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Introduction

Goal: Enhance the confidence in the practical usage of a black-box model, by assessing its

robustness to input perturbations.

Challenges:

1. Define generic, but understandable input perturbations.

2. Unify ML interpretability and sensitivity analysis (SA)

• ML: Features are modelled as empirical probability measures
• SA: Inputs are modelled as probability measures admitting a positive density.

3. Local/Global robustness assessment of a model, or some of its key characteristics.

Illustrative example: Epistemic uncertainty on a riverbed’s roughness near an industrial site.
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Context

Let P ∈ P(Rd) be an initial probability measure. We seek the solution of the projection

problem

Q = argmin

G∈P(Rd )

D (P,G)

s.t. G ∈ C, and CP = CQ

where C ⊆ P(Rd) is a perturbation class, and D a discrepancy between probability

measures. Ideally, P and Q must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemâıtre et al. 2015) work focus on the

Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.

Drawbacks:
• Generalized moments may not exist.
• Different results depending on P due to

KL.

Solutions:
• Quantile perturbation class.

• 2-Wasserstein: does not depend on the

nature of P.
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Why quantiles ?

Generalized quantile functions are the generalized inverses (de la Fortelle 2015) of the cdf

of random variables.

F←P (a) = sup {t ∈ R | FP(t) < a}

= inf {t ∈ R | FP(t) ≥ a}.

F→P (a) = sup {t ∈ R | FP(t) ≤ a}

= inf {t ∈ R | FP(t) > a},

• They characterize probability measures (Dufour 1995)

• Univariate quantiles always exist.
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Quantile perturbation class

The quantile perturbation class QV is defined using constraints of the form

F←Q (α) ≥ b ≥ F→Q (α).

with b ∈ R, and leading to the set

QV = {Q ∈ P(R) | F←Q ∈ V, F←Q (αi ) ≥ bi ≥ F→Q (αi ), i = 1, . . . ,K} .

included in P(R), and where V ⊆ F← is a (smoothing) restriction on the space of quantile
functions.

Collections of perturbations can be driven by an intensity parameter θ ∈ [−1, 1]

• Quantile shift: shifting the α-quantile of P between two values.

• Operating domain dilatation: widewing or narrowing the bounds of the support of P

w.r.t. a scaling parameter η ∈ R.

Additional ponctual modelling constraints can also be added (e.g., preservation of

empirical quantiles, expert knowledge).
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The Wasserstein distance

For two probability measure P,Q ∈ P(Rd) having the same copula (Alfonsi and Jourdain

2014):

W p
p (P,Q) =

d∑
i=1

W p
p (Pi ,Qi ). (1)

where each Pi ,Qi ∈ P(R) is a marginal distribution. Each element of the sum reduces to

(Santambrogio 2015):

W p
p (Pi ,Qi ) =

∫ 1

0

∣∣F→Pi
(x)− F→Qi

(x)
∣∣p dx

whatever the “nature” of P (empirical, continuous...).

In particular, the 2-Wasserstein distance metricizes weak convergence on the set of

probability measure with finite 2nd order moments P2(R) (Villani 2003).

• Solving d univariate perturbation problems.
• Optimal transportation map preserves the copula:Ti = (F←Qi

◦ FPi
)
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Wasserstein and L2 projections

Hence, one focuses on the marginal perturbation problem:

Q = argmin

G∈P(R)
W2 (P,G)

s.t. G ∈ QV
(2)

Proposition

The solution Q of the problem in Eq. (2) is uniquely characterized by its quantile function being the

solution

F←Q = argmin
L∈L2([0,1])

∫ 1

0

(L(x)− F→P (x))2

s.t. L(αi ) ≤ bi ≤ L
(
α+
i

)
, i = 1, . . . ,K ,

L ∈ V
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Solving the perturbation problem

If V = F←, there exists a unique analytical solution Q to the problem:

Q is the same as P, except on the intervals between F←P (αi ) and bi which have no mass,
and an atom is added at bi , taking the initial mass of the interval.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Initial quantile function
Quantile constraint
Projection solution

How to explicitly enforce “smoothness” to the resulting perturbed quantile
function ?
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Isotonic interpolating piece-wise continuous polynomials

Idea: Using piece-wise continuous polynomials of degree p to ensure continuity.

