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Seismic safety studies



Probabilistic safety studies in earthquake engi-
neering

Probabilistic safety studies aim to evaluate the reliability of a mechanical structure
subjected to seismic hazard, they are broken down into three steps:

1) The estimation of an annual occurrence probability of a seismic excitation of
specific intensity

2) The estimation of the probability of failure of a structure conditional to the
seismic intensity (seismic fragility curve)

3) The evaluation of the annual failure probability of the structure, evaluated
thanks to the 2 steps above

↪→ This presentation will focus on the step 2).
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Schematic representation

Mechanical parameters

x ∈ Dx ⊂ Rd

↪→ Young modulus,
boundary conditions

Seismic ground motion

a ∈ Da ⊂ R

↪→ Spectral acceleration.

Numerical simulation output

z(a,x) ∈ R

↪→ Out of plane rota-
tion of a pipe elbow

Computer code of the structure

↪→ Piping system of a
nuclear power plant.

The output of the simulation z(a, x) is stochastic (i.e. for a same value of (a, x) the
value of the output can change)
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Seismic intensity measurement
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Figure: Two earthquake accelerograms with the same peak ground acceleration

Generally a measure of seismic intensity is a scalar quantity derived from the time
signal. Example: the peak ground acceleration of a seismic ground motion with ac-
celerogram t→ s(t).

a = max
t∈[0,T ]

|s(t)| .

↪→ There is no uniqueness between a seismic measurement intensity value and a seis-
mic signal.
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Seismic fragility curve

The fragility curve is the conditional probability of failure of the structure:

Ψ(a, x) = P (z(A,X) > C|A = a,X = x)
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Ψ(a, x) = P (z(A,X) > C|A = a,X = x)

A: Scalar variable representing the intensity of the seismic solicitation

X: Mechanical parameters of the structure.

C: Critical level above which the structure is considered in failure state.
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Scientific goals

We would like to study the impact of the uncertainty on the vector of mechanical pa-
rameters x of the structure on the fragility curves a→ Ψ(a, x).

We model this vector by a random variable X following a probability distribution:

X ∼ PX

With a Monte Carlo sample (Xi)1≤i≤M such that Xi ∼ PX we can propagate the un-
certainty on the fragility curve by studying the distribution of (a→ Ψ(a,Xi))1≤i≤M .

Problem: About 104 simulations to estimate a curve a → Ψ(a, x) for a x fixed in the
classical way. ForM = 1000 it would be necessary to do 107 simulations.

107 CAST3M simulations≈ 100 days of computation time.

Goal: Provide a best estimate of Ψ(a, x) with a fixed budget of CAST3M simula-
tions.
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Sequential design of experiments



Statistical model

We must therefore propose a statistical model on the output of the CAST3M simula-
tion z(a, x):

y(a, x) = g(a, x) + ε ,

where ε ∼ N (0, σ2
ε) and y(a, x) = log(z(a, x)).

The fragility curve with this model writes:

Ψ(a, x; g) = Φ

(
g(a, x)− log(C)

σε

)
,

where Φ is the cdf of the standard Gaussian distribution
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Gaussian process

We define a Gaussian processG : x → G(x) thanks to the Gaussian vectors. Let
(x(1), . . . , x(p)), the processG is said to be Gaussian if the vector (G(x(1)), . . . , G(x(p)))

is Gaussian.

A Gaussian process is entirely defined by its mean function:

m(x) = E[G(x)] ,

and its covariance function:

Σ(x, x̃) = E[(G(x)− µ(x))(G(x̃)− µ(x̃))].

Y ∼ GP(m,Σ) .

The Gaussian vector (G(x(1)), . . . , G(x(p))) has mean vector µ = (m(x(i)))1≤i≤p
and covariance matrixK = (Σ(x(i), x(j)))1≤i,j≤p .
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A Bayesian model

We will model an uncertainty on g by a Gaussian process priorG defined on some
probabilistic space (Ω,B, P0). The statistical model then becomes:

Y (a, x) = G(a, x) + ε ,

We can propose a Bayesian estimator of the fragility curve. Define Fn the σ-algebra
defined by (Ai,Xi, y(Ai,Xi))1≤i≤n. The posterior mean writes:

Ψ̂n(a, x) = EP0[Ψ(a, x;G)|Fn]

We have (G(a, x)|Fn) ∼ N (Ĝn(a, x), σ̂n(a, x)2). Thus:

Ψ̂n(a, x) = Φ

(
Ĝn(a, x)− log(C)

σn(a, x)

)
,

where σn(a, x)2 = σ̂n(a, x)2 + σ2
ε

15 / 34



A Bayesian model

We will model an uncertainty on g by a Gaussian process priorG defined on some
probabilistic space (Ω,B, P0). The statistical model then becomes:

Y (a, x) = G(a, x) + ε ,

We can propose a Bayesian estimator of the fragility curve. Define Fn the σ-algebra
defined by (Ai,Xi, y(Ai,Xi))1≤i≤n. The posterior mean writes:

Ψ̂n(a, x) = EP0[Ψ(a, x;G)|Fn]

We have (G(a, x)|Fn) ∼ N (Ĝn(a, x), σ̂n(a, x)2). Thus:
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Ĝn(a, x)− log(C)

σn(a, x)

)
,

where σn(a, x)2 = σ̂n(a, x)2 + σ2
ε

15 / 34



A decision problem

For a given n ≥ 1, we have to choose a designDn = (Ai,Xi)1≤i≤n where we com-
pute the mechanical response y(Ai,Xi). How to measure the quality of the design
Dn ?

The Bayes risk rB of a Bayesian estimator of the fragility curve Ψ̂n based on a design
Dn = (Ai,Xi)1≤i≤n and computer experiments y(Ai,Xi) is defined by:

rB(Dn, G) = EP0

[∫
A×X

(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u)

]
.

The optimal designD∗n = (A∗i ,X
∗
i )1≤i≤n is obtained by minimizing the Bayes risk:

D∗n = argmin
Dn∈Sn

rB(Dn, G) ,

where Sn is the set of all admissible sequential strategies of size n.
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A decision problem

What is necessary for a Bayesian decision problem ?

A statistical model and a prior P0 (here a Gaussian processG)

A Bayesian estimator of a quantity of interest (here Ψ̂n) which depends on a
designDn

A loss function (here
∫
A×X(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u))

These 3 parts are necessary to define the Bayes risk and hence the optimal designD∗n
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Optimal design of experiments

The optimal designD∗n can be obtained formally using dynamic programming. De-
fine

Rn = EP0

[∫
A×X

(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u)
∣∣∣Fn] ,

and by reverse induction

Rk = min
a,x∈A×X

EP0

[
Rk+1

∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
,

A∗k+1,X
∗
k+1 = argmin

a,x∈A×X
EP0

[
Rk+1

∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
.

for 0 ≤ k ≤ n− 1.

The exact optimal design is intractable to obtain in practice.

18 / 34



Optimal design of experiments

The optimal designD∗n can be obtained formally using dynamic programming. De-
fine

Rn = EP0

[∫
A×X

(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u)
∣∣∣Fn] ,

and by reverse induction

Rk = min
a,x∈A×X

EP0

[
Rk+1

∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
,

A∗k+1,X
∗
k+1 = argmin

a,x∈A×X
EP0

[
Rk+1

∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
.

for 0 ≤ k ≤ n− 1.

The exact optimal design is intractable to obtain in practice.

18 / 34



Stepwise uncertainty reduction (SUR)

The optimal design is intractable to obtain due to nested nonconvex optimization
problem.

→ Relax the optimization problem and propose a greedy approach (SUR strategy)1

The idea is to stop the previous induction at n = 1:

ASUR
n+1 ,X

SUR
n+1 = argmin

a,x∈A×X
Jn(a, x)

Jn(a, x) = EP0

[∫
A×X

(Ψ(α, u;G)− Ψ̂n+1(α, u))2dh(α)dPX(u)
∣∣∣An+1 = a,Xn+1 = x,Fn

]

Remark that Jn(a, x) is an expectation w.r.t. (Y (An+1,Xn+1)|Fn).

1J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments for the estima-
tion of a probability of failure.

Statistics and Computing, 22(3):773–793, April 2011.
doi: 10.1007/s11222-011-9241-4
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Practical computation of Jn

It is possible to rewrite Jn(a, x) to perform a simple Monte-Carlo loop2:

Jn(a, x) =

∫
A×X

EP0

[
Ψ(α, u;G)2

∣∣∣Fn]−EP0

[
Ψ̂n+1(α, u)2

∣∣∣An+1 = a,Xn+1 = x,Fn
]
dh(α)dPX(u)

2Clement Gauchy, Cyril Feau, and Josselin Garnier. Estimation of seismic fragility curves by sequential design of ex-
periments.

February 2022.
hal-03588974
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Practical computation of Jn

First, remark that Jn(a, x) is an expectation w.r.t. (G(An+1,Xn+1)|Fn).

