Model Order Reduction and Bayesian Optimization for MDO problems

ines.cardoso@onera.fr

Inês CARDOSOa,b – Gaspard BERTHELINa,b – Sylvain DUBREUILa – Michel SALAÜNb – Nathalie BARTOLIa – Christian GOGUb

a. DTIS, ONERA, Université de Toulouse, Toulouse France
b. Université de Toulouse, CNRS, UPS, INSA, ISAE, Mines Albi, Institut Clément Ader (ICA), Toulouse, France
Static aeroelastic optimization of an aircraft wing

- Initial guess (x_0)
- Update design space point (x)
- Aerodynamics model: $f_a = M(x, u_s)$
- Structural model: $u_s = M(x, f_a)$
- Stopping criteria met?
- Multidisciplinary Analysis (MDA)
- Optimum point (x^*)
Static aeroelastic optimization of an aircraft wing

The solution of the MDA is the **displacement field** \(u_s \) and the **vector of aerodynamic forces** \(f_a \).

Both disciplinary solvers depend on the **design variables** \(x \), handled by an **optimization algorithm**.
Static aeroelastic optimization of an aircraft wing

Introduction
Application Example
Reference Framework
DPOD+I & SLSQP
DPOD+I & EGMD
Conclusion

The solution of the MDA is the displacement field \(u_s\) and the vector of aerodynamic forces \(f_a\).

Both disciplinary solvers depend on the design variables \(x\), handled by an optimization algorithm.

Assumptions:

- Partitioned approach: non-intrusive coupling between the disciplinary solvers.
- Multidisciplinary Feasible (MDF) approach: optimization problem and non-linear coupled problem solved independently.
- The coupling variables are high dimensional vectors.
Problem statement

Problem:
- When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become intractable.

Goal:
- Reduce the computational cost, by reducing the number of disciplinary solver calls made.
Problem:
- When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

Goal:
- Reduce the computational cost, by **reducing the number of disciplinary solver calls** made.

![Diagram showing the optimization process](Image)
Problem statement

Problem:

- When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become intractable.

Goal:

- Reduce the computational cost, by reducing the number of disciplinary solver calls made.
Problem statement

Problem:
- When using high fidelity solvers (e.g. FEM or CFD solvers), the **computational cost** may become intractable.

Goal:
- Reduce the computational cost, by reducing the number of disciplinary solver calls made.
Contents

I. Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks
 I. DPOD+I & SLSQP
 II. DPOD+I & EGMDO
V. Conclusion
Aerodynamics and Structural solvers

- Common Research Model (configuration uCRM-9) [1]:

Aerodynamics mesh (VLM solver – 2100 degrees of freedom)
Structural mesh (FEM solver – 43416 degrees of freedom)

Aerodynamics and Structural solvers

- Common Research Model (configuration uCRM-9) [1]:

![Aerodynamics mesh](image1) ![Structural mesh](image2)

Aerodynamics mesh (VLM solver – 2100 degrees of freedom) Structural mesh (FEM solver – 43416 degrees of freedom)

- Four considered **design variables** \(\{\alpha, V_\infty, t_{sk}, t_{sp}\} \):

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\alpha[^\circ])</th>
<th>(V_\infty[m/s])</th>
<th>(t_{sk}[m])</th>
<th>(t_{sp}[m])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Angle of attack</td>
<td>Air freestream velocity</td>
<td>Skin thickness</td>
<td>Spar thickness</td>
</tr>
<tr>
<td>Range of variation</td>
<td>[1, 9]</td>
<td>[220, 250]</td>
<td>[0.003, 0.01]</td>
<td>[0.01, 0.1]</td>
</tr>
</tbody>
</table>

The design variables were scaled to take values in the range \([0,1]\).

