ROBUSTNESS ASSESSMENT OF BLACK-BOX MODELS

QUANTILE-CONSTRAINED WASSERSTEIN PROJECTIONS AND ISOTONIC POLYNOMIAL APPROXIMATIONS

1EDF Lab Chatou - Département PRISME
2Institut de Mathématiques de Toulouse
3SINCLAIR AI Lab

École Thématique sur les Incertitudes en Calcul Scientifique
GdR MASCOT-NUM
Golfe de Lozari, Corsica - October 2022

Marouane Il Idrissi123, Nicolas Bousquet13, Fabrice Gamboa2, Bertrand Iooss123, Jean-Michel Loubes2.
Introduction

Goal: Enhance the confidence in the practical usage of a black-box model, by assessing its robustness to input perturbations.

Challenges:

1. Define *generic*, but *understandable* input perturbations.
2. Unify ML interpretability and sensitivity analysis (SA)
 - ML: Features are modelled as *empirical probability measures*
 - SA: Inputs are modelled as *probability measures admitting a positive density*.
3. Local/Global robustness assessment of a model, or some of its key characteristics.

Illustrative example: Epistemic uncertainty on a riverbed’s roughness near an industrial site.
Let $P \in \mathcal{P}(\mathbb{R}^d)$ be an initial probability measure. We seek the solution of the projection problem

$$Q = \arg\min_{G \in \mathcal{P}(\mathbb{R}^d)} \mathcal{D}(P, G)$$

s.t. $G \in \mathcal{C}$, and $C_P = C_Q$

where $\mathcal{C} \subseteq \mathcal{P}(\mathbb{R}^d)$ is a perturbation class, and \mathcal{D} a discrepancy between probability measures. Ideally, P and Q must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaître et al. 2015) work focus on the Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.
Context

Let \(P \in \mathcal{P}(\mathbb{R}^d) \) be an initial probability measure. We seek the solution of the projection problem

\[
Q = \arg\min_{G \in \mathcal{P}(\mathbb{R}^d)} \mathcal{D}(P, G)
\]

s.t. \(G \in \mathcal{C} \), and \(C_P = C_Q \)

where \(\mathcal{C} \subseteq \mathcal{P}(\mathbb{R}^d) \) is a perturbation class, and \(\mathcal{D} \) a discrepancy between probability measures. Ideally, \(P \) and \(Q \) must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaître et al. 2015) work focus on the Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.

Drawbacks:

- Generalized moments may not exist.
- Different results depending on \(P \) due to KL.
Let $P \in \mathcal{P}(\mathbb{R}^d)$ be an initial probability measure. We seek the solution of the projection problem

$$Q = \arg\min_{G \in \mathcal{P}(\mathbb{R}^d)} \mathcal{D}(P, G)$$

s.t. $G \in \mathcal{C}$, and $C_P = C_Q$

where $\mathcal{C} \subseteq \mathcal{P}(\mathbb{R}^d)$ is a perturbation class, and \mathcal{D} a discrepancy between probability measures. Ideally, P and Q must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaître et al. 2015) work focus on the Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.

Drawbacks:
- Generalized moments may not exist.
- Different results depending on P due to KL.

Solutions:
- Quantile perturbation class.
- 2-Wasserstein: does not depend on the nature of P.
Why quantiles?

Generalized quantile functions are the generalized inverses (de la Fortelle 2015) of the cdf of random variables.

\[
F_P^{-}(a) = \sup \{ t \in \mathbb{R} \mid F_P(t) < a \} = \inf \{ t \in \mathbb{R} \mid F_P(t) \geq a \},
\]

\[
F_P^{+}(a) = \sup \{ t \in \mathbb{R} \mid F_P(t) \leq a \} = \inf \{ t \in \mathbb{R} \mid F_P(t) > a \},
\]

- They **characterize** probability measures (Dufour 1995)
- Univariate quantiles **always exist**.
The **quantile perturbation class** Q_V is defined using constraints of the form

$$F_Q^\leftarrow(\alpha) \geq b \geq F_Q^\rightarrow(\alpha).$$

with $b \in \mathbb{R}$, and leading to the set

$$Q_V = \{ Q \in \mathcal{P}(\mathbb{R}) \mid F_Q^\leftarrow \in V, \quad F_Q^\leftarrow(\alpha_i) \geq b_i \geq F_Q^\rightarrow(\alpha_i), \ i = 1, \ldots, K \}.$$

included in $\mathcal{P}(\mathbb{R})$, and where $V \subseteq \mathcal{F}^\rightarrow$ is a **(smoothing) restriction** on the **space of quantile functions**.
Quantile perturbation class

The quantile perturbation class Q_V is defined using constraints of the form

$$F_Q^\leftarrow (\alpha) \geq b \geq F_Q^\rightarrow (\alpha).$$

with $b \in \mathbb{R}$, and leading to the set

$$Q_V = \{ Q \in \mathcal{P}(\mathbb{R}) | F_Q^\leftarrow \in V, \quad F_Q^\leftarrow (\alpha_i) \geq b_i \geq F_Q^\rightarrow (\alpha_i), \quad i = 1, \ldots, K \}.$$

included in $\mathcal{P}(\mathbb{R})$, and where $V \subseteq \mathcal{F}^\leftarrow$ is a (smoothing) restriction on the space of quantile functions.

Collections of perturbations can be driven by an intensity parameter $\theta \in [-1, 1]$

- **Quantile shift**: shifting the α-quantile of P between two values.
- **Operating domain dilatation**: widewing or narrowing the bounds of the support of P w.r.t. a scaling parameter $\eta \in \mathbb{R}$.

Additional pointual modelling constraints can also be added (e.g., preservation of empirical quantiles, expert knowledge).
The Wasserstein distance

For two probability measure $P, Q \in \mathcal{P}(\mathbb{R}^d)$ having the same copula (Alfonsi and Jourdain 2014):

$$W^p_P(P, Q) = \sum_{i=1}^{d} W^p_{P_i, Q_i}.$$ \hfill (1)

where each $P_i, Q_i \in \mathcal{P}(\mathbb{R})$ is a marginal distribution. Each element of the sum reduces to (Santambrogio 2015):

$$W^p_{P_i, Q_i} = \int_{0}^{1} |F_{P_i}^{-1}(x) - F_{Q_i}^{-1}(x)|^p \, dx$$

whatever the “nature” of P (empirical, continuous...).
The Wasserstein distance

For two probability measure \(P, Q \in \mathcal{P}(\mathbb{R}^d) \) having the same copula (Alfonsi and Jourdain 2014):

\[
W^p_P(P, Q) = \sum_{i=1}^{d} W^p_{P_i, Q_i}.
\]

(1)

where each \(P_i, Q_i \in \mathcal{P}(\mathbb{R}) \) is a marginal distribution. Each element of the sum reduces to (Santambrogio 2015):

\[
W^p_{P_i, Q_i} = \int_0^1 \left| F^{-1}_{P_i}(x) - F^{-1}_{Q_i}(x) \right|^p dx
\]

whatever the “nature” of \(P \) (empirical, continuous...).

In particular, the 2-Wasserstein distance metricizes weak convergence on the set of probability measure with finite 2nd order moments \(\mathcal{P}_2(\mathbb{R}) \) (Villani 2003).
The Wasserstein distance

For two probability measure $P, Q \in \mathcal{P}(\mathbb{R}^d)$ having the same copula (Alfonsi and Jourdain 2014):

$$W_p^p(P, Q) = \sum_{i=1}^{d} W_p^p(P_i, Q_i).$$

(1)

where each $P_i, Q_i \in \mathcal{P}(\mathbb{R})$ is a marginal distribution. Each element of the sum reduces to (Santambrogio 2015):

$$W_p^p(P_i, Q_i) = \int_{0}^{1} |F_{P_i}^{-1}(x) - F_{Q_i}^{-1}(x)|^p \, dx$$

whatever the “nature” of P (empirical, continuous...).

