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Sparse spike deconvolution

Infrared spectroscopy

Table of the location of peaks and their

corresponding bonds for

polychloroprene samples ([Tchalla,

2017]).

y(t) =
s∑

k=1

βk ϕ(θk , t) + w(t), (ϕ(θ, ·), θ ∈ Θ) continuous dictionary.

1



Some examples of dictionaries

• Sparse spike deconvolution: ϕ : Θ× R→ R

(θ, t) 7→ e−
(θ−t)2

2σ2 .

• Scaling model: ϕ : Θ× R+ → R

(θ, t) 7→ e−θ t .

• Multiresolution approximation: ϕj : Θ× R→ R

(θ, t) 7→ sinc(2j t − θ).

• One hidden layer neural networks: ϕ : Θ× Rd → R

(θ, x) 7→ ξ(〈x , θ〉)
where ξ is the ReLU or the sigmoid function.
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Model

We observe a random element y of the Hilbert space (HT , < ·, · >T ), for

T ∈ N.

Continuous dictionary {ϕT (θ), θ ∈ Θ} of non-degenerate elements of

HT and the normalized functions

φT (θ) =
ϕT (θ)

‖ϕT (θ)‖T
.

We assume

y =
K∑

k=1

β?k · φT (θ?k ) + wT ,

where

• wT is a centered Gaussian element of HT ,

• β? in RK , s−sparse,

• {θ?k}Kk=1 included in Θ.
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Model

y = β?ΦT (ϑ?) + wT , in HT . (model)

For all ϑ = (θ1, · · · , θK ) ∈ ΘK ,

ΦT (ϑ) =

φT (θ1)
...

φT (θK )


is a multivariate function defined on ΘK . (K is a bound on s that can be

taken arbitrarily large.)

S? = {k , β?k 6= 0}, Card S? = s < K .
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Examples

We observe a process y in HT = L2(λT ).

• Discrete example: Regular grid on [0, 1], λT = 1
T

T∑
j=1

δtj with

tj = j/T and , wT (tj) ∼
i.i.d
N (0, σ2).

y

(
j

T

)
= β?ΦT

(
ϑ?,

j

T

)
+ wj , wj ∼

i.i.d
N (0, σ2), j = 1, · · · ,T .

• Continuous example: λT = Lebesgue on [0, 1] and wT is a

Brownian motion: wT = σ√
T
B,

y = β?ΦT (ϑ?) +
σ√
T

B, Lebesgue-a.e.

In both cases: ∀f ∈ L2(λT ), Var 〈f ,wT 〉T ≤
σ2

T ‖f ‖
2
T .
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Off-the-grid methods - BLasso

They can be stated and applied to:

-learning mixtures, compressed sensing, one hidden layer neural networks,

super-resolution in signal processing...

Beurling-Lasso (BLasso) de Castro and Gamboa, 2012 - convex

optimization problem over a set of Radon measures M(T ) on the design

space T :

min
µ∈M(T )

1

2
‖y − Φµ‖2

T + κ|µ|TV , (P(κ))

where Φ :M(T )→ HT is the acquisition operator and |µ|TV denotes the

total variation of the measure µ.

Remark: Φµ =
∫
φdµ is equal to

∑
k β

?
kφ(θ?k ) for

dµ(t) =
∑

k β
?
k δθ?k (dt).
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Optimization problem

Remark: -the solution to the problem P(κ) is not necessarily a discrete

measure (typically when dim(HT ) = +∞ ). Therefore, we proceed with a

slightly different optimization problem so that we recover a discrete

mixture as solution.

We build estimators by solving a regularized optimization problem with a

tuning parameter κ > 0 :

(β̂, ϑ̂) ∈ argmin
β∈RK ,ϑ∈ΘK

T

1

2
||y − βΦT (ϑ)||2T + κ||β||`1

ΘT ⊂ Θ, compact interval.

We assume that for all k ∈ S?, θ?k ∈ ΘT .
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Optimization problem

(β̂, ϑ̂) ∈ argmin
β∈RK ,ϑ∈ΘK

T

1

2
||y − βΦT (ϑ)||2T + κ||β||`1

The algorithms used to solve numerically the problem (also the BLasso):

• Sliding Frank-Wolfe algorithm (Denoyel et al. 2019)

• conic particle gradient descent (Chizat, 2021)

We will give high-probability bounds for the prediction risk

‖β̂ΦT (θ̂)− β?ΦT (ϑ?)‖2
T

and some estimation results.

Bibliography:

-For known ϑ?, linear regression model! [Bühlmann and van de Geer,

2011].
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Bibliography

BLasso : [de Castro and Gamboa, 2012];

Super-resolution and compressed sensing: [Candès and Fernandez-Granda, 2013,

2014];[Tang et al, 2013]; ...

Off-the-grid methods

• Existence of atomic solutions when dim(HT ) < +∞, [Boyer et al, 2019].

• Exact support recovery results in a small noise regime, [Duval & Peyré, 2015].

• Density mixture model, [De Castro et al, 2020].

• Prediction error bounds for the Fourier basis functions, [Tang et al 2014], [Boyer

et al, 2017].