Objective function

- Objective function chosen as an inverse problem:

\[x^* = \arg \min_{x \in \mathcal{X}} f_{\text{obj}}(x) \quad \text{with} \quad f_{\text{obj}}(x) = \frac{\| f_a(x_{\text{ref}}) - f_a(x) \|_2}{\| f_a(x_{\text{ref}}) \|_2} + \frac{\| u_s(x_{\text{ref}}) - u_s(x) \|_2}{\| u_s(x_{\text{ref}}) \|_2} \]

with \(x_{\text{ref}} \) the design space point that results in the maximum wing tip displacement \(x_{\text{ref}} = \{1,1,0,0\} \).
I. Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks
 I. DPOD+I & SLSQP
 II. DPOD+I & EGMDO
V. Conclusion
The real solvers are used to model the disciplines.
The real solvers are used to model the disciplines.

Due to the dimension of the coupling variables, the MDF approach was used. \(\Rightarrow \) MDA is solved at every iteration.
The real solvers are used to model the disciplines.

Due to the dimension of the coupling variables, the MDF approach was used. => MDA is solved at every iteration.

The MDA is solved via non-linear block Gauss-Seidel using Aitken acceleration.

For the MDO, the gradient-based SLSQP solver is used. Gradient calculation is made via finite differences.
• The real solvers are used to model the disciplines.

• Due to the dimension of the coupling variables, the MDF approach was used. \[\Rightarrow\] **MDA is solved at every iteration.**

• The MDA is solved via non-linear block Gauss-Seidel using Aitken acceleration.

• For the MDO, the gradient-based SLSQP solver is used. **Gradient calculation is made via finite differences.**

• Starting point chosen at the center of the design space \(x_0 = \{0.5,0.5,0.5,0.5\}.\)
The real solvers are used to model the disciplines.

Due to the dimension of the coupling variables, the MDF approach was used. \(\Rightarrow \) MDA is solved at every iteration.

The MDA is solved via non-linear block Gauss-Seidel using Aitken acceleration.

For the MDO, the gradient-based SLSQP solver is used. Gradient calculation is made via finite differences.

Starting point chosen at the center of the design space \(x_0 = \{0.5,0.5,0.5,0.5\} \).

\(\Rightarrow \) The algorithm needed 17 iterations and 286 calls to each disciplinary solver in order to find the reference point.
I. Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks
 I. DPOD+I & SLSQP
 II. DPOD+I & EGMD
V. Conclusion
DPOD+I & SLSQP framework

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].

DPOD+I & SLSQP framework

- Replacement of the disciplinary solvers by
 Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].

⇒ Model order reduction by **Disciplinary Proper Orthogonal Decomposition (DPOD):**

\[
\hat{f}_a \approx \phi_0^a + \sum_{i=1}^{n_a} \alpha_i^a(x, u_s) \phi_i^a
\]

\[
\hat{u}_s \approx \phi_0^s + \sum_{i=1}^{n_s} \alpha_i^s(x, f_o) \phi_i^s
\]

where \(\phi_0 \) is a constant vector, \(\phi_i \) are the POD basis vectors, \(\alpha_i \) are the POD coefficients, and \(n_a \) and \(n_s \) give the number of terms retained in the POD approximations.

• Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].

⇒ Model order reduction by Disciplinary Proper Orthogonal Decomposition (DPOD) followed by the interpolation of each coefficient by Gaussian Processes (GP):

\[\hat{\alpha}_i^q \sim \text{GP}_{\text{DoE}_a} (\mu_{\text{DoE}_a}, k_{\text{DoE}_a}) \]
\[\hat{\alpha}_i^s \sim \text{GP}_{\text{DoE}_s} (\mu_{\text{DoE}_s}, k_{\text{DoE}_s}) \]

where the GP approximation of the coefficients is denoted by \(\hat{\alpha}_i \) and is characterized by a mean value \(\mu \) and a covariance kernel \(k \).

• Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].

✓ The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).

• Replacement of the disciplinary solvers by **Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I)** surrogate models [2].

☑️ The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).

☑️ It is possible to **enrich the disciplinary surrogates** throughout the MDA resolution until a given accuracy is achieved.

DPOD+I & SLSQP framework

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
- The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).
- It is possible to enrich the disciplinary surrogates throughout the MDA resolution until a given accuracy is achieved.
- The MDO is solved by a gradient-based optimizer (SLSQP). Gradient computation uses the Gaussian Process derivatives.

