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Modeling with PDMP Importance sampling for PDMP Adaptive algorithm (New?) Bandit problem

Industrial goal

Estimation of the probability of failure of systems involved in the operation of
nuclear power plants and dams.

A computer code simulates the
real time operation of the system.

PyCATSHOO −→ Piecewise
Deterministic Markov Processes.

Typical probabilities of failure are
very small (about 10−5).

Each simulation is numerically
expensive.

↪→ Crude Monte-Carlo methods are not
feasible.
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Definition of a PDMP

Piecewise Deterministic
Markov Process
(M.H.A Davis 1984)

Hybrid process: Zt = (Xt ,Mt) ∈ E

position Xt is continuous

mode Mt is discrete

1 Flow Φ → deterministic dynamics
between two jumps

2 Jump intensity λ → law of the time of
the random jumps

3 Jump kernel K → law of the state of
the process after a jump
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Monte-Carlo estimation

Objective: estimate P = Pf0(Z ∈ D)

f0 nominal density1 of a PDMP trajectory Z of fixed duration tmax

(Zt)t∈[0,tmax]
=: Z ∼ f0

D subset of possible trajectories (in practice set of faulty trajectories)

Crude Monte-Carlo :

P̂CMC
N =

1
N

N∑
k=1

1Zk∈D with Z1, . . . ,ZN
i.i.d.∼ f0 (1)

↪→ High relative variance of P̂CMC when P is small

1The density of a PDMP trajectory is mathematically sophisticated but analytically known
and inexpensive to evaluate.

3/13



Importance sampling for PDMP



Modeling with PDMP Importance sampling for PDMP Adaptive algorithm (New?) Bandit problem

Importance sampling

Idea:

1 simulate PDMP trajectory Z according to an alternative distribution g
which gives more weight on D than f0

2 fix the bias with the likelihood ratio f0/g

Importance sampling trick with alternative distribution g :

P = Ef0 [1Z∈D] =

∫
1Z∈D

f0(Z)

g(Z)
g(Z)dζ(Z) = Eg

[
1Z∈D

f0(Z)

g(Z)

]
(2)

IS estimator : P̂ IS
N =

1
N

N∑
k=1

1Zk∈D
f0(Zk)

g(Zk)
with Z1, . . . ,ZN

i.i.d.∼ g (3)

↪→ Variance of P̂ IS
N relies on the choice of g
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Optimal importance sampling

Optimal IS distribution produces IS estimator with zero variance.

General case:
gopt : Z 7→ 1Z∈D f0(Z)

P
≡ f0 (Z |Z ∈ D)

↪→ untractable distribution.

PDMP case: (Thomas Galtier 2019)

gopt fully determined by optimal jump intensity λopt and optimal jump kernel
Kopt of the form:

λopt ≡ λ0 ×
U−

opt

Uopt
and Kopt ≡ K0 ×

Uopt

U−
opt

(4)

where

1 λ0,K0 are jump intensity and jump kernel of PDMP of distribution f0

2 Uopt and U−
opt are the so-called committor functions of the process
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Committor functions

Uopt probability of realizing the rare event {Z ∈ D} knowing that at a
fixed time s > 0 the process is in a given state z .

Uopt(z , s) = Pf0 (Z ∈ D |Zs = z) , (5)

U−
opt is the probability of realizing the rare event {Z ∈ D} knowing that at

a fixed time s > 0 the process jumps from a given state z−.

U−
opt(z

−, s) = ”
∑
z∈E

Uopt(z , s)K
(
z−, z

)
”. (6)

Knowing Uopt is sufficient to build the optimal IS estimator.
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Our contribution

Recently submitted article: Adaptive importance sampling based on fault tree
analysis for piecewise deterministic Markov process.

1 Fault tree analysis methods are used to construct a family of
approximations of the committor function Uopt.

2 The best representative of this family is sequentially determined using a
cross-entropy procedure coupled with a recycling scheme for past samples.

3 A consistent and asymptotically normal post-processing estimator of the
final probability P is returned.
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Performances on an industrial case

We tested this importance sampling approach on a complex case from nuclear
industry and we compared it to a massive crude Monte-Carlo method.

Method N P̂ σ̂/P̂ 95% confidence interval

105 2 × 10−5 223.60
[
0 ; 4.77 × 10−5]

CMC 106 1.3 × 10−5 277.35
[
5.93 × 10−6 ; 2.01 × 10−5]

107 1.77 × 10−5 237.68
[
1.51 × 10−5 ; 2.03 × 10−5]

102 2.18 × 10−5 4.69
[
1.76 × 10−5 ; 4.18 × 10−5]

AIS 103 2.19 × 10−5 3.01
[
1.78 × 10−5 ; 2.60 × 10−5]

104 1.99 × 10−5 1.01
[
1.96 × 10−5 ; 2.03 × 10−5]

Table 1: Comparison between crude Monte-Carlo (CMC) and our adaptive
importance sampling method (AIS).