In particular, the 2-Wasserstein distance metricizes weak convergence on the set of probability measure with finite 2nd order moments $\mathcal{P}_2(\mathbb{R})$ (Villani 2003).

- **Solving d univariate perturbation problems.**
- **Optimal transportation map preserves the copula:** $T_i = (F_{Q_i}^{-1} \circ F_{P_i})$
Wasserstein and L^2 projections

Hence, one focuses on the marginal perturbation problem:

$$Q = \arg\min_{G \in \mathcal{P}(\mathbb{R})} \ W_2(P, G)$$

subject to \(G \in Q \mathcal{V} \)

(2)

Proposition

The solution \(Q \) of the problem in Eq. (2) is uniquely characterized by its quantile function being the solution

$$F_Q^\leftarrow = \arg\min_{L \in L^2([0,1])} \int_0^1 (L(x) - F_P^\rightarrow (x))^2$$

subject to

\(L(\alpha_i) \leq b_i \leq L(\alpha_i^+) \), \(i = 1, \ldots, K \), \(L \in \mathcal{V} \)
Solving the perturbation problem

If $V = F^\leftarrow$, there exists a unique analytical solution Q to the problem:

Q is the same as P, except on the intervals between $F_P^\leftarrow(\alpha_i)$ and b_i which have no mass, and an atom is added at b_i, taking the initial mass of the interval.
Solving the perturbation problem

If $\nu = F^\leftarrow$, there exists a **unique analytical solution** Q to the problem:

Q is the same as P, except on the intervals between $F_P^\leftarrow(\alpha_i)$ and b_i which have no mass, and an atom is added at b_i, taking the initial mass of the interval.

How to explicitly enforce “smoothness” to the resulting perturbed quantile function?
Isotonic interpolating piece-wise continuous polynomials

Idea: Using piece-wise continuous polynomials of degree p to ensure continuity.

Partition $[0, 1]$ according into interval $[t_j, t_{j+1}], i = 0, \ldots, K$ with $t_0 = 0$, $t_{K+1} = 1$, and $t_i = \alpha_i$ (ordered increasingly), and solve for

$$S = \arg\min_{G \in \mathbb{R}[x]_{\leq p}} \int_{t_i}^{t_{i+1}} (F_P(x) - G(x))^2 \, dx$$

s.t.

$$G(t_i) = b_i, G(t_{i+1}) = b_{i+1}$$

$$G'(x) \geq 0, \quad \forall x \in [t_0, t_1]$$

(3)

Proposition

The polynomial solution of Eq. (3) admits as coefficients

$$s^* = \arg\min_{s \in \mathbb{R}^{p+1}} s^\top Ms - 2s^\top r$$

s.t.

$$s \in K$$

where M is the moment matrix of the Lebesgue measure on $[t_i, t_{i+1}]$, r is the moment vector of F_P, and K is a closed convex subset of \mathbb{R}^{p+1}. 8/17
It is a **Convex Constrained Quadratic Problem** which can be solved using numerical solvers (e.g., CVXR (Fu, Narasimhan, and Boyd 2020)).

Each marginal input $X_i \sim P_i$ can be perturbed using the optimal monotone perturbation map

$$\tilde{X}_i = T_i(X_i) = (F_{Q_i}^{-1} \circ F_{P_i})(X_i)$$

preserving the (empirical) copula between all the inputs.
SIPA framework for model-agnostic interpretation

Our methodology follows the SIPA framework (Scholbeck et al. 2020):

1. **Sampling**: Observed (ML) or simulated (UQ) values of P.
2. **Intervention**: Define optimal perturbations under quantile constraints and apply the perturbation map, resulting in perturbed inputs $\tilde{X} = T(X)$ with the same dependence structure.
3. **Prediction**: Evaluate the model G (numerical in UQ, learned in ML) on the perturbed inputs.
4. **Aggregation**: Estimate local or global statistics on the perturbed output $\tilde{Y} = G(\tilde{X})$.
Simplified hydrological model

Model of the water level of a river. Simplification of the one-dimensional Saint-Venant equation, with a uniform and constant flow rate (Iooss and Lemaître 2015; Fu, Couplet, and Bousquet 2017)

- Q: River maximum annual water flow rate.
- K_s: Strickler riverbed roughness coefficient.
- Z_v: Downstream river level.
- Z_m: Upstream river level.
- L: River length.
- B: River width.