DPOD+I & SLSQP framework

- Replacement of the disciplinary solvers by Disciplinary Proper Orthogonal Decomposition + Interpolation (DPOD+I) surrogate models [2].
 - The disciplinary surrogates are trained independently from different Designs of Experiments (DoE).
 - It is possible to enrich the disciplinary surrogates throughout the MDA resolution until a given accuracy is achieved.
- The MDO is solved by a gradient-based optimizer (SLSQP). Gradient computation uses the Gaussian Process derivatives.
- Starting point chosen at the center of the design space $x_0 = \{0.5,0.5,0.5,0.5\}$.

DPOD+I & SLSQP results

- The GP surrogates are built upon random initial disciplinary DoEs ⇒ 10 runs are performed.
DPOD+I & SLSQP results

- The GP surrogates are built upon random initial disciplinary DoEs ⇒ 10 runs are performed.

- Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.

⇒ Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.
The GP surrogates are built upon random initial disciplinary DoEs ⇒ 10 runs are performed.

Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.

⇒ Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

Comparison between DPOD+I & SLSQP framework and reference framework

<table>
<thead>
<tr>
<th></th>
<th>α^*</th>
<th>V_∞^*</th>
<th>t_{sk}^*</th>
<th>t_{sp}^*</th>
<th>$f(x^*)$</th>
<th>n^a</th>
<th>n^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>E</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DPOD+I & SLSQP</td>
<td>E</td>
<td>1.0</td>
<td>1.0</td>
<td>3.4×10^{-4}</td>
<td>3.1×10^{-4}</td>
<td>0.0585</td>
<td>60.7</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>$\leq 10^{-12}$</td>
<td>$\leq 10^{-12}$</td>
<td>3.0</td>
<td>2.6346</td>
<td>0.1523</td>
<td>0.1904</td>
</tr>
</tbody>
</table>

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.
DPOD+I & SLSQP results

- The GP surrogates are built upon random initial disciplinary DoEs ⇒ **10 runs are performed.**

- Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis composed of an average of 5 coefficients.

 ⇒ **Initial DoE:** average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

Comparison between DPOD+I & SLSQP framework and reference framework

<table>
<thead>
<tr>
<th></th>
<th>α^*</th>
<th>V_∞^*</th>
<th>t_{sk}^*</th>
<th>t_{sp}^*</th>
<th>$f(x^*)$</th>
<th>n^a</th>
<th>n^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>286</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>CoV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPOD+I & SLSQP</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>3.4×10^{-4}</td>
<td>3.1×10^{-4}</td>
<td>0.0585</td>
<td>60.7</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>CoV</td>
<td>$\leq 10^{-12}$</td>
<td>3.0</td>
<td>2.6346</td>
<td>0.1523</td>
<td>0.1904</td>
</tr>
</tbody>
</table>

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

- **Reduction by a factor of 5** in the number of necessary disciplinary solver calls.

- An average of **only 10 calls** was made to each disciplinary solver during the optimization process.
I. Introduction
II. Application example
III. Reference framework
IV. Implemented frameworks
 I. DPOD+I & SLSQP
 II. DPOD+I & EGMDO
V. Conclusion
The MDA remains the same as in the previous framework.

Replacement of the optimizer by the **EGMDO (Efficient Global Multidisciplinary Optimization)** algorithm [3].

DPOD+I & EGMDO framework

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: EGMDO [3].

DPOD+I & EGMDO framework

- The MDA remains the same as in the previous framework.
- Replacement of the optimizer by a global optimization algorithm: EGMDO [3].
- Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.

DPOD+I & EGMDO framework

- The MDA remains the same as in the previous framework.

- Replacement of the optimizer by a global optimization algorithm: EGMDO [3].

- Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.

- It remains possible to enrich the disciplinary surrogate models at DoE points.
 - The point must have some likelihood of being the minimum to be enriched.

The MDA remains the same as in the previous framework.

Replacement of the optimizer by a global optimization algorithm: EGMDO [3].

Non-linear MDA solved using disciplinary GPs leads to a non-Gaussian objective function.

It remains possible to enrich the disciplinary surrogate models at DoE points.

The point must have some likelihood of being the minimum to be enriched.

Possible to add new points to the DoE.

A modified Expected Improvement (EI) criterion is used.