↪→ Variance reduction by a factor of 10,000.
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Stability of the method

Figure 1: 50 confidence intervals with AIS method and sample size of 1000 vs 1
confidence interval with CMC method and sample size of 107.

9/13



(New?) Bandit problem



Modeling with PDMP Importance sampling for PDMP Adaptive algorithm (New?) Bandit problem

Best arm identification

Context:

Several nominal densities f1, . . . , fd

Pi := Pfi (Z ∈ D) = Efi [1Z∈D] for i = 1, . . . , d .

Objective: find the most reliable distribution

argmin
i∈{1,...,d}

Efi [1Z∈D] (7)

Best arm identification (BAI) framework:

sampling rule: at iteration k, draw Zk ∼ fik with ik ∈ {1, ..., d}

stopping rule: fixed-budget setting (stop when k = kmax), fixed-confidence
setting (stop when the error probability is small enough), etc.

recommendation rule: which distribution to bet on at the end.
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Off-policy best arm identification

Difference between our case and standard BAI:

the Pi are very small → we do not draw from "true arms" {f1, . . . , fd}
we generate Z from G a family of alternative distributions (IS =
"off-policy" method)

each draw gives information on every Pi thanks to reverse IS

Existing contributions:

"Optimal" algorithms for standard BAI

"Off-policy" methods (with IS) for multi-armed bandit with a regret
minimization objective (not BAI)

What about optimal off-policy best arm identification?
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Thank you for your attention

Questions?
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Characterization of a PDMP

The flow Φ, solution of differential equations, gives the deterministic dynamic.
If there is no jump between time s and time s + t then:

Zs+t = ΦZs (t). (8)

The deterministic jumps occur when the process reaches the boundaries of the
state space E .

t∂z = inf{t > 0 : Φz(t) ∈ ∂E}. (9)

The jump intensity λ gives the distribution of the time Tz of the next random
jump knowing current state z .

P(Tz > t | Zs = z) = 1t<t∂z
exp

(
−

∫ t

0
λ (Φz(u)) du

)
. (10)

The jump kernel K gives the law of the post-jump location. Jumping from z−,
the arrival state z is randomly chosen by the jump kernel Kz− of probability
density function z 7→ K(z−, z) with respect to some measure νz− .



Supplementary material PDMP material Approximation with MPS Recycling adaptive IS

Likelihood of a PDMP trajectory

Probability density function of a PDMP trajectory (Thomas Galtier 2019)

There is a dominant measure ζ for which a PDMP trajectory Z with nZ jumps,
inter-jump times t1, . . . , tnZ and arrival states z1, . . . , znZ admits a probability
density function π.

π (Z) =

nZ∏
k=0

[λ (Φzk (tk))]
1
tk<t∂zk exp

[
−
∫ tk

0
λ (Φzk (u)) du

] nZ−1∏
k=0

K (Φzk (tk), zk+1) .

(11)

Take home message:

explicit computation of the pdf of a PDMP trajectory,

no need to recalculate the flow.
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Test case: the spent fuel pool

If the system does not cool the pool, the nuclear fuel evaporates the water then
damages the structure and contaminates the outside.

Aim: estimating the probability of the water level falling below a set threshold.
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Approximation of the committor function with minimal path sets

The path sets of a system are the sets of components such that:

1 keeping all components of any path set intact prevents system failure.

2 keeping one component broken in each path set ensures system failure.

A Minimal Path Set is a path set that does not contain any other path set.

We note:

dMPS the number of MPS (they are unique if the system is coherent),

β(MPS)(z) the number of MPS with at least one broken component.

A good Uα should therefore be increasing in β(MPS)(z).
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Minimal path sets: the spent fuel pool case

Figure 2: Physical representation of the SFP

=⇒

Figure 3: Functionnal diagram of the SFP

8 MPS in the spent fuel pool system: (with Lj = (Li,j )
3
i=1 for j = 1, 2, 3)

(G0, S1, L1), (G1, S1, L1), (G0, S1, L2), (G2, S1, L2),

(G0, S1, L3), (G3, S1, L3), (G0, S2, L3), (G3, S2, L3).
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Our MPS-based proposition

For α ∈ RdMPS
+ we propose:

U(MPS)
α (z) = exp


β(MPS)(z)∑

i=1

αi

2
 . (12)

Flexible dimension of α: imposing equality on some coordinates of α reduce
its effective dimension and simplify the search for a good α when dMPS is large.

→ Example for dimension 1 with α1 = · · · = αdMPS :

U(MPS)
α (z) = exp

[(
α1 β

(MPS)(z)
)2

]
. (13)

The form x 7→ exp(x2) garantees that the ratios U−
α/Uα are strictly increasing in

β(MPS). Without this condition, it is increasingly difficult to break new
components and they are repaired faster and faster as they are lost.
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Minimal cut sets

Minimal cut sets: smallest sets
of components that if left
broken ensure system failure.
(permanent repair of one
component in each group
prevents the failure)

In this system: there is 69
minimal cut sets for 15
components.

