

Model Order Reduction and Bayesian Optimization for MDO problems

ines.cardoso@onera.fr

Inês CARDOSO^{a,b} – Gaspard BERTHELIN^{a,b} – Sylvain DUBREUIL^a – Michel SALAÜN^b – Nathalie BARTOLI^a – Christian GOGU^b

a. DTIS, ONERA, Université de Toulouse, Toulouse Franceb. Université de Toulouse, CNRS, UPS, INSA, ISAE, Mines Albi, Institut Clément Ader (ICA), Toulouse, France

Contents

- I. Introduction
- II. Application example
- **III.** Reference framework
- IV. Implemented frameworks
 - I. DPOD+I & SLSQP
 - II. DPOD+I & EGMDO
- V. Conclusion

Static aeroelastic optimization of an aircraft wing

Static aeroelastic optimization of an aircraft wing

Static aeroelastic optimization of an aircraft wing

The coupling variables are high dimensional vectors.

Problem:

• When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

<u>Goal</u>:

Problem:

• When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

<u>Goal</u>:

Problem:

• When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

<u>Goal</u>:

Problem:

• When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

<u>Goal</u>:

Contents

I. Introduction II. Application example III. Reference framework IV. Implemented frameworks I. DPOD+I & SLSQP II. DPOD+I & EGMDO V. Conclusion

5

Aerodynamics and Structural solvers

> Common Research Model (configuration uCRM-9) [1]:

Aerodynamics mesh (VLM solver - 2100 degrees of freedom)

Structural mesh (FEM solver – 43416 degrees of freedom)

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. "Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings". In: 35th AIAA Applied Aerodynamics Conference. AIAA, 2017. doi: 10.2514/6.2017-4456.

Aerodynamics and Structural solvers

> Common Research Model (configuration uCRM-9) [1]:

Aerodynamics mesh (VLM solver – 2100 degrees of freedom)

Structural mesh (FEM solver – 43416 degrees of freedom)

> Four considered **design variables** ($x = \{\alpha, V_{\infty}, t_{sk}, t_{sp}\}$):

Variable	$ \alpha[^{\circ}]$	$V_{\infty}[m/s]$	$t_{sk}[m]$	$t_{sp}[m]$
Designation	Angle of attack	Air freestream velocity	Skin thickness	Spar thickness
Range of variation	[1,9]	[220, 250]	[0.003, 0.01]	[0.01, 0.1]

The design variables were scaled to take values in the range [0,1].

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. "Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings". In: 35th AIAA Applied Aerodynamics Conference. AIAA, 2017. doi: 10.2514/6.2017-4456.

Objective function

> Objective function chosen as an **inverse problem**:

$$\mathbf{x}^{*} = \arg\min_{\mathbf{x}\in\mathscr{X}} f_{obj}(\mathbf{x}) \text{ with } f_{obj}(\mathbf{x}) = \frac{\|f_{a}(\mathbf{x}_{ref}) - f_{a}(\mathbf{x})\|_{2}}{\|f_{a}(\mathbf{x}_{ref})\|_{2}} + \frac{\|u_{s}(\mathbf{x}_{ref}) - u_{s}(\mathbf{x})\|_{2}}{\|u_{s}(\mathbf{x}_{ref})\|_{2}}$$

with x_{ref} the design space point that results in the **maximum wing tip displacement** $x_{ref} = \{1, 1, 0, 0\}$.

Contents

I. Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks

DPOD+I & SLSQP
DPOD+I & EGMDO

V. Conclusion

• The real solvers are used to model the disciplines.

I S a e <

SUPAERO

RÉPUBLIQUE

FRANÇAISE

Liberté Égalité Fraternit ONERA

THE FRENCH AEROSPACE LAB

- The real solvers are used to model the disciplines.
- Due to the dimension of the coupling variables, the MDF approach was used.
 ⇒ MDA is solved at every iteration.