Due to the non-Gaussian nature of f_{obj} the EI is estimated via Monte Carlo Simulation.

DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer DoE ⇒ **10 runs are performed.**

- **Initial DoE:** average of 49 points for the structural discipline and 59 for the aerodynamics discipline.
DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer DoE ⇒ **10 runs are performed.**
- **Initial DoE:** average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

<table>
<thead>
<tr>
<th></th>
<th>(\alpha^*)</th>
<th>(V^*_{\infty})</th>
<th>(t^*_{sk})</th>
<th>(t^*_{sp})</th>
<th>(f(x^*))</th>
<th>(n^a)</th>
<th>(n^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>(E)</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DPOD+I & SLSQP</td>
<td>(E)</td>
<td>(\leq 10^{-12})</td>
<td>(\leq 10^{-12})</td>
<td>3.4 (\times) (10^{-4})</td>
<td>3.1 (\times) (10^{-4})</td>
<td>0.0585</td>
<td>60.7</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>2.6346</td>
<td>0.1523</td>
<td>0.1904</td>
</tr>
<tr>
<td>DPOD+I & EGMDO</td>
<td>(E)</td>
<td>0.999</td>
<td>0.987</td>
<td>0.006</td>
<td>3 (\times) (10^{-7})</td>
<td>0.044</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.003</td>
<td>0.02</td>
<td>0.9</td>
<td>3.16</td>
<td>0.44</td>
<td>0.1117</td>
</tr>
</tbody>
</table>

where \(n^a \) and \(n^s \) are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.
DPOD+I & EGMDO results

- Random initial disciplinary DoEs and random initial optimizer DoE ⇒ **10 runs are performed.**
- **Initial DoE:** average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

<table>
<thead>
<tr>
<th></th>
<th>α^*</th>
<th>V^*_∞</th>
<th>t^*_sk</th>
<th>t^*_sp</th>
<th>$f(x^*)$</th>
<th>n^a</th>
<th>n^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>\mathbb{E}</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>$\leq 10^{-12}$</td>
<td>$\leq 10^{-12}$</td>
<td>3.4×10^{-4}</td>
<td>3.1×10^{-4}</td>
<td>0.0585</td>
<td>60.7</td>
</tr>
<tr>
<td>DPOD+I & SLSQP</td>
<td>\mathbb{E}</td>
<td>0.999</td>
<td>0.987</td>
<td>0.006</td>
<td>3×10^{-7}</td>
<td>0.044</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>CoV</td>
<td>0.003</td>
<td>0.02</td>
<td>0.9</td>
<td>3.16</td>
<td>0.44</td>
<td>0.1117</td>
</tr>
</tbody>
</table>

where n^a and n^s are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

- **Reduction by a factor of 5** on the number of necessary disciplinary solver calls compared to the reference framework.
I. Introduction
II. Problem statement
III. Reference framework
IV. Implemented frameworks
 I. DPOD+I & SLSQP
 II. DPOD+I & EGMDO
V. Conclusion
The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.
Conclusion and perspectives

• The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.

• DPOD+I surrogates allow us to **perform multi-disciplinary optimization using high-fidelity solvers**, at a reduced computational cost.
Conclusion and perspectives

- The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.

- DPOD+I surrogates allow us to perform multi-disciplinary optimization using high-fidelity solvers, at a reduced computational cost.

- The EGMDO algorithm allows to perform global optimization when the disciplinary solvers are replaced by disciplinary Gaussian Processes, reducing the disciplinary solver calls during the optimization process.
The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are used for the MDA.

- DPOD+I surrogates allow us to **perform multi-disciplinary optimization using high-fidelity solvers**, at a reduced computational cost.

- The EGMDO algorithm allows to **perform global optimization when the disciplinary solvers are replaced by disciplinary Gaussian Processes**, reducing the disciplinary solver calls during the optimization process.

Some perspectives to the proposed framework include the implementation of **other dimension reduction techniques**, for instance via local POD basis or non-linear model order reduction, to account for more complex disciplinary models. **Other approximation models**, such as the Kriging with Partial Least Squares model [4] could allow the construction of GPs for a greater number of design variables.

Bibliography:

