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Sparse spike deconvolution

Infrared spectroscopy

Wave numbers (cm-1) Peak assignment (
3690-3400-3364-3200-3014 -OH
2952-2920-2850 v — CH,,CH; Aliphatic
1731 v-C=0
1647 v—C=Cde HC = CH,
1540 v—C = C de R-CR—CH-R, § CH2 Aliphatic
1419 6CH,. 6-CTI  Aliphatic
1160-1082 v Si-0 (5i0,)
1009-909 v Si-O (Si-OH)
825 C-Cl
664 CH  Aromatic

Table of the location of peaks and their
corresponding bonds for

polychloroprene samples ([Tchalla,
2017]).

y(t) = Zﬂk ©(Ok, t) + w(t), (©(0,),0 € ©) continuous dictionary.
k=1




Some examples of dictionaries

Sparse spike deconvolution: ¥: © x R = R

2

(6—1t)
(0,t) = e 22

Scaling model: p: © xRy - R
(0,t) —e 0t

Multiresolution approximation: ¢;: © x R -+ R
(6, t) — sinc(2t — 6).

One hidden layer neural networks: ©: © x RY — R

(6,x) = £((x,6))

where ¢ is the RelLU or the sigmoid function.



We observe a random element y of the Hilbert space (Hr, < -,- >7), for
T eN.

Continuous dictionary {¢7(0), 0 € ©} of non-degenerate elements of
H+ and the normalized functions

oT(0)

om0 = e



We observe a random element y of the Hilbert space (Hr, < -,- >7), for
T e N.

Continuous dictionary {¢7(0), 0 € ©} of non-degenerate elements of
H+ and the normalized functions

oT1(0)
or(0) = 20

0= Tor ol
We assume

K

y=_ B ¢1(0F) + wr,

k=1

where

e wr is a centered Gaussian element of Hr,
e * in RK, Ss—sparse,
e {0;}K | included in ©.



[ y =B (9)+ wr, in Hr. ] (model)

For all ¥ = (61, ,0k) € K,

o7(61)
or()=|

é71(0k)

is a multivariate function defined on ©X. (K is a bound on s that can be
taken arbitrarily large.)

S*={k, pBf#0} CardS* =s<K.



We observe a process y in Hr = L2()\T).

.
e Discrete example: Regular grid on [0,1], A7 = + 3 &, with
=

tj ZJ/T and , WT(tj) N(0,02).

~
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e Continuous example: A1 = Lebesgue on [0,1] and wr is a

Brownian motion: wy = % B,

o
=[O (9*) + —= B, Lebesgue-a.e.



We observe a process y in Hr = L2()\T).

.
e Discrete example: Regular grid on [0,1], A7 = + 3 &, with
=

tj ZJ/T and , WT(tj) N(0,02).

~
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((§)=mer(8) +m g M0 j=1eeT

e Continuous example: A1 = Lebesgue on [0,1] and wr is a

Brownian motion: wy = % B,

o
=[O (9*) + —= B, Lebesgue-a.e.

In both cases: Vf € L2(A7), Var (f,wr); < Z||f|% .



Off-the-grid methods - BLasso

They can be stated and applied to:

-learning mixtures, compressed sensing, one hidden layer neural networks,
super-resolution in signal processing...



Off-the-grid methods - BlLasso

They can be stated and applied to:

-learning mixtures, compressed sensing, one hidden layer neural networks,
super-resolution in signal processing...

Beurling-Lasso (BLasso) de Castro and Gamboa, 2012 - convex
optimization problem over a set of Radon measures M(7) on the design
space T

1
in Zlly — dull : P
Lmin Sy = @uls + slulrv (P(x))

where ® : M(T) — Hr is the acquisition operator and || 7y denotes the
total variation of the measure pu.

Remark: ®p = [ ¢dp is equal to Y, Bro(0f) for
di(t) = X, B 3oy (dt).



Optimization problem

Remark: -the solution to the problem P(k) is not necessarily a discrete
measure (typically when dim(H7) = +o00 ). Therefore, we proceed with a
slightly different optimization problem so that we recover a discrete

mixture as solution.

We build estimators by solving a regularized optimization problem with a

tuning parameter Kk > 0 :

N A . 1
(B9 € argmin  Slly —5or()If+ Al
ERK 9Ok

©1 C ©, compact interval.

We assume that for all k € §*, 0 € ©7.



Optimization problem

A _ 1
(B, 9) Gﬁanggn;"gk §|Iy—ﬁ¢r(19)ll2r+ﬁllﬁllel
ERK HeOK

The algorithms used to solve numerically the problem (also the BLasso):

e Sliding Frank-Wolfe algorithm (Denoyel et al. 2019)
e conic particle gradient descent (Chizat, 2021)
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Optimization problem

A _ 1
(B, 9) Gﬁanggn;"gk §|Iy—ﬁ¢r(19)ll2r+ﬁllﬁllel
ERK HeOK

The algorithms used to solve numerically the problem (also the BLasso):

e Sliding Frank-Wolfe algorithm (Denoyel et al. 2019)
e conic particle gradient descent (Chizat, 2021)

We will give high-probability bounds for the prediction risk
1B®(0) — B* o7 ()5

and some estimation results.

Bibliography:

-For known 9*, linear regression model! [Biihimann and van de Geer,
2011]. 8
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Super-resolution and compressed sensing: [Candés and Fernandez-Granda, 2013,
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Off-the-grid methods

e Existence of atomic solutions when dim(H7) < +oo, [Boyer et al, 2019].

e Exact support recovery results in a small noise regime, [Duval & Peyré, 2015].

e Density mixture model, [De Castro et al, 2020].

e Prediction error bounds for the Fourier basis functions, [Tang et al 2014], [Boyer

et al, 2017].

-Non translation invariant models: [Poon, Keriven, Peyré, 2021] describes the natural
geometric framework of the BlLasso.



Kernel and Riemannian metric

Assume © C R. We define the kernel K7 on ©? by:

Kr(6,6') = (67(6). 67(8)) 7 = ||;f(e(ﬁ|);@;(f(2?)ﬂr'
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Kernel and Riemannian metric

Assume © C R. We define the kernel K7 on ©? by:

Kr(6,6') = (67(6). 67(8)) 7 = ||;f(e(ﬁ|);@;(re(2?)ﬂr'

We have
gr(0) = 95,K1(6.0),

defining an intrinsic Riemannian metric on ©%:
o7(0,6") = 1Gr(9) — Gr(¢)],

where Gt is a primitive of \/g1.
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Results - Prediction and estimation

Assume we observe the random element y of Ht under the regression
model with 5* a s-sparse vector and ¥* = (07, -- ,0}) a vector with
entries in © 1, a compact interval of R, such that:

Assumption

e wr is Gaussian and there exists a noise level o > 0 and a decay rate
for the noise variance A+ > 0 such that for all f € Hr,

Var (f, wr) < o®Ar|f]|7.

e Smoothness conditions on .

Local concavity and boundedness of K.
Forall1<k#¢<s, or(05,0;)>20(s).

ICt1 is close enough from K.
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Results - Prediction and estimation

Theorem (Butucea, Delmas, Dutfoy, H., 22)
ForT > 1 and k > Ci0+v/A7 log T, we have

HBCDT — Bror(v*)

SC()U\/EI{
T

with probability at least 1 — Cs (‘@T‘DT v )

7 log T
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Results - Prediction and estimation

We define the following sets for r > 0:

- 5= {g : Bl =4 O} the support of 3;

- Si(r) = {E e S:o7(6,,08) < r} the set of indices ¢ in the support

ofﬁ’ associated to a parameter 9} that is close to 6%, for k in S*;
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Results - Prediction and estimation

Theorem (Butucea, Delmas, Dutfoy, H., 22)

There exists r > 0 so that the sets §k(r) are disjoint and for T > 1 and

Kk > Cro/ At log T, we have

S |82 = 32 18| S osw

keS* 28, (r)

o= 3 A oss

keS* 28, (r)

Hﬂg(’)c 0

with probability greater than 1 — C, (T\/@ %)
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Discussion

We consider a general framework including discrete and continuous
models with Gaussian, possibly correlated, noise and various dictionaries
of smooth functions.
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Discussion

We consider a general framework including discrete and continuous
models with Gaussian, possibly correlated, noise and various dictionaries
of smooth functions.

The upper bound on the prediction risk:

e is nearly the same as for the linear regression in the discrete model
(i.e ¥* is known and Hr = RT),

e extends results obtained for a Fourier basis functions [Tang et al
2014], [Boyer et al, 2017].

e holds under strong separation conditions on the non-linear
parameters (of order s in theory, can be reduced to constant for
models of spike deconvolution)!

e is free of K

e involves controls of tails of sup of linear functionals of a Gaussian
process (Azais and Wschebor, 2009)

15



In preparation

e Simultaneous learning of a continuum of signals
y(2) =Y B@)er(¥) +wr(z), z€Z.
k=1
e Goodness-of-fit testing

e Testing if the features involved in the mixture belong to a known
finite set of features.

16



Assumption (© C R)
e wr is Gaussian and there exists a noise level ¢ > 0 and a decay rate
for the noise variance A+ > 0 such that for all f € Hr,

Var (f, wr) < a®Ar]|f]|7-

Smoothness conditions on .

e Local concavity and boundedness of K.

d(u,s) < +o0, where u is a computable constant.
Forall1<k#(<s, 07(05,0;)>20(u,s).

e [Ct is close enough from KCw.

5(u,s) = inf {6 > 0: maxi<e<s ki%ﬂ KL (0,,64)| < u for all (i,)) €

{0,1} x {0,1,2} and for all (61, - ,65) € ©° 5.t Doo (k. 62) > 5}.
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Boundedness and local concavity on the diagonal of the kernel
Define:

er(r)=1—sup{|K7(6,0")]; 6,0 € ©r such that o7(0",6) > r},

vr(r) = — sup {/c[ﬁﬂ(a,e’); 0,0' € ©1 such that o1(¢',60) < r}.

We shall require e7(r) and v (r) for some r > 0.
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