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Machine learning model testing

Machine learning model (or metamodel)

Nm : RY — R built on a given learning set (X, y,,).
surrogate of the true model y : RY = R

Learning set

Ym = [y(x1), ..., y(x(™)] are the observed outputs at the points
Xm={x®, . .. x(M} cRd
How to certify its performance?

e which testing protocol should be used?

e which performance metric (or indicator) should be used?
Remarks:

e keep in mind that all we get is as an estimation of its true performance
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Classical model testing methods

Cross-validation methods:
k-fold, Leave-One-Out validation (LOO) are the most usual methods!.
‘ Total available data

Test-set: 15t fold | | = Performance metric 1

| | |

Test-set: 2" fold | | | | | = Performance metric 2
| l |
| | l

Test-set: 39 fold | | = Performance metric 3

Test-set: 4th fold |
Limits of cross-validation:

| = Performance metric 4

e time-consuming ((n — 1) models to build for LOO)

e averages the performances of slightly different models: not acceptable
for highly sensitive studies (e.g., nuclear industry)

= One solution is to have strictly independent learning and test-set.
How to select an “optimal” test-set?

1Tadayoshi Fushiki. “Estimation of prediction error by using K-fold cross-validation”.
In: Statistics and Computing 21.2 (2011), pp. 137-146.
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What is a “good” test-set?

Test-set

y, = [y(xM),..., y(x(M)] are the observed outputs at the points
X, ={x, .. x("} cRr]

e iterative to ensure a good performance estimation at any size n
e representative of the distribution p of the input random vector X
e complementary from X,, to built an enhanced model on the union

Xn+m
Candidate set

S is a fairly dense finite subset of RY with size N >> n that quantizes the
distribution .

lterative selection
At iteration i, with X; = {x() ... x(D} let us optimize function A (-|X;):
x(+) e argmin A (x|X;) . (1)
XGS\X,‘
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Distance-based design

Geometric construction on a bounded set by sequentially selecting a new
point x as far away as possible from the x() previously selected.

Fully-Sequential Space-Filling® (FSSF)
At iteration i, with X; = {x(1), ... x(D},

x0tD) e argmax | min _[x — x| . 2)
xeS\X; [JE{L,..i}

e For non uniform random variables, an iso-probabilistic transform is
applied

e FSSF is close to the CADEX algorithm (a.k.a., Coffee house design)

2B. Shang and D. Apley. “Fully-sequential space-filling design algorithms for

computer experiments”. In: Journal of Quality Technology 53 (2020), pp. 1-24.
E. Fekhari

Incremental test-set for model validation October 5, 2022 4/25



Distance-based design
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Maximum Mean Discrepancy®

Reproducing Kernel Hilbert Space (RKHS)

For a symmetric and positive definite function k : X2 — R (kernel).

A RKHS #H(k) is an inner product space of functions f : X — R such
that:

o k(-,x) € H(k), VxeX
e reproducing property (f, k(-, X)) k) = f(x), Vx € X,Vf € H(k).
Any positive definite kernel defines a unique RKHS and vice versa.

Maximum Mean Discrepancy (MMD)

The distance between two distributions P and Q:

(AP0 — | F(x)AQ(x
[

A kernel is said to be characteristic when MMD(P, Q) =0 < P = Q.

3C.J. Oates. Minimum Discrepancy Methods in Uncertainty Quantification. Lecture
Notes at ETICS Summer School. 2021.
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MMDg(P, Q) := sup
1112k <1

(3)




Maximum Mean Discrepancy

In the following, we consider k as continuous and bounded, according to*:

MMDK(P, @) = llup — pollugey where pp = [ k(x.-)dP(x).  (4)
P
™ br e ~Falgr
Q -
&
'|IIII \/

Figure: Kernel mean embedding: mapping distributions in the RKHS H(k). The
distance in the RKHS is the MMD.

*QOates, Minimum Discrepancy Methods in Uncertainty Quantification.
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Uniformity-based design

At iteration n, with X, = {x(l), o ,x(”)}, the corresponding discrete
distribution &, = 2 57, §(x()) and a kernel k:
x("1) € arg min (MMDk(u,§n+1(x))2) (5)
xS\ X,
Kernel herding®
(n+D) 1y in_ 1y
x ) cargmin | =S k(x,x\)) — = k(x,x' 6
rgmin 3 k)~ y 3 kxx) ©

Greedy support points® (Energy-distance kernel)

xeS\ X, X rcS

: 1 ,
x("1) € arg min Z Ix — x| — 1 Z x — x| (7)
j=1

%Y. Chen, M. Welling, and A. Smola. “Super-samples from kernel herding”. In:
Proc. of the 26th UAI Conference. AUAI Press. 2010.

