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Introduction

Static aeroelastic optimization of an aircraft wing

[ Initial guess (x) ]
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+ | Aerodynamics model C P :
E fo = M(,uy) 4 E
No i A A E
( - > Structural model |
E s U = M(:B, f a) E

Multidisciplinary

Analysis (MDA)

Stopping criteria 11 )
< fobj(ma faaua)
met?

Yes

Y

Optimum point (x*)

iy ONERA

FRANCAISE
Liberté

L s
Epali F _
i THE FRENCH AEROSPACE LAB S

ratersité

S ﬂ E ;'-A( Model Order Reduction and Bayesian 3
it ' Optimization for MDO problems
u



Introduction

Static aeroelastic optimization of an aircraft wing

[ Initial guess (x) ]

v

> Update design space point (x)

hvsm o ekl ! The solution of the MDA is the

E fu = Mz, u,) 4>@ E displacement field (u) and the

i ER i vector of aerodynamic forces (f,).

No A \ ] —

Structural model ; Both disciplinary solvers depend on

i s us = M(z, fa) ; the design variables (x), handled by

e 5 an optimization algorithm.
Multidisciplinary
Analysis (MDA)

Stopping criteria 11 )
< fobj(ma faaua)
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Introduction

Static aeroelastic optimization of an aircraft wing

[ Initial guess (x) ]

v

Update design space point (x)

_____________________________ 20—

A 4

The solution of the MDA is the

' | Aerodynamics model P disol t field dth
5 fo = M(z,u,) —» fa ) | isplacement field (ug) and the

; - vector of aerodynamic forces (f,).

No A Y ] —

Structural model i Both disciplinary solvers depend on
5 Us us = M(z, f,) 5 the design variables (x), handled by

; an optimization algorithm.

Multidisciplinary .
Ana|y5i5 (MDA) AssumptlonS:
« Partitioned approach: non-intrusive
Stoppingcriteria}, Fobi (@, Fay ) coupling between the disciplinary
met? h WNT T s solvers.
* Multidisciplinary  Feasible  (MDF)
Optimum point (x*) approach: optimization problem and
non-linear coupled problem solved
independently.
* The coupling variables are high di-
mensional vectors.
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Y
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Introduction

Problem statement

Problem:
* When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become

intractable.

Goal:
* Reduce the computational cost, by reducing the number of disciplinary solver calls made.
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Introduction

Problem statement

Problem:
* When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become

intractable.

Goal:
* Reduce the computational cost, by reducing the number of disciplinary solver calls made.

[ Initial guess (x) ]

> Update design space point (x)
' Aerodynamics model ( 7 ) I
; fo = M(=z,u,) g
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( » ) Structural model
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Introduction

Problem statement

Problem:
* When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become

intractable.

Goal:
* Reduce the computational cost, by reducing the number of disciplinary solver calls made.

[ Initial guess (xg) ]

v

Update design space point (x)

Y
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Aerodynamics
surrogate model

No
Structural
surrogate model
Multidisciplinary
Analysis (MDA)
Stopping criteria .
{ met? fobi(@, fa, us)
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> Optimum point (x*)
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Introduction

Problem statement

Problem:
* When using high fidelity solvers (e.g. FEM or CFD solvers), the computational cost may become

intractable.

Goal:
* Reduce the computational cost, by reducing the number of disciplinary solver calls made.

Initial DoE (xp.g)

Update design space point (x)

Y

Aerodynamics
surrogate model

No
Structural
surrogate model
Multidisciplinary
Analysis (MDA)
{ Stopping criteria Acquisition function
met?
| Yes . .
» Optimum point (x*)
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Application Example

Aerodynamics and Structural solvers

» Common Research Model (configuration uCRM-9) [1]:

Aerodynamics mesh (VLM solver — 2100 degrees of freedom) Structural mesh (FEM solver — 43416 degrees of freedom)

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. “Undeflected Common Research Model (UCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings”.
In: 35th AIAA Applied Aerodynamics Conference. AIAA, 2017. doi: 10.2514/6.2017-4456.
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Application Example

Aerodynamics and Structural solvers

» Common Research Model (configuration uCRM-9) [1]:

Aerodynamics mesh (VLM solver — 2100 degrees of freedom) Structural mesh (FEM solver — 43416 degrees of freedom)

> Four considered design variables (x = {a, Vi, tsk, tsp}):

Variable | «[°] Voo|m/s] t sk [m] tsplm]
Designation | Angle of attack ~ Air freestream velocity  Skin thickness  Spar thickness
Range of variation | [1,9] 220, 250] [0.003, 0.01] [0.01,0.1]

The design variables were scaled to take values in the range [0,1].

