictor for the complete case:

h⋆comp(x) := sign

(
(µ1 − µ−1)

⊤ Σ−1

(
x − µ1 + µ−1

2

))
.

Proposition: Bayes predictor for LDA+MCAR

Assume LDA + MCAR. Then the PbP Bayes classifier satisfies

h⋆m(xobs(m)) = sign
((

µ1,obs(m) − µ−1,obs(m)

)⊤
Σ−1

obs(m)

×
(
xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

))
.

46A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet
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Bayes predictor for the complete case:

h⋆comp(x) := sign

(
(µ1 − µ−1)

⊤ Σ−1

(
x − µ1 + µ−1

2

))
.

Proposition: Bayes predictor for LDA+MCAR

Assume LDA + MCAR. Then the PbP Bayes classifier satisfies

h⋆m(xobs(m)) = sign
((

µ1,obs(m) − µ−1,obs(m)

)⊤
Σ−1

obs(m)

×
(
xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

))
.

▷ PbP strategy is Bayes optimal
▷ Constant imputation is not optimal (if Σ is nondiagonal)
▷ Extension to MNAR scenarios (GPMM)

46A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet
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Logistic model

P[Y = 1|X ] = σ(β⋆
0 +

∑
j β

⋆
j Xj) with σ(t) = 1/(1 + e−t).

Bayes classifier: g⋆(x̃) = 1η⋆(x̃)>0.5 with η⋆(x̃) = E[Y |X̃ = x̃ ].

Ill-specified PbP logistic regression

Assume MCAR data in a logistic model for complete data with
X1, . . . ,Xd independent Gaussian random variables. Let m ∈ {0, 1}d and
assume that there exists a vector β⋆

m ∈ R|obs(m)|+1 such that

P
(
Y = 1|Xobs(m),M = m

)
= σ

(
β⋆
0,m +

∑
j∈obs(m)

β⋆
j,mXj

)
.

Then, for all j ∈ mis(m), β⋆
j = 0
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Ill-specified PbP logistic regression

Assume MCAR data in a logistic model for complete data with
X1, . . . ,Xd independent Gaussian random variables. Let m ∈ {0, 1}d and
assume that there exists a vector β⋆

m ∈ R|obs(m)|+1 such that

P
(
Y = 1|Xobs(m),M = m

)
= σ

(
β⋆
0,m +

∑
j∈obs(m)

β⋆
j,mXj

)
.

Then, for all j ∈ mis(m), β⋆
j = 0

▷ Logistic model cannot hold on complete data AND on data with a
given missing pattern

▷ Constant imputation Impute-then-Logistic-Regression is ill specified

E[Y |Xobs(M),M = m] = E
[
E[Y |X ]|Xobs(M)

]
= E

[
σ(X )|Xobs(M)

]
̸= σ

(
E[β⋆

0 +
d∑

j=1

β⋆
j Xj |Xobs(M)]

)
.



85 / 99Theoretical Results48

Denote Φ(t) the probit function: Φ(t) = (2π)−1/2
∫ t

−∞ e−t2/2dt,

Theorem
Assume a logistic model on complete data and a GPMM:
X |M = m ∼ N (µm,Σm). Then, for all m, the Bayes probability on
pattern m, η⋆m, satisfies for all x ∈ R|obs(m)|,∣∣∣∣∣η⋆m(x)− σ

(
α0,m + α⊤

mx√
1 + (π/8)σ̃2

m

)∣∣∣∣∣ ⩽ 2∥ε∥∞ ≈ 0.036,

where ε(t) = Φ(t)− σ(t
√

8/π), and α0,m, αm, σ̃
2
m.

Theoretical ground for understanding why PbP logistic regression
performs well in practice while being ill-specified.