®S. Mak and V.R. Joseph. “Support points”. In: Annals of Statistics (2018).
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Uniformity-based design
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Figure: Kernel herding sequential test-set designs (uniform and normal 2D)

Kernel herding available in pypi package: otkerneldesign
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https://efekhari27.github.io/otkerneldesign/master/

Uniformity-based design
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Figure: Greedy support points sequential test-set designs (uniform and normal 2D)

Greedy support points available in pypi package: otkerneldesign
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https://efekhari27.github.io/otkerneldesign/master/

Python package documentation

PN otkerneldesign

otkerneldesign 0.1.1 documentation

Index of classes  KernelHerding

KernelHerding

class otkerneldesign.KernelHerding (kernel=None, distribution=None, candidate set_size=None,
candidate_set=None, initial_design=None)
Incrementally select new design points with kernel herding,

Parameters: kernel : openturns. Covariancetodel

Examples

Covariance kernel used to define potentials. By default a product of Matern kernels with
smoothness 5/2.
distribution : openturns.Distribution
Distribution the design points must represent. If not specified, then candidate_set must be specified
instead. Even if candidate_set is specified, can be useful if it allows the use of analytical formulas.
candidate_set_size : positive int
Size of the set of all candidate points. Unnecessary if candidate_set is specified. Otherwise, 2'% by
default.
candidate_set : 2-d [ist of float
Large sample that empirically represents a distribution. If not specified, then distribution and
candidate_set_size must be in order to generate it automatically.
initial_design : 2-d list of float
sample of points that must be included in the design. Empty by default.

>>> import openturns as ot
>>> import otkerneldesign as otkd
>>> distribution = ot.ComposedDistribution([ot.Normal(0.5, 0.1)] * 2)

>>> dimension
>>> # Kernel

>>> ker_list
>>> kernel
>>> # Ker

>>> kh =
>>> kh_design, _

E. Fekhari
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Beyond usual performance metrics

Ideal predictivity coefficient for the predictor n,,

o) =1~ BB ym) g L) = (P du(x)
ideal 2 Var,(y(X)) uwm—hmwwmew@é

Predictivity coefficient: arithmetic estimator

1 BEe(Xmyn) | Tia [y - )] (9)
" Var,(v(X) O A

Where &, =257 5(x(D), y, =137, y(x).

n

e This estimator could exploit the learning set to estimate the variance

e Smart weighting on the ISE could improve the estimation
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Beyond usual performance metrics

Assuming the error process dp,(x) = y(x) — 1m(x) ~ GP(0, 02 Kj,,,)
Let us express the squared error of ISE estimation using &, :

B, 1: Xm, Ym) = B [(ISBe, (X, ym) = ISE, (X, ym))?]

—E [( JRACLCE u)(X)ﬂ ,

— 62 MMD2(&n, 11).

|m

Where K|, is defined (for an interpolator) as:
?|m(x, x)=2 K|2m(x7 x') + Kim(x, x)K|m(x', x'),

The idea is to find the optimal weights to minimize (10) with a
non-uniform measure &, = Y7, w;0(x()). Direct calculation gives:

Prc, p(Xn) = [/ Kim(xDx) dpa(x). ., [ K n(x("), %) dpa(x)] '
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Beyond usual performance metrics

Predictivity coefficient: optimally-weighted estimator’

S 7 [y — )
2 1
Qn* =1 ,11 ;1:1 [y(x(,)) o yn]2 . (11)

e The weights w; do not depend on the GP variance parameter o2

e The denominator could also be weighted

"E. Fekhari et al. “Model predictivity assessment: incremental test-set selection and
accuracy evaluation”. In: Studies in Theoretical and Applied Statistics, SIS 2021, Pisa,
Italy, June 21-25. Ed. by N. Salvati et al. Springer, to appear, 2022.
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Analytical benchmark

Analytical benchmark problems:
e analytical function
e input random variable
e m-size learning set built by optimized LHS (3 sizes corresponding to a
poor/good/very good kriging metamodels)
e A reference value for each metamodel computed on a large Monte
Carlo test-set
Different test-set sizes, design methods and Q2 estimators are compared
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Analytical benchmark