-Non translation invariant models: [Poon, Keriven, Peyré, 2021] describes the natural

geometric framework of the BLasso.
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Kernel and Riemannian metric

Assume Θ ⊆ R. We define the kernel KT on Θ2 by:

KT (θ, θ′) = 〈φT (θ), φT (θ′)〉T =
〈ϕT (θ), ϕT (θ′)〉T
‖ϕT (θ)‖T‖ϕT (θ′)‖T

.

We have

gT (θ) = ∂2
xyKT (θ, θ),

defining an intrinsic Riemannian metric on Θ2:

dT (θ, θ′) = |GT (θ)− GT (θ′)|,

where GT is a primitive of
√
gT .
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Results - Prediction and estimation

Assume we observe the random element y of HT under the regression

model with β? a s-sparse vector and ϑ? = (θ?1 , · · · , θ?K ) a vector with

entries in ΘT , a compact interval of R, such that:

Assumption

• wT is Gaussian and there exists a noise level σ > 0 and a decay rate

for the noise variance ∆T > 0 such that for all f ∈ HT ,

Var 〈f ,wT 〉T ≤ σ
2∆T‖f ‖2

T .

• Smoothness conditions on ϕ.

• Local concavity and boundedness of K∞.

• For all 1 ≤ k 6= ` ≤ s, dT (θ?k , θ
?
` ) > 2 δ(s).

• KT is close enough from K∞.
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Results - Prediction and estimation

Theorem (Butucea, Delmas, Dutfoy, H., 22)

For τ > 1 and κ ≥ C1σ
√

∆T log τ , we have∥∥∥β̂ΦT (ϑ̂)− β?ΦT (ϑ?)
∥∥∥
T
≤ C0 σ

√
s κ

with probability at least 1− C2

(
|ΘT |dT

τ log τ ∨
1
τ

)
.
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Results - Prediction and estimation

We define the following sets for r > 0:

- Ŝ =
{
` : β̂` 6= 0

}
the support of β̂;

- S̃k(r) =
{
` ∈ Ŝ : dT (θ̂`, θ

?
k ) < r

}
the set of indices ` in the support

of β̂ associated to a parameter θ̂` that is close to θ?k , for k in S?;

- S̃(r) =
⋃

k ∈S?
S̃k(r).
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Results - Prediction and estimation

Theorem (Butucea, Delmas, Dutfoy, H., 22)

There exists r > 0 so that the sets S̃k(r) are disjoint and for τ > 1 and

κ ≥ C1σ
√

∆T log τ , we have

∑
k∈S?

∣∣∣∣∣∣|β?k | −
∑

`∈S̃k (r)

|β̂`|

∣∣∣∣∣∣ . σsκ

∑
k∈S?

∣∣∣∣∣∣β?k −
∑

`∈S̃k (r)

β̂`

∣∣∣∣∣∣ . σsκ

∥∥∥β̂S̃(r)c

∥∥∥
`1

. σsκ

with probability greater than 1− C2

(
|ΘT |dT

τ
√

log τ
∨ 1
τ

)
.
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Discussion

We consider a general framework including discrete and continuous

models with Gaussian, possibly correlated, noise and various dictionaries

of smooth functions.

The upper bound on the prediction risk:

• is nearly the same as for the linear regression in the discrete model

(i.e ϑ? is known and HT = RT ),

• extends results obtained for a Fourier basis functions [Tang et al

2014], [Boyer et al, 2017].

• holds under strong separation conditions on the non-linear

parameters (of order s in theory, can be reduced to constant for

models of spike deconvolution)!

• is free of K

• involves controls of tails of sup of linear functionals of a Gaussian

process (Azäıs and Wschebor, 2009)
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In preparation

• Simultaneous learning of a continuum of signals

y(z) =
s∑

k=1

β(z)ΦT (ϑ) + wT (z), z ∈ Z.

• Goodness-of-fit testing

• Testing if the features involved in the mixture belong to a known

finite set of features.
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Bonus

Assumption (Θ ⊂ R)

• wT is Gaussian and there exists a noise level σ > 0 and a decay rate

for the noise variance ∆T > 0 such that for all f ∈ HT ,

Var 〈f ,wT 〉T ≤ σ
2∆T‖f ‖2

T .

• Smoothness conditions on ϕ.

• Local concavity and boundedness of K∞.

• δ(u, s) < +∞, where u is a computable constant.

• For all 1 ≤ k 6= ` ≤ s, dT (θ?k , θ
?
` ) > 2 δ(u, s).

• KT is close enough from K∞.

δ(u, s) = inf
{
δ > 0: max1≤`≤s

s∑
k=1,k 6=`

|K[i,j]
∞ (θ`, θk)| < u for all (i , j) ∈

{0, 1} × {0, 1, 2} and for all (θ1, · · · , θs) ∈ Θs s.t d∞(θk , θ`) > δ
}
.
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Bonus

Boundedness and local concavity on the diagonal of the kernel

Define:

εT (r) = 1− sup {|KT (θ, θ′)|; θ, θ′ ∈ ΘT such that dT (θ′, θ) ≥ r} ,

νT (r) = − sup
{
K[0,2]

T (θ, θ′); θ, θ′ ∈ ΘT such that dT (θ′, θ) ≤ r
}
.

We shall require εT (r) and νT (r) for some r > 0.
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