See also47

47K.A. Verchand, A. Montanari, High-dimensional logistic regression with missing
data: Imputation, regularization, and universality

48C. Muller, E. Scornet, J. Josse, When Pattern-by-Pattern Works: Theoretical and
Empirical Insights for Logistic Models with Missing Values
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▷ Pattern-by-pattern (PbP): Logistic regression on
each pattern

▷ Mean imputation (Mean.IMP)
▷ Fully specified (SAEM)

▷ Imputation by MICE (MICE.IMP)
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86 / 99Methods evaluated

▷ Pattern-by-pattern (PbP)
▷ Mean imputation (Mean.IMP)

▷ Fully specified (SAEM): Fully parametrized model,
assuming normal covariates + logistic regression,
optimized by Iterative EM

▷ Imputation by MICE (MICE.IMP)
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▷ Pattern-by-pattern (PbP)
▷ Mean imputation (Mean.IMP)
▷ Fully specified (SAEM)

▷ Imputation by MICE (MICE.IMP): Iterative
imputation by iterative MICE algorithm
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▷ Pattern-by-pattern (PbP)
▷ Mean imputation (Mean.IMP)
▷ Fully specified (SAEM)

▷ Imputation by MICE (MICE.IMP)

→ Allow multiple imputations (MICE.K.IMP): Fit
logistic on each dataset, average predictions

1 4 7

4 5 4

8 3 4

1 4 8

3 5 4

8 0 4

1 4 8

5 5 4

8 -1 4

→

→

→

f₁

f₂

f₃
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▷ Pattern-by-pattern (PbP)
▷ Mean imputation (Mean.IMP)
▷ Fully specified (SAEM)

▷ Imputation by MICE (MICE.IMP)

→ Allow multiple imputations (MICE.K.IMP)
→ Add M during imputation process (MICE.M.IMP)

X'
1 4 NA 0 0 1

NA 5 4 1 0 0

8 NA 4 0 1 0

NA 5 4 1 0 0

1 3 1 0 0 0

NA 1 4 1 0 0

7 8 4 0 0 0

4 5 NA 0 0 1



87 / 99Methods evaluated

▷ Pattern-by-pattern (PbP)
▷ Mean imputation (Mean.IMP)
▷ Fully specified (SAEM)

▷ Imputation by MICE (MICE.IMP)

→ Allow multiple imputations (MICE.K.IMP)
→ Add M during imputation process (MICE.M.IMP)
→ Add Y during training of imputation process

(MICE.Y.IMP)

X'
1 4 NA 0

NA 5 4 0

8 NA 4 1

NA 5 4 1

1 3 1 1

NA 1 4 0

7 8 4 0

4 5 NA 1



88 / 99Gaussian features (MCAR)

▷ X ∼ N (0,Σ)
▷ 5 dimensions
▷ 10 replicates
▷ Toeplitz correlation
matrix (0.65 corr.)

▷ MCAR with prob.
0.25

→ PbP approaching the Bayes prob. (large training set)
→ Necessary to use multiple imputations with MICE
→ Necessary to add Y to MICE imputation
→ SAEM and MICE.100.Y.IMP best overall



89 / 99Non-linear features (MCAR)

▷ X non-linear
transformation of
N (0,Σ)

▷ 5 dimensions
▷ 10 replicates
▷ Σ Toeplitz matrix
(0.65)

▷ MCAR with prob
0.25

→ No method can estimate Bayes probabilities
→ SAEM suffers from misspecification
→ PbP not approaching Bayes, coherent with our Theorem



90 / 99Non-linear features (MCAR): details per pattern



91 / 99Mixture of Gaussian (MNAR)

▷ X |M = m ∼
N (µm,Σm)

▷ 5 dimensions
▷ 10 replicates
▷ Σ Toeplitz matrix
▷ MCAR with prob
0.25

→ Only the PbP strategy performs well
→ Coherent with theory



92 / 99Conclusion

▷ Theoretically, altough misspecified, Pattern-by-pattern performs well
under gaussian covariates (MCAR or Pattern Mixture Model)

▷ Confirmed experimentally: in GPMM-MNAR, PbP is one of the most
competitive methods.

