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Both disciplinary solvers depend on 

the design variables (𝑥), handled by 

an optimization algorithm.

Assumptions:

• Partitioned approach: non-intrusive

coupling between the disciplinary

solvers.

• Multidisciplinary Feasible (MDF)

approach: optimization problem and

non-linear coupled problem solved

independently.

• The coupling variables are high di-

mensional vectors.
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 Common Research Model (configuration uCRM-9) [1]:

 Four considered design variables (𝒙 = {𝛼, 𝑉∞, 𝑡𝑠𝑘 , 𝑡𝑠𝑝}):

The design variables were scaled to take values in the range [0,1].

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. “Undeflected Common Research Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings”.

In: 35th AIAA Applied Aerodynamics Conference. AIAA, 2017. doi: 10.2514/6.2017-4456.
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 Objective function chosen as an inverse problem:

with 𝒙ref the design space point that results in the maximum wing tip displacement 𝒙ref = {1,1,0,0}.
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solver is used. Gradient calculation is

made via finite differences.

• Starting point chosen at the center of the

design space 𝒙𝟎 = {0.5,0.5,0.5,0.5}.

 The algorithm needed 17 iterations and
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• Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis

composed of an average of 5 coefficients.

  Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

 Reduction by a factor of 5 in the number of necessary disciplinary solver calls.

 An average of only 10 calls was made to each disciplinary solver during the optimization process.
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• The MDA remains the same as in the

previous framework.

• Replacement of the optimizer by the

EGMDO (Efficient Global Multidiscipli-

nary Optimization) algorithm [3].
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• The MDA remains the same as in the

previous framework.

• Replacement of the optimizer by a global

optimization algorithm: EGMDO [3].

• Non-linear MDA solved using disciplinary

GPs leads to a non-Gaussian objective

function.

• It remains possible to enrich the discipli-

nary surrogate models at DoE points.

 The point must have some likelihood of

being the minimum to be enriched.

• Possible to add new points to the DoE.

 A modified Expected Improvement (EI)

criterion is used.

  Due to the non-Gaussian nature of 𝑓𝑜𝑏𝑗 the

EI is estimated via Monte Carlo Simulation.
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• The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are

used for the MDA.

• DPOD+I surrogates allow us to perform multi-disciplinary optimization using high-fidelity solvers, at a

reduced computational cost.

• The EGMDO algorithm allows to perform global optimization when the disciplinary solvers are replaced

by disciplinary Gaussian Processes, reducing the disciplinary solver calls during the optimization process.

• Some perspectives to the proposed framework include the implementation of other dimension reduction

techniques, for instance via local POD basis or non-linear model order reduction, to account for more complex

disciplinary models. Other approximation models, such as the Kriging with Partial Least Squares model [4]

could allow the construction of GPs for a greater number of design variables.
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