Partition [0, 1] according into interval [tj , tj+1], i = 0, . . . ,K with t0 = 0, tK+1 = 1, and ti = αi

(ordered increasingly), and solve for

S = argmin

G∈R[x]≤p

∫ ti+1

ti

(F→P (x)− G(x))2dx

s.t. G(ti ) = bi ,G(ti+1) = bi+1

G ′(x) ≥ 0, ∀x ∈ [t0, t1]

(3)

Proposition

The polynomial solution of Eq. (3) admits as coefficients

s∗ = argmin
s∈Rp+1

s⊤Ms − 2s⊤r

s.t. s ∈ K

where M is the moment matrix of the Lebesgue measure on [ti , ti+1], r is the moment vector of F→P ,

and K is a closed convex subset of Rp+1. 8/17



Isotonic interpolation piece-wise continuous polynomials

It is a Convex Constrained Quadratic Problem which can be solved using numerical solvers

(e.g., CVXR (Fu, Narasimhan, and Boyd 2020)).

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Initial quantile function
Quantile constraint
Projection solution

Each marginal input Xi ∼ Pi can be perturbed using the optimal monotone perturbation

map

X̃i = Ti (Xi ) = (F←Qi
◦ FPi )(Xi )

preserving the (empirical) copula between all the inputs.
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SIPA framework for model-agnostic interpretation

Our methodology follows the SIPA framework (Scholbeck et al. 2020):

1. Sampling: Observed (ML) or simulated (UQ) values of P.

2. Intervention: Define optimal perturbations under quantile constraints and apply the

perturbation map, resulting in perturbed inputs X̃ = T (X ) with the same dependence
structure.

3. Prediction: Evaluate the model G (numerical in UQ, learned in ML) on the perturbed

inputs.

4. Aggregation: Estimate local or global statistics on the perturbed output Ỹ = G(X̃ ).

10/17



Simplified hydrological model

Model of the water level of a river. Simplification of the one-dimensional Saint-Venant

equation, with a uniform and constant flow rate (Iooss and Lemâıtre 2015; Fu, Couplet, and

Bousquet 2017)

• Q: River maximum annual water flow rate.

• Ks : Strickler riverbed roughness coefficient.

• Zv : Downstream river level.

• Zm: Upstream river level.

• L: River length.

• B: River width.

Input Distribution Application Domain

Q G(1013, 558) trunc. [500, 3000]

Ks N (35, 5) trunc. [20, 50]

Zv T (49, 50, 51) [49, 51]

Zm T (54, 55, 56) [54, 56]

L T (4990, 5000, 5010) [4990, 5010]

B T (295, 300, 305) [295, 305]

Model:

Y = Zv +

 Q

BKs

√
Zm−Zv

L


3/5

Gaussian copula with covariance matrix :

RP =



1 0.5 0 0 0 0

0.5 1 0 0 0 0

0 0 1 0.3 0 0

0 0 0.3 1 0 0

0 0 0 0 1 0.3

0 0 0 0 0.3 1
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Perturbation strategy

Ponctual perturbations

Q:

• Shift of the application domain from [500, 3000] to

[500, 3200].

• Preserve the median of the distribution.

• Increase the initial 0.15-quantile by 75.

• Decrease the initial 0.75-quantile by 125.

L:

• Shift the application domain from [4990, 5010] to

[4988, 5012].

• Preserve the median of the distribution.

Zm:

• Preserve the application domain and the median

of the initial distribution.

• Increase the 0.8 and 0.9-quantiles by 0.1.

• Decrease the 0.25-quantile by 0.05.

Application domain dilatation on Ks (η = 2)
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Wasserstein Projection
Initial Quantile Function
Interpolation points

Initial Application Domain
Dilated Application Domain

• θ = −1: Riverbed between a slow winding natural river, up to a plain

river without shrub vegetation (Ks ∈ [27.5, 42.5]).

• θ = 1: Riverbed roughness from proliferating algae up to smooth

concrete (Ks ∈ [5, 65]).

Optimal perturbation problems are solved with polynomial smoothing (arbitrary degree equal to 12).
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Global statistics
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Shapley effects
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Conclusion & perspectives

Generic and interpretable marginal perturbation scheme.

Local and global robustness assessment of black-box numerical (SA) and predictive models

(ML).

Perspectives:

• Optimal degree selection, and derivability of the resulting polynomial.

• Multivariate quantile perturbation.

• More general smoothing spaces (monotone Sobolev functions, RKHS).

More details and ML application (Acoustic Fire Extinguisher) in our pre-print

(HAL/arXiv) (I. et al. 2022):
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Thank you for your attention!

Any questions?
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River water level ponctual perturbations
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Copula preservation

Let X ⊆ Rd
, for d a positive integer, and P ∈ P(X ). Let Qi be the solution of the optimal projection problem with C = CV , for every

marginal distribution Pi of P, i = 1, . . . , d , and where V ⊆ ⊗d
j=1F

←
j . Let the random vectors

X ∼ P, X̃ := T (X )

where

T : X → X
x1

.