1586

2

Liberté Égalité Fraternit

RÉPUBLIQUE

FRANCAISE

ONERA

THE FRENCH AEROSPACE LAB

- The real solvers are used to model the • disciplines.
- Due to the dimension of the coupling • variables, the MDF approach was used. \Rightarrow MDA is solved at every iteration.
- The MDA is solved via non-linear block • Gauss-Seidel using Aitken acceleration.
- For the MDO, the gradient-based SLSQP • solver is used. Gradient calculation is made via finite differences.

1896

SUPAERO

-

RÉPUBLIQUE

FRANCAISE

ONERA

THE FRENCH AEROSPACE LAB

- The real solvers are used to model the disciplines.
- Due to the dimension of the coupling variables, the MDF approach was used.
 ⇒ MDA is solved at every iteration.
- The MDA is solved via non-linear block Gauss-Seidel using Aitken acceleration.
- For the MDO, the gradient-based SLSQP solver is used. Gradient calculation is made via finite differences.
- Starting point chosen at the center of the design space $x_0 = \{0.5, 0.5, 0.5, 0.5\}$.

SUPAERO

RÉPUBLIQUE

THE FRENCH AEROSPACE LAB

FRANCAISE

- The real solvers are used to model the • disciplines.
- Due to the dimension of the coupling • variables, the MDF approach was used. \Rightarrow MDA is solved at every iteration.
- The MDA is solved via non-linear block • Gauss-Seidel using Aitken acceleration.
- For the MDO, the gradient-based SLSQP • solver is used. Gradient calculation is made via finite differences.
- Starting point chosen at the center of the ۲ design space $x_0 = \{0.5, 0.5, 0.5, 0.5\}$.

 \Rightarrow The algorithm needed 17 iterations and 286 calls to each disciplinary solver in order to find the reference point.

Contents

Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks

DPOD+I & SLSQP
DPOD+I & EGMDO

V. Conclusion

Liberté Égalité Fraternit

THE FRENCH AEROSPACE LAB

SUPAERO

 Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].

SUPAERO

Replacement of the disciplinary solvers by **Disciplinary Proper Orthogonal Decom**position + Interpolation (DPOD+I) surrogate models [2].

⇒ Model order reduction by **Disciplinary Proper Orthogonal Decomposition (DPOD):**

$$\hat{f}_a \approx \phi_0^a + \sum_{i=1}^{n_a} \alpha_i^a(\mathbf{x}, u_s) \phi_i^a$$
$$\hat{u}_s \approx \phi_0^s + \sum_{i=1}^{n_s} \alpha_i^s(\mathbf{x}, f_a) \phi_i^s$$

where ϕ_0 is a constant vector, ϕ_i are the POD basis vectors, α_i are the POD coefficients, and n_a and n_s give the number of terms retained in the POD approximations.

SUPAERO

Replacement of the disciplinary solvers by **Disciplinary Proper Orthogonal Decom**position + Interpolation (DPOD+I) surrogate models [2].

⇒ Model order reduction by **Disciplinary Proper** Orthogonal Decomposition (DPOD) followed by the interpolation of each coefficient by Gaussian Processes (GP):

$$\hat{\alpha}_{i}^{a} \sim \mathrm{GP}|_{\mathrm{DoE}_{a}}(\mu|_{\mathrm{DoE}_{a}}, k|_{\mathrm{DoE}_{a}})$$
$$\hat{\alpha}^{s} \sim \mathrm{GP}|_{\mathrm{DoE}_{s}}(\mu|_{\mathrm{DoE}_{s}}, k|_{\mathrm{DoE}_{s}})$$

where the GP approximation of the coefficients is denoted by \hat{lpha}_i and is characterized by a mean value μ and a covariance kernel k.

Liberté Égalité Fraterai

THE FRENCH AEROSPACE LAB

SUPAERO

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
- The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).

THE FRENCH AEROSPACE LAB

SUPAERO

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
- The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).
- It is possible to enrich the disciplinary surrogates throughout the MDA resolution until a given accuracy is achieved.

THE FRENCH AEROSPACE LAB

SUPAERO

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
- The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).
- It is possible to enrich the disciplinary surrogates throughout the MDA resolution until a given accuracy is achieved.
- The MDO is solved by a gradient-based optimizer (SLSQP). Gradient computation uses the Gaussian Process derivatives.

THE FRENCH AEROSPACE LAB

SUPAERO

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
- The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).
- It is possible to enrich the disciplinary surrogates throughout the MDA resolution until a given accuracy is achieved.
- The MDO is solved by a gradient-based optimizer (SLSQP). Gradient computation uses the Gaussian Process derivatives.
- Starting point chosen at the center of the design space $x_0 = \{0.5, 0.5, 0.5, 0.5\}$.

• The GP surrogates are built upon random initial disciplinary $DoEs \Rightarrow 10$ runs are performed.

- The GP surrogates are built upon random initial disciplinary $DoEs \Rightarrow 10$ runs are performed.
- Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.
 - \Rightarrow **Initial DoE:** average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

- The GP surrogates are built upon random initial disciplinary $DoEs \Rightarrow 10$ runs are performed.
- Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.
 - \Rightarrow **Initial DoE:** average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

		α^*	V^*_∞	t^*_{sk}	t_{sp}^*	$\int f(\mathbf{x}^*)$	$ n^a$	n^s
Reference	E CoV	1.0 -	1.0	0.0	0.0	0.0	286 —	286
DPOD+I & SLSQP	E CoV	$1.0 \le 10^{-12}$	$1.0 \le 10^{-12}$	3.4×10^{-4} 3.0	3.1×10^{-4} 2.6346	$\begin{array}{c c} 0.0585 \\ 0.1523 \end{array}$	60.7 0.1904	51.5 0.1784

Comparison between DPOD+I & SLSQP framework and reference framework

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

- The GP surrogates are built upon random initial disciplinary $DoEs \Rightarrow 10$ runs are performed.
- Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.
 - \Rightarrow **Initial DoE:** average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

		$ \alpha^*$	V^*_∞	t^*_{sk}	t_{sp}^*	$\int f(\mathbf{x}^*)$	$ $ n^a	n^s
Reference	E	1.0	1.0	0.0	0.0	0.0	286	286
	CoV	_	—	—	—	-	_	—
DPOD+I & SLSQP	E	1.0	1.0	$3.4 imes 10^{-4}$	$3.1 imes 10^{-4}$	0.0585	60.7	51.5
	CoV	$\leq 10^{-12}$	$\leq 10^{-12}$	3.0	2.6346	0.1523	0.1904	0.1784

Comparison between DPOD+I & SLSQP framework and reference framework

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

- > Reduction by a factor of 5 in the number of necessary disciplinary solver calls.
- > An average of **only 10 calls** was made to each disciplinary solver during the optimization process.

Contents

Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks

DPOD+I & SLSQP
DPOD+I & EGMDO

V. Conclusion

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by the EGMDO (Efficient Global Multidisciplinary Optimization) algorithm [3].

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: Structural and Multidisciplinary Optimization 62 (2020), pp. 1–27.

I S a e <

SUPAERO

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: **EGMDO** [3].

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: Structural and Multidisciplinary Optimization 62 (2020), pp. 1–27.

2

Liberté Égalité Fraternit

RÉPUBLIQUE

FRANÇAISE

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: **EGMDO** [3].
- Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: Structural and Multidisciplinary Optimization 62 (2020), pp. 1–27.

-

Liberté Égalité Fraternit

RÉPUBLIQUE

FRANCAISE

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: **EGMDO** [3].
- Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.
- It remains possible to enrich the disciplinary surrogate models at DoE points.
- The point must have some likelihood of being the minimum to be enriched.

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: Structural and Multidisciplinary Optimization 62 (2020), pp. 1–27.

-

RÉPUBLIQUE

FRANCAISE

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: **EGMDO** [3].
- Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.
- It remains possible to enrich the disciplinary surrogate models at DoE points.
- The point must have some likelihood of being the minimum to be enriched.
- Possible to add new points to the DoE.
- A modified Expected Improvement (EI) criterion is used.

 \Rightarrow Due to the non-Gaussian nature of f_{obj} the El is estimated via Monte Carlo Simulation.

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: Structural and Multidisciplinary Optimization 62 (2020), pp. 1–27.