[1] T.R. Brooks, G.K. Kenway, and J.R.R.A. Martins. “Undeflected Common Research Model (UCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport Aircraft Wings”.
In: 35th AIAA Applied Aerodynamics Conference. AIAA, 2017. doi: 10.2514/6.2017-4456.
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Application Example

Objective function

» Objective function chosen as an inverse problem:

* _ aro main Fo : Uv) — | fa(Xret) — fa(x)”2 s (Xrer) — us(x)||2
© = arg i Jor () With S0 = e e O T TGl

with x..r the design space point that results in the maximum wing tip displacement x,..r = {1,1,0,0}.

Vertical wing displacement
-0.00773 1.02 2.05
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Reference Framework

Reference optimization framework

[ Initial guess (x) ]

* The real solvers are used to model the

Y

r disciplines.
Update design space point (x)

Gradient No

Aerodynamics model '
: fa- — M(:L‘ 'U,\,«)

Structural model

Usg = M(ﬂ}, fﬂ-)

Stopping criteria

Computation

met?

Yes
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Reference Framework

Reference optimization framework

[ Initial guess (x) ]

« The real solvers are used to model the
r disciplines.
Update design space point (x)

Y

« Due to the dimension of the coupling
variables, the MDF approach was used.

Aerodynamics model o — MDA is solved at every iteration.
fa = M(z,u,)

“ Structural model
Us = M(a:, f a)

Jobj
h 4
4 ~\
Gradient P No Stopping criteria
Computation met?
A v
Yes
Y
Optimum point
(x*)
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Reference Framework

Reference optimization framework

[ Initial guess (x) ]

* The real solvers are used to model the

r disciplines.
> Update design space point (x)

l « Due to the dimension of the coupling
""""""""""""""""""""""""""""""" variables, the MDF approach was used.

Acrodynamics model | = MDA is solved at every iteration.
.fu- — M(:BU\,) ;

« The MDA is solved via non-linear block
Gauss-Seidel using Aitken acceleration.

Structural model

us = Mz, fa)

o : « For the MDO, the gradient-based SLSQP
i solver is used. Gradient calculation is
fon made via finite differences.
obj
Y
~ ™
P No Stopping criteria
A met?
A v
Yes
A4
Optimum point
(x*)
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Reference Framework

Reference optimization framework

Initial guess (xg)

Y

Update design space point (x)

R S

Aerodynamics model
fa = M(a}, us)

The real solvers are used to model the
disciplines.

Due to the dimension of the coupling
variables, the MDF approach was used.
= MDA is solved at every iteration.

The MDA is solved via non-linear block

( ) ) Structural model Gauss-Seidel using Aitken acceleration.
N us = M(z, fa)
----------------------------------------------------------- For the MDO, the gradient-based SLSQP
i solver is used. Gradient calculation is
fon made via finite differences.
obj
v Starting point chosen at the center of the
e h i =
Gradient P No Stopping criteria des'Qn space xp = {0-510-5’0-5’0-5}-
Computation X met?
A v
Yes
A 4
Optimum point
(x*)
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Reference Framework

Reference optimization framework

[ Initial guess (x) ]

* The real solvers are used to model the

r disciplines.
> Update design space point (x)
l « Due to the dimension of the coupling

variables, the MDF approach was used.