Analytical benchmark problems:

analytical function

input random variable

m-size learning set built by optimized LHS (3 sizes corresponding to a

poor/good/very good kriging metamodels)

A reference value for each metamodel computed on a large Monte
Carlo test-set

Different test-set sizes, design methods and Q? estimators are compared

Analytical test-case 3 (“g-sobol” in dimension 8):
The measure 1 is uniform on X = [0,1]% and m € {15, 30,100}

’ i=1.
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Analytical benchmark

Analytical test-cases 1 and 2 (dimension 2) for x € X = [0, 1]

_ ' o Figure: f5(x) in test-case 2; 1. is
Figure: fi(x) in test-case 1; 1 is uniform; standard normal; m € {5, 15,30}
m € {8, 15,30} o
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Analytical benchmark results

Analytical test-case 1

Test case 1 (m = 5)
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Figure: Predictivity assessment of a poor model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 1

Test case 1 (m = 15)
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Figure: Predictivity assessment of a good model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 1

Test case 1 (m = 30)
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Figure: Predictivity assessment of a very good model with FSSF, SP and KH test
sets
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Analytical benchmark results

Analysis and interpretation:

Test-set should at the same time: complement the training set and
mimic the target distribution

Support points and Kernel herding generally perform better

Kernel herding is sensitive to the chosen kernel

Each sampling methods are subject to the curse of dimensionality
Weighting the test-sets helps since it is far from the learning set
Leave-one-out validation always underestimate, especially for m small

Once tested, the model can be enhanced by these complementary
test-set
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Industrial CATHARE use-case

Given data POV:
< sort decision for each data
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Industrial CATHARE use-case

CATHARE test-case:

e Costly numerical simulation code CATHARE2 (20min./run) modeling
thermal-hydraulic accident scenario (LOCA-LB) inside nuclear PWR®

e 10-dimensional independent random inputs after a screening to
reduce the dimension

e Only an existing Monte Carlo dataset Xy of N = 10% available
e Xy includes the test-set X,, and the complementary training set Xy _,
Benchmark protocol:

e Random Cross-Validation (RCV) is repeated (r = 1000) to get an
empirical distribution of the performance

e To perform the RCV, we use a fast-to-fit Partial Least Squared model

8B. looss et al. “Numerical studies of the metamodel fitting and validation
processes”. In: International Journal of Advances in Systems and Measurements 3
(2010), pp. 11-21.
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Industrial CATHARE use-case results

Code CATHARE - Test sample construction
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Figure: Estimated Q2. The box-plots are for random cross-validation, the red
diamond (left) is for Q7.

E. Fekhari Incremental test-set for model validation October 5, 2022 23 /25



Industrial CATHARE use-case results

Analysis and interpretation:

Three behaviours identified (uni or bi-modal empirical distributions)

Support points seem to have better performances

Weighted estimator is not as efficient for non-interpolating model

Good alternative to cross validation for costly to train models
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Conclusion

Conclusion and contributions:
e Each method present drawbacks and advantages

e MMD based designs are relevant to select a complementary to the
learning set and representative of the target distribution test-set

A new weighted model performance estimator is proposed and
appears to be particularly efficient for interpolators

This validation is useful when the validation is performed an external
part (CV impossible) or if the model training is costly

Perspectives:
v Tensorized formulation of the potentials to accelerate the KH

e Non-iterative design leading to complex combinatorial optimization
problems
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Analytical benchmark results

Analytical test-case 2

Test case 2 (m = 8)
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Figure: Predictivity assessment of a poor model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 2

Test case 2 (m = 15)
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Figure: Predictivity assessment of a good model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 2
Test case 2 (m = 30)
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Analytical benchmark results

Analytical test-case 3

Test case 3 (m = 15)
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Figure: Predictivity assessment of a poor model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 3

Test case 3 (m = 30)
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Figure: Predictivity assessment of a good model with FSSF, SP and KH test sets
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Analytical benchmark results

Analytical test-case 3

Test case 3 (m = 100)
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Figure: Predictivity assessment of a very good model with FSSF, SP and KH test
sets
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Industrial CATHARE use-case
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Figure: Test-case CATHARE: inputs output scatter plots, part 1 (N = 10%)
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Industrial CATHARE use-case
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Figure: Test-case CATHARE: inputs output scatter plots, part 2 (N = 10%)
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