RÉPUBLIQUE

FRANCAISE

DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer $DoE \Rightarrow 10$ runs are performed.
- Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer $DoE \Rightarrow 10$ runs are performed.
- Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

		α^*	V^*_∞	t^*_{sk}	t_{sp}^*	$\int f(\mathbf{x}^*)$	n^a	n^s
Reference	E	1.0	1.0	0.0	0.0	0.0	286	286
	CoV	_	—	—	—	-	_	_
DPOD+I & SLSQP	E	1.0	1.0	$3.4 imes 10^{-4}$	$3.1 imes 10^{-4}$	0.0585	60.7	51.5
	CoV	$ \le 10^{-12}$	$\leq 10^{-12}$	3.0	2.6346	0.1523	0.1904	0.1784
DPOD+I & EGMDO	E	0.999	0.987	0.006	3×10^{-7}	0.044	61	51
	CoV	0.003	0.02	0.9	3.16	0.44	0.1117	0.1225

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer $DoE \Rightarrow 10$ runs are performed.
- Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

		α^*	V^*_∞	t^*_{sk}	t_{sp}^*	$\int f(\mathbf{x}^*)$	n^a	n^s
Reference	E	1.0	1.0	0.0	0.0	0.0	286	286
	CoV	_	—	—	—	_	_	_
DPOD+I & SLSQP	E	1.0	1.0	3.4×10^{-4}	$3.1 imes 10^{-4}$	0.0585	60.7	51.5
	CoV	$ \le 10^{-12}$	$\leq 10^{-12}$	3.0	2.6346	0.1523	0.1904	0.1784
DPOD+I & EGMDO	E	0.999	0.987	0.006	$3 imes 10^{-7}$	0.044	61	51
	CoV	0.003	0.02	0.9	3.16	0.44	0.1117	0.1225

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

Reduction by a factor of 5 on the number of necessary disciplinary solver calls compared to the reference framework.

Contents

I. Introduction

- II. Problem statement
- III. Reference framework
- IV. Implemented frameworks
 - I. DPOD+I & SLSQPII. DPOD+I & EGMDO
- V. Conclusion

• The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.

- The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.
- DPOD+I surrogates allow us to **perform multi-disciplinary optimization using high-fidelity solvers**, at a reduced computational cost.

- The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.
- DPOD+I surrogates allow us to **perform multi-disciplinary optimization using high-fidelity solvers**, at a reduced computational cost.
- The EGMDO algorithm allows to **perform global optimization when the disciplinary solvers are replaced by disciplinary Gaussian Processes**, reducing the disciplinary solver calls during the optimization process.

- The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.
- DPOD+I surrogates allow us to **perform multi-disciplinary optimization using high-fidelity solvers**, at a reduced computational cost.
- The EGMDO algorithm allows to perform global optimization when the disciplinary solvers are replaced by disciplinary Gaussian Processes, reducing the disciplinary solver calls during the optimization process.
- Some perspectives to the proposed framework include the implementation of **other dimension reduction techniques**, for instance via local POD basis or non-linear model order reduction, to account for more complex disciplinary models. **Other approximation models**, such as the Kriging with Partial Least Squares model [4] could allow the construction of GPs for a greater number of design variables.

Bibliography:

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. "Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings". In: *35th AIAA Applied Aerodynamics Conference*. AIAA, 2017. doi: 10.2514/6.2017-4456.

[2] G. Berthelin, S. Dubreuil, M. Salaün, N. Bartoli, and C. Gogu. "Disciplinary Proper Orthogonal Decomposition and Interpolation for the resolution of parametrized Multidisciplinary Analysis". In: *International Journal for Numerical Methods in Engineering* (2022). Accepted Author Manuscript. doi: 10.1002/nme.6981.

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. "Towards an efficient global multidisciplinary design optimization algorithm". In: *Structural and Multidisciplinary Optimization* 62 (2020), pp. 1–27. doi: 10.1007/s00158-020-02514-6.

[4] M. Bouhlel, N. Bartoli, J. Morlier, and A. Otsmane. "Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction". In: Structural and Multidisciplinary Optimization 53 (5) (2016), pp. 935–952. doi: 10.1007/s00158-015-1395-9.