Aerodynamics model P = MDA is solved at every iteration.
fa = M(:B,’U,a) a E

e The MDA is solved via non-linear block

( ) Structural model Gauss-Seidel using Aitken acceleration.
s us = M(z, fa) E

e : « For the MDO, the gradient-based SLSQP
i solver is used. Gradient calculation is
o made via finite differences.
v « Starting point chosen at the center of the
Gradient < No (Stopping criteria ) design space x, = {0.5,0.5,0.5,0.5}.
Computation met?
) I — The algorithm needed 17 iterations and

: : 286 calls to each disciplinary solver in order
B to find the reference point.

(x*)
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DPOD+| & SLSQP

DPOD+Il & SLSQP framework

[ Initial guess (x;) ]

* Replacement of the disciplinary solvers by

r Disciplinary Proper Orthogonal Decom-
> Update design space point (x) position + Interpolation (DPOD+I) surro-
_____________________________ l gate models [2].

Aerodynamics

Surrogate Model

Structural Surrogate
Model

Enrich Disciplinary o
Gaussian Process obj
A
No "
( N
P Sensitivity
oV sy < €7 A Analysis
. J
Yes
Gradient P No Stopping criteria
Computation met?
-
Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
SE resolution of parametrized Multidisciplinary Analysis”. In: International
p p Yy y
Journal for Numerical Methods in Engineering (2022).
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DPOD+| & SLSQP

DPOD+Il & SLSQP framework

[ Initial guess (x;) ]

* Replacement of the disciplinary solvers by

r Disciplinary Proper Orthogonal Decom-
> Update design space point (x) position + Interpolation (DPOD+I) surro-
_____________________________ l gate models [2].
5 ] —> Model order reduction by Disciplinary Proper
: Aerodynamics s : .
ll  Surrogate Model | Orthogonal Decomposition (DPOD):
—)i I Nq

Structural Surrogate

]A ~ Céfl ‘I— E (l” X, Ug @”

Ja 7 y YSs )N

lel 0 — (2 ( ) (2
1=

""""""""""""""""""""""""""""""""""""""" ' Ns
l Us~ ¢y + Z o;(x, fa)o;
i=1

Enrich Disciplinary o

Gaussian Process obj
T where ¢q is a constant vector, ¢; are the POD
. ° r basis vectors, ¢¢; are the POD coefficients, and n,
CoVy, <7 | S:lsi;ivity and ns give the number of terms retained in the

L ) Hatysis POD approximations.
Yes
Gradient P No Stopping criteria
Computation h met?
-
Yes

- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International

Journal for Numerical Methods in Engineering (2022).

iy ONERA

FRANCAISE

S ﬂ E ;'-A( Model Order Reduction and Bayesian 10
sk e Optimization for MDO problems
u

é‘lbﬂh‘ "
L THE FRENCH AEROSPACE LAB S



DPOD+| & SLSQP

DPOD+Il & SLSQP framework

Initial guess (x,
[ L ] * Replacement of the disciplinary solvers by

r Disciplinary Proper Orthogonal Decom-
> Update design space point (x) position + Interpolation (DPOD+I) surro-
_____________________________ l gate models [2].
5 ] | —> Model order reduction by Disciplinary Proper
' Aerodynamics o
ll  Surrogate Model Orthogonal I_Decomposmon (_D_POD) foIIowed_by
> the interpolation of each coefficient by Gaussian
: Structural Surrogate Processes (GP).
Model a
----------------------------- l &y ~ GP|pok, (1|DoE, » K|DoE, )
~S
—— &" ~ GP|pog, (1£|DoE, » ¥|DoE, )
Enrich Disciplinary fob
Gaussian Process ! where the GP approximation of the coefficients is
T e denoted by (v; and is characterized by a mean
- N r value iz and a covariance kernel k.
Sensitivity
? <
CoVia < € Analysis
. J
Yes
Gradient P No Stopping criteria
Computation h met?
[ —
Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International

Journal for Numerical Methods in Engineering (2022).
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DPOD+| & SLSQP