It is possible to rewrite Jn(a, x) to perform a simple Monte-Carlo loop:

Jn(a, x) =

∫
A×X

EP0

[
Ψ(α, u;G)2

∣∣∣Fn]−EP0

[
Ψ̂n+1(α, u)2

∣∣∣An+1 = a,Xn+1 = x,Fn
]
dh(α)dPX(u)

EP0

[
Ψ(α, u;G)2

∣∣∣Fn] = EZ∼N (Ĝn(α,u),σ̂n(α,u)2)

[
Φ

(
Z − log(C)

σε

)2
]
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EP0

[
Ψ̂n+1(α, u)2

∣∣∣An+1 = a,Xn+1 = x,Fn
]

= EZ∼N (Ĝn(a,x),σ̂n(a,x)2)

Φ

(
Ĝn+1(α, u;Z)− log(C)

σn+1(α, u)

)2


where Ĝn+1(α, u;Z) is the conditional mean of the GP with ”virtual” output Z at
design point (An+1,Xn+1).
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Practical computation of Jn

The first integral is approximated using Monte-Carlo simulation with a sample
(αi, Ui)1≤i≤N drawn from the product measure h⊗ PX.

The two expectations are approximated using Gauss-Hermite quadrature:

EZ∼N (µ,σ2)[f(Z)] ≈
1
√
π

Q∑
q=1

ωqf(zq) ,

zq = µ+
√

2σuq ,
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Numerical application



Nonlinear single degree of freedom oscillator

m

(1− αy)mω
2

αymω
2

2ξmω

z(t)

Nonlinear oscillator with kinematic hardening

z̈(t) + 2ξωż(t) + fNL(z(t)) = −s(t) , (1)

where fNL is a nonlinear restoring force.
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Uncertain mechanical parameters

Table: Probabilistic model of X for the nonlinear oscillator.

Variable Name Mean
m (kg) Mass of the system 300

k (N/m) Stiffness 2.7 105

ξ (1) Damping ratio 0.015

zd (m) Yield displacement 5 10−3

αy (1) Post-yield stiffness 2 10−4

The marginal distributions are uniforms with 15% coefficient of variation. The pa-
rameters are considered independent.
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Benchmark settings

The input variables of the GP is composed of the subset (PGA, k,m) (these are the
most influential variables). 105 artificial ground motions and random draws of k and
m are generated and the nonlinear oscillator is evaluated for each realization.

Goal: Estimation of the seismic fragility curve with failure threshold C = 2.1mzd

(mzd is the mean value of the yield displacement zd.)

10 randomly chosen realizations are used for initialization.

At step n,m = 1000 candidate points (Ai,Xi)1≤i≤m are subsampled in the dataset
of 105 computations. We define:

(ASUR
n+1 ,X

SUR
n+1 ) = argmin

1≤i≤m
Jn(Ai,Xi) .

The Gaussian process hyperparameters are updated every 10 iterations using a MAP
estimator with a jointly robust prior 3.

3M. Gu, J. Palomo, and J. Berger. Robustgasp: Robust gaussian stochastic process emulation in r.
The R Journal, 11, 01 2018.
doi: 10.32614/RJ-2019-011
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Performance metrics

A numerical benchmark is carried out to compare the performance of SUR strategy
and Monte-Carlo designs in terms of posterior variance:

vn = EP0

[∫
A×X

(Ψ(α, u;G)− Ψ̂n(α, u))2dh(α)dPX(u)
∣∣∣Fn] ,

and in terms of bias using a reference fragility curve Ψref :

bn =

∫
A×X

(Ψref(α, u)− Ψ̂n(α, u))2dh(α)dPX(u) ,

The integral is evaluated with a Monte-Carlo sample of size 5000 and the expectation
on P0 using 4000 realizations of the GP surrogate.
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Benchmark setting

The SUR strategy is compared to a Monte-Carlo design.

100 replications of Monte-Carlo designs for several training sizes are computed.

Due to the randomness induced in the SUR algorithm by choosing the candidate
points at each step, 100 runs of the SUR strategy are carried out using HPC.
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Performance assessment

20 30 40 50 60 70 80 90 100 110
Training size n

−2.5

−2.0

−1.5
lo

g(
v n

)

Monte Carlo

SUR

Comparison of the posterior variance vn between 100 Monte-Carlo designs and 100 runs of the SUR
strategy for a failure threshold C = 2.1mzd.
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Performance assessment

20 30 40 50 60 70 80 90 100 110
Training size n

−3.00

−2.75

−2.50

−2.25

−2.00

−1.75

−1.50

lo
g(
b n

)

Monte Carlo

SUR

Comparison of the posterior bias bn between 100 Monte-Carlo designs and 100 runs of the SUR
strategy for a failure threshold C = 2.1mzd.
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Conclusion

SUR strategy is an heuristic to solve an intractable Bayesian decision problem.

Advantage: It defines a goal-oriented design of experiment strategy.

Drawback: Very sensitive to the dimension of the input parameter, difficult optimiza-
tion problem.
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Merci pour votre attention !

clgch.github.io

clgch.github.io
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