Empirically,

▷ MICE imputation consistently performing well in MCAR setting

1. With the use of multiple imputations

2. With the inclusion of Y in covariates

3. But needs non-linear inner regressor for non-linear covariates

▷ M(N)AR settings are more tricky
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1. Missing values mechanism

2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion



94 / 99Take home messages on Imputation

Missing mechanisms

▷ Different missing data scenario (MCAR, MAR, MNAR).
▷ Both % of NA & structure matter (5% of NA can be an issue)
▷ MAR was designed for likelihood inference (e.g. EM algorithm) but can hide

many complex distributions (distribution shift in MAR).
▷ Few implementations of EM strategies.
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▷ Both % of NA & structure matter (5% of NA can be an issue)
▷ MAR was designed for likelihood inference (e.g. EM algorithm) but can hide

many complex distributions (distribution shift in MAR).
▷ Few implementations of EM strategies.

Imputation

▷ Results in a complete data set, on which any method can be applied.
▷ Imputation is both seductive & dangerous (Dempster & Rubin, 1983).

⋄ Seductive: can lull the user into the pleasant state of believing that the
data are complete

⋄ Dangerous: it lumps together situations where the problem is minor
enough to be handled in this way & situations where estimators applied to
the imputed data have substantial biases.
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▷ Results in a complete data set, on which any method can be applied.
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Single imputation

▷ From simple (mean imputation) to more complex strategies
(MissForest)

▷ Useful for point estimates
▷ Distort the marginal and joint distributions
▷ Lead to confidence interval with poor coverage
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95 / 99Take home messages on Imputation

Single imputation

▷ From simple (mean imputation) to more complex strategies
(MissForest)

▷ Useful for point estimates
▷ Distort the marginal and joint distributions
▷ Lead to confidence interval with poor coverage

Multiple imputation

▷ Look for an imputation that preserve the joint distribution of the data
▷ MI aims at estimating the parameters and their variability taking into

account the uncertainty of the missing values
▷ Useful for confidence intervals
▷ Compare imputations with distributional metrics like energy distance
▷ mice-DRF promising (code available) - mice-Engressiona

aShen & Meinshausen (2024). Engression: extrapolation through the lens of distributional
regression. JRSS B.



96 / 99Take home messages - Supervised learning

Aim
Estimating the Bayes predictor in presence of missing values

f ⋆(X̃ ) =
∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

Two common strategies:

▷ Impute-then-regress strategies - impute the data then learn on the
imputed data set

⋄ Computationally efficient but possibly inconsistent

▷ Pattern-by-pattern strategies - use a different predictor for each
missing pattern

⋄ Consistent by design but intractable in most situations



97 / 99Take-home messages - Supervised learning

Decision trees
▷ Decision trees are among the few methods able to natively handle

missing values (MIA)
▷ Amounts to PbP strategies with a data-driven selection of relevant

patterns

Impute-then-regress

▷ Consistent for any imputation method when the predictor is universally
consistent

▷ Use the same imputation for train and test sets
▷ In finite sample, some imputation may ease the training of the

predictor (e.g., Conditional Imputation is not well-suited in general)
▷ Rethinking imputation: a good imputation is the one that makes the

prediction easy



98 / 99Take-home messages - Linear models

Pattern-by-Pattern

▷ Rate in 2d/n in the worst case
▷ Improved by performing regressions on the most frequent patterns only
▷ Rate in d2/n for MCAR Bernoulli, with a probability of missingness small

enough
▷ MNAR/MAR is not suited for prediction (GPMM)

Impute-then-Regress

▷ Inconsistent in fixed dimension
▷ Consistent in high dimensions with a slow rate n−1/2

▷ Imputation by zero amounts to a ridge regularization with a strength
depending on the missing probability

Logistic regression model

▷ PbP and constant imputation result in inconsistent predictor
▷ But in presence of Gaussian features, Bayes probabilities are correctly

estimated by PbP
▷ PbP competitive in GPMM-MNAR scenario but deteriorates when input

distribution is not Gaussian



99 / 99Thank you!49

49More ressources: https://rmisstastic.netlify.app/

https://rmisstastic.netlify.app/
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