Figure 4: Functionnal diagram of the SFP

Examples: (G0,G1,G2,G3), (S1, S2), (C1L1,C3L2,C1L3), (G0,G3, S1), . . .
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The cross entropy procedure

How to find the best candidate within the family (Uα)α∈A?

To each α ∈ A ⊂ Rdα corresponds an approximation Uα and an associated
importance distribution gα. We look for the closest distribution gα to fopt in
the sense of the Kullback-Leibler divergence.

argmin
α∈A

DKL (fopt∥gα) = argmin
α∈A

Efopt

[
log

(
fopt(Z)

gα(Z)

)]
= argmin

α∈A

∫
− log (gα(Z))

1Z∈D f0(Z)

P
dZ

= argmin
α∈A

{−Ef0 [1Z∈D log (gα (Z))]}

This last quantity does not depend on fopt, it can be minimized iteratively by
successive Monte-Carlo approximations with importance sampling.



Supplementary material PDMP material Approximation with MPS Recycling adaptive IS

Adaptive algorithm with recycling of past samples

Start with an initial parameter α(1). At iteration q = 1, . . . ,Q :

1 Simulation step: generate a new sample of nq trajectories

Z(q)
1 , . . . ,Z(q)

nq

i.i.d.∼ gα(q)

2 Optimization step: compute the next iterate α(q+1) by solving (14):

α(q+1) = argmin
α∈A

{
−

q∑
r=1

nr∑
k=1

1Z(r)
k

∈D

f0
(
Z(r)

k

)
gα(r)

(
Z(r)

k

) log
[
gα

(
Z(r)

k

)]}
(14)

Estimation step: at iteration Q, the final estimator of the probability P is:

P̂ =
1∑Q

q=1 nq

Q∑
q=1

nq∑
k=1

1Z(q)
k

∈D

f0
(
Z(q)

k

)
gα(q)

(
Z(q)

k

) (15)

Past samples are reused at each optimization step and at estimation step.

We proved the consistency and asymptotic normality of the estimator (15).
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Cross-Entropy: initialization and optimization routine

Initialization: finding α(0) to start CE

1 Fix p̃ ∈ [0, 1] and t̃ > 0 (example p̃ = 0.95 and t̃ = tmax).

2 Find the smallest α ∈ R+ such that the probability that the time of the
first failure occurs before t̃ is greater than p̃.

α̃ = inf
{
α ∈ R+ : Pgα

(
T ≤ t̃ | Z = z0

)
≥ p̃

}
. (16)

3 Start CE with α(0) = (α̃, . . . , α̃).

Optimization routine

Since the gradient of α 7→ gα is known, we have an explicit gradient for the
objective function of the CE minimization.

We used the BFGS method from the Python library scipy.optimize.

The norm of the gradient in the stopping criterion must be very small (in our
case at most 10−30) because the probability density functions are themselves
very small.
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Asymptotic optimality

Theorem
If A is compact and if moreover:

1 The functions λ, K , and (Uα)α∈A are bounded on their support below and
above by strictly positive constants,

2 αopt ∈ A is the unique minimizer of (α 7→ −Ef0 [1Z∈D log (gα (Z))]),

3 there is tε > 0 such that t∂z ≥ tε for any z− ∈ ∂E and any
z ∈ supp K

(
z−, ·

)
,

then, with V (α) = Ef0

[
1Z∈D

f0(Z)
gα(Z)

]
− P2 we have :

α(Q) a.s−−−−→
Q→∞

αopt and
√

NQ

(
P̂NQ − P

)
L−−−−→

Q→∞
N (0,V (αopt)) .

Asymptotic confidence interval of level 1 − a for P:

P

P ∈

P̂NQ − q1−α/2

√
σ̂2
NQ

NQ
; P̂NQ + q1−α/2

√
σ̂2
NQ

NQ

 −−−−→
Q→∞

1 − a.
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Sensitivity analysis

Assumptions:

The distribution of the PDMP depends on a parameter vector θ.

We estimated the probability of failure by importance sampling from a
sample of N trajectories of distribution g .

We would like to measure the sensitivity of the probability of critical failure to
these parameters without generating new trajectories.

Reverse importance sampling trick:

Efθ [1Z∈D ] =

∫
1Z∈D

fθ(Z)

g(Z)
g(Z)dζ(Z) = Eg

[
1Z∈D

fθ(Z)

g(Z)

]
. (17)

Input/output dataset
(
θ(i), P̂f

θ(i)

)
i=1,...,n

with:

P̂f
θ(i)

=
1
N

N∑
k=1

1Zk∈D
fθ(i)(Zk)

g(Zk)
with Zk ∼ g . (18)

Post-processing sensitivity indices from this dataset.
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