DPOD+Il & SLSQP framework

Initial guess (x,
[ L ] * Replacement of the disciplinary solvers by

r Disciplinary Proper Orthogonal Decom-
> Update design space point (x) position + Interpolation (DPOD+I) surro-
_____________________________ l gate models [2].
Aerodynamics L .
B Surrogate Model . v/ The disciplinary surrogates are trained
—> | independently from different Designs of
' Structural Surrogate EXperimentS (DOE)
Model
Enrich Disciplinary o
Gaussian Process obj
A
No "
CoVy,, <e? < Sﬁ;ﬂ;‘;ﬁ?
. J
Yes
Gradient P No Stopping criteria
Computation h met?
-
Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International
Journal for Numerical Methods in Engineering (2022).
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DPOD+Il & SLSQP framework

[ Initial guess (x;) ]

y

Y

Update design space point (x)

[ i

Aerodynamics ( i )
Surrogate Model ‘
A

Structural Surrogate
Model

Enrich Disciplinary
Gaussian Process

Sensitivity
Analysis

DPOD+| & SLSQP

Replacement of the disciplinary solvers by
Disciplinary Proper Orthogonal Decom-
position + Interpolation (DPOD+I) surro-
gate models [2].

The disciplinary surrogates are trained
independently from different Designs of
Experiments (DoE).

It is possible to enrich the disciplinary
surrogates throughout the MDA resolution
until a given accuracy is achieved.

Gradient P No Stopping criteria
Computation met?
-
Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International
Journal for Numerical Methods in Engineering (2022).
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DPOD+| & SLSQP

DPOD+Il & SLSQP framework

Initial guess (x,
[ L ] * Replacement of the disciplinary solvers by

r Disciplinary Proper Orthogonal Decom-
> Update design space point (x) position + Interpolation (DPOD+I) surro-
_____________________________ l gate models [2].
| Aerodynamics .
| SumgayteModel ’( fa ) . v/ The disciplinary surrogates are trained
—> £ independently from different Designs of
: 4 Structural Surrogate EXperimentS (DOE)
. : Model
"""""""""""""""" l v It is possible to enrich the disciplinary
F—— surrogates throughout the MDA resolution
N Joby until a given accuracy is achieved.
A
- Mo Y « The MDO is solved by a gradient-based
CoVyy, <e? | Sﬁigﬁ optimizer (SLSQP). Gradient computation
- / uses the Gaussian Process derivatives.
Yes

Gradient P No Stopping criteria
Computation met?
[ —

Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International
Journal for Numerical Methods in Engineering (2022).
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DPOD+| & SLSQP

DPOD+Il & SLSQP framework

* Replacement of the disciplinary solvers by
Disciplinary Proper Orthogonal Decom-

> Update design space point (x) position + Interpolation (DPOD+I) surro-

_____________________________ l gate models [2].

I Aerodynamics P T .

| Surrogate Model ’( f“) . v/ The disciplinary surrogates are trained
—> £ | independently from different Designs of

| 4 Structural Surrogate EXperimentS (DOE)

. : Model

"""""""""""""""" l v It is possible to enrich the disciplinary

surrogates throughout the MDA resolution

Enrich Disciplinary . . . .
Gaussian Process Jobj until a given accuracy is achieved.
A
N . .
- ° 2 « The MDO is solved by a gradient-based
CoVyyy <7 1% S optimizer (SLSQP). Gradient computation
- g uses the Gaussian Process derivatives.
Yes
N /—‘Lﬁ « Starting point chosen at the center of the
Gradient P 0 Stopping criteria . _
Computation | mot? design space x, = {0.5,0.5,0.5,0.5}.
-
Yes
- A 4 - [2] G. Berthelin, S. Dubreuil, M. Salatn, N. Bartoli, and C. Gogu.
Optimum point “Disciplinary Proper Orthogonal Decomposition and Interpolation for the
(x*) resolution of parametrized Multidisciplinary Analysis”. In: International
Journal for Numerical Methods in Engineering (2022).
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DPOD+| & SLSQP

DPOD+| & SLSQP results

« The GP surrogates are built upon random initial disciplinary DoEs = 10 runs are performed.
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DPOD+| & SLSQP

DPOD+| & SLSQP results

« The GP surrogates are built upon random initial disciplinary DoEs = 10 runs are performed.

« Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis
composed of an average of 5 coefficients.

= Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.
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DPOD+| & SLSQP

DPOD+| & SLSQP results

« The GP surrogates are built upon random initial disciplinary DoEs = 10 runs are performed.

« Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis
composed of an average of 5 coefficients.

= Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

Comparison between DPOD+I & SLSQP framework and reference framework

a* Ve Sk Lep f(x*) n* n®
: E 1.0 1.0 0.0 0.0 0.0 286 286
Reference
CoV — - - - - - —
E 1.0 1.0 3.4x 1074 3.1x107% | 0.0585 | 60.7 51.5
PPOD+H & SLSQP CoV | <1072 <1012 3.0 2.6346 0.1523 | 0.1904 0.1784

where n® and n® are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.
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DPOD+| & SLSQP

DPOD+| & SLSQP results

The GP surrogates are built upon random initial disciplinary DoEs = 10 runs are performed.

Structural POD basis composed of an average of 6 coefficients and aerodynamics POD basis
composed of an average of 5 coefficients.

= Initial DoE: average of 42 points for the structural discipline and 52 for the aerodynamics discipline.

Comparison between DPOD+I & SLSQP framework and reference framework

a* Ve Sk Lep f(x*) n* n®
: E 1.0 1.0 0.0 0.0 0.0 286 286
Reference
CoV — - - - - — —
E 1.0 1.0 3.4x 1074 3.1x 1074 0.0585 | 60.7 51.5
PPOD+H & SLSQP CoV | <1072 <1012 3.0 2.6346 0.1523 | 0.1904 0.1784

where n® and n® are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.
Reduction by a factor of 5 in the number of necessary disciplinary solver calls.

An average of only 10 calls was made to each disciplinary solver during the optimization process.
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DPOD+l & EGMDO

DPOD+| & EGMDO framework

[ Initial DoE (xpog) ]
! « The MDA remains the same as in the
> Update Design of Experiments (DoE) ‘ preViOUS framework-

 Replacement of the optimizer by the

| umone Mode 4*? EGMDO (Efficient Global Multidiscipli-
—> i nary Optimization) algorithm [3].

° Structural Surrogate | !

Model

Enrich Disciplinary Objective Function
Gaussian Process at & Surrogate Model
A
Yes v
s N
Pin(zt) > n;aE and CoV > ¢? |« Prin(2)) V 2 € 2pop
AN J

No

Add 2"V to DoE [« Stopping criteria met?
. J
Yes
)2
s i (e [3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. “Towards an
P P efficient global multidisciplinary design optimization algorithm”. In:
Structural and Multidisciplinary Optimization 62 (2020), pp. 1-27.
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DPOD+l & EGMDO
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DPOD+l & EGMDO

DPOD+| & EGMDO framework

Initial DoE (xpog)
e The MDA remains the same as in the

”| Update Design of Experiments (DoE) ‘ p reVi ous fram ewor k .

* Replacement of the optimizer by a global

Sﬁrerr(:)gdezzei\l/llléilsel (J) optimization algorithm: EGMDO [3].
| Structural Suogate « Non-linear MDA solved using disciplinary

GPs leads to a non-Gaussian objective

function.
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The MDA remains the same as in the
previous framework.

Replacement of the optimizer by a global
optimization algorithm: EGMDO [3].

Non-linear MDA solved using disciplinary
GPs leads to a non-Gaussian objective
function.

It remains possible to enrich the discipli-
nary surrogate models at DoE points.
The point must have some likelihood of
being the minimum to be enriched.
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DPOD+| & EGMDO framework

DPOD+l & EGMDO

[ Initial DoE (xpog) ]

l

Update Design of Experiments (DoE)

Aerodynamics
Surrogate Model

: & Structural Surrogate | !
Model '
Enrich Disciplinary Objective Function
Gaussian Process at & Surrogate Model
A
Yes v
s y
Pin(x?) > nl;-aE and CoV > ¢? |« Prin(2') V & € 2pop
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No
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NO 'd N

Add z"V to DoE

Stopping criteria met?

Yes

Y

Optimum point (x*)

The MDA remains the same as in the
previous framework.

Replacement of the optimizer by a global
optimization algorithm: EGMDO [3].

Non-linear MDA solved using disciplinary
GPs leads to a non-Gaussian objective
function.

It remains possible to enrich the discipli-
nary surrogate models at DoE points.
The point must have some likelihood of
being the minimum to be enriched.

Possible to add new points to the DoE.
A modified Expected Improvement (El)
criterion is used.

— Due to the non-Gaussian nature of f,,; the
El is estimated via Monte Carlo Simulation.

[3] S. Dubreuil, N. Bartoli, C. Gogu, and T. Lefebvre. “Towards an
efficient global multidisciplinary design optimization algorithm”. In:
Structural and Multidisciplinary Optimization 62 (2020), pp. 1-27.
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DPOD+Il & EGMDO

DPOD+| & EGMDO results

« Random initial disciplinary DoEs and random initial optimizer DOE = 10 runs are performed.

» Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.
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DPOD+l & EGMDO

DPOD+| & EGMDO results

« Random initial disciplinary DoEs and random initial optimizer DoE = 10 runs are performed.

» Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

a* |7 . tp f(x*) n® ns
E 1.0 1.0 0.0 0.0 0.0 286 286
Reference
CoV — - — — - - —

E 1.0 1.0 34x107% 3.1x10*]0.0585 | 60.7 51.5
DPOD+I & SL3QP CoV | <1012 <1012 3.0 2.6346 0.1523 | 0.1904 0.1784

E 0.999 0.987 0.006 3x 1077 | 0.044 61 51
DPOD+I & EGMDO CoV | 0.003 0.02 0.9 3.16 0.44 | 0.1117 0.1225

where n® and n® are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.
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DPOD+l & EGMDO

DPOD+| & EGMDO results

« Random initial disciplinary DoEs and random initial optimizer DoE = 10 runs are performed.

» Initial DoE: average of 49 points for the structural discipline and 59 for the aerodynamics discipline.

Comparison between DPOD+I & EGMDO framework and reference framework

a* |7 . tp f(x*) n® ns
E 1.0 1.0 0.0 0.0 0.0 286 286
Reference
CoV — - — — - - -

E 1.0 1.0 34x107% 3.1x10*]0.0585 | 60.7 51.5
DPOD+I & SL3QP CoV | <1012 <1012 3.0 2.6346 0.1523 | 0.1904 0.1784

E 0.999 0.987 0.006 3x 1077 | 0.044 61 51
DPOD+I & EGMDO CoV | 0.003 0.02 0.9 3.16 0.44 | 0.1117 0.1225

where n® and n® are, respectively, the number of aerodynamics solver calls and the number of structural solver calls.

» Reduction by a factor of 5 on the number of necessary disciplinary solver calls compared to the
reference framework.
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Conclusion

Conclusion and perspectives

* The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are
used for the MDA.
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Conclusion

Conclusion and perspectives

The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are
used for the MDA.

DPOD+I surrogates allow us to perform multi-disciplinary optimization using high-fidelity solvers, at a
reduced computational cost.
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Conclusion

Conclusion and perspectives

* The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are
used for the MDA.

« DPOD+I surrogates allow us to perform multi-disciplinary optimization using high-fidelity solvers, at a
reduced computational cost.

« The EGMDO algorithm allows to perform global optimization when the disciplinary solvers are replaced
by disciplinary Gaussian Processes, reducing the disciplinary solver calls during the optimization process.
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Conclusion

Conclusion and perspectives

* The optimization of a two-disciplinary problem requires many disciplinary solver calls if the real solvers are
used for the MDA.

« DPOD+I surrogates allow us to perform multi-disciplinary optimization using high-fidelity solvers, at a
reduced computational cost.

« The EGMDO algorithm allows to perform global optimization when the disciplinary solvers are replaced
by disciplinary Gaussian Processes, reducing the disciplinary solver calls during the optimization process.

*+ Some perspectives to the proposed framework include the implementation of other dimension reduction
techniques, for instance via local POD basis or non-linear model order reduction, to account for more complex
disciplinary models. Other approximation models, such as the Kriging with Partial Least Squares model [4]
could allow the construction of GPs for a greater number of design variables.
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