.

.

xd

 7→


T1(x1)

.

.

.

Td (xd )

 (4)

where

Tj =

(
F←Qj
◦ FPj

)
, j = 1, . . . , d.

1. If P is an empirical measure (i.e., X represents a dataset), then X and the perturbed dataset X̃

have the same empirical copula. Moreover, the empirical measure of every perturbed marginal

sample X̃i converges towards Qi , i = 1, . . . , d .

2. If P is atomless, and assuming additionally that V is such that every F←Qi
, i = 1, . . . , d is strictly

increasing, then the random vectors X and X̃ have the same copula. Moreover, each perturbed

marginal X̃i ∼ Qi .



Projecting without smoothing

Let P be a probability measure in P2(R). Let C be a non-empty perturbation class characterized by a

set of K quantile constraints. Assume, without loss of generality, for i = 1, . . . ,K , that α1 < · · · < αK

along with b1 < · · · < bK . Let βi = FP(bi ) for i = 1, . . . ,K . Define the intervals Ai = (ci , di ] for i = 1, . . . ,K ,

such that:

c1 = min(β1, α1), ci = min
[
max(αi−1, βi ), αi

]
, i = 2, . . . ,K ,

dK = max(βK , αK ), dj = max
[
min(βj , αj+1), αj

]
, j = 1, . . . ,K − 1.

Let A =
⋃K

i=1 Ai and A = [0, 1] \ A. Then the problem has a unique solution which can be written as, for

any y ∈ [0, 1]:

F←Q (y) =

{
F→P (y) if y ∈ A,

bi if y ∈ Ai , i = 1, . . . ,K .
(5)



Non-negativity of polynomials on closed intervals

Theorem (Non-negativity of polynomials on closed intervals)

Let t0, t1 ∈ R such that t0 < t1, and let p ∈ N∗.

A univariate polynomial S of even degree d = 2p is non-negative on [t0, t1] if and only if it can be written as,

∀x ∈ [t0, t1]

S(x) = Z(x) + (x − t0)(t1 − x)W (x)

where Z is an SOS polynomial of degree at most equal to d , and W is an SOS polynomial of degree at most

equal to d − 2.

A univariate polynomial S of odd degree d = 2p + 1 is non-negative on [t0, t1] if and only if it can be written

as, ∀x ∈ [t0, t1]

S(x) = (x − t0)Z(x) + (t1 − x)W (x)

where Z ,W are SOS polynomials of degree at most equal to d .



SDP representation of SOS polynomials

Let S be an univariate polynomial of even degree d = 2p, with coefficients s = (s0, . . . , sd ), and denote

xp the usual monomial basis of polynomials of degree at most equal to p, i.e.,

xp = (1, x , x2, . . . , xp−1, xp)⊤. S is an SOS polynomial if and only if there exists a (p × p) symmetric semi

definite positive (SDP) matrix

Γ =
[
Γij

]
i,j=1,...,p

that satisfies, ∀x ∈ R,
S(x) = x⊤p Γxp .

Moreover, for k = 0, . . . , d , let Ipk be the (p × p) matrix defined by, for i , j = 1, . . . , p:

[
Ipk
]
i,j

= 1{i+j=k+2}(i , j).

If there exists a matrix Γ such that S is SOS, then one has that, for i = 0, . . . , d

si = ⟨Ipi , Γ⟩F =
∑

j+k=i+2

Γj,k

where, ⟨., .⟩F denotes the Frobenius norm on matrices.



Equivalent optimization formulation

Let [t0, t1] ⊂ [0, 1], and let s = (s0, . . . , sd )
⊤ ∈ Rd+1

, M be the symmetric ((d + 1× d + 1)) moment matrix

of the Lebesgue measure on [t0, t1], i.e. for i , j = 1, . . . , d + 1,

Mij =

∫ t1

t0

x i+j−2dx =
(t1)i+j−1 − (t0)i+j−1

i + j − 1
,

and denote r ∈ Rd+1
the moment vector of A(x), i.e., for i = 0, . . . , d

ri =

∫ t1

t0

x iF←P (x)dx

Then, the optimization problem can be equivalently solved by finding s as being the solution of the

following convex constrained quadratic program,

s∗ = argmin

s∈Rp+1

s⊤Ms − 2s⊤r

s.t. s ∈ K

where K is a closed convex subset of Rp+1
.


	References