Model:

$$Y = Z_v + \left(\frac{Q}{BK_s\sqrt{\frac{Z_m-Z_v}{L}}}\right)^{3/5}$$

Gaussian copula with covariance matrix:

$$R_P = \begin{pmatrix}
1 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0.3 & 0 & 0 & 0 \\
0 & 0 & 0.3 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0.3 & 0 \ \\
0 & 0 & 0 & 0 & 0.3 & 1 & 0
\end{pmatrix}$$
Perturbation strategy

Ponctual perturbations

Q:
- Shift of the application domain from $[500, 3000]$ to $[500, 3200]$.
- Preserve the median of the distribution.
- Increase the initial 0.15-quantile by 75.
- Decrease the initial 0.75-quantile by 125.

L:
- Shift the application domain from $[4990, 5010]$ to $[4988, 5012]$.
- Preserve the median of the distribution.

Z_m:
- Preserve the application domain and the median of the initial distribution.
- Increase the 0.8 and 0.9-quantiles by 0.1.
- Decrease the 0.25-quantile by 0.05.

Optimal perturbation problems are solved with polynomial smoothing (arbitrary degree equal to 12).
Shapley effects

Double Monte Carlo estimation with $N_v = 10^5$, $N_o = 3 \times 10^3$ and $N_i = 300$.
Conclusion & perspectives

Generic and interpretable marginal perturbation scheme.

Local and global robustness assessment of black-box numerical (SA) and predictive models (ML).

Perspectives:

- Optimal degree selection, and derivability of the resulting polynomial.
- Multivariate quantile perturbation.
- More general smoothing spaces (monotone Sobolev functions, RKHS).
Conclusion & perspectives

Generic and interpretable marginal perturbation scheme.

Local and global robustness assessment of black-box numerical (SA) and predictive models (ML).

Perspectives:

- Optimal degree selection, and derivability of the resulting polynomial.
- Multivariate quantile perturbation.
- More general smoothing spaces (monotone Sobolev functions, RKHS).

More details and ML application (Acoustic Fire Extinguisher) in our pre-print (HAL/arXiv) (I. et al. 2022):

Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models

Marouane Il Idrissia,b,c,e, Nicolas Bousqueta,b,d, Fabrice Gamboae, Bertrand Ioossa,b,c, Jean-Michel Loubèsc

Thank you for your attention!

Any questions?
River water level punctual perturbations

- **Perturbation of Q**
- **Perturbation of L**
- **Perturbation of Z_m**

Wasserstein Projection
Initial Quantile Function
Interpolation points
Initial Application Domain
Let $X \subseteq \mathbb{R}^d$, for d a positive integer, and $P \in \mathcal{P}(\mathcal{X})$. Let Q_i be the solution of the optimal projection problem with $C = C_V$, for every marginal distribution P_i of P, $i = 1, \ldots, d$, and where $V \subseteq \otimes_{j=1}^d F_j^{-1}$. Let the random vectors

$$X \sim P, \quad \tilde{X} := T(X)$$

where

$$T : \mathcal{X} \rightarrow \mathcal{X}$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \mapsto \begin{pmatrix} T_1(x_1) \\ \vdots \\ T_d(x_d) \end{pmatrix}$$

(4)

where

$$T_j = \left(F_{Q_j}^{-1} \circ F_{P_j} \right), \quad j = 1, \ldots, d.$$

1. If P is an empirical measure (i.e., X represents a dataset), then X and the perturbed dataset \tilde{X} have the same empirical copula. Moreover, the empirical measure of every perturbed marginal sample \tilde{X}_i converges towards Q_i, $i = 1, \ldots, d$.

2. If P is atomless, and assuming additionally that V is such that every $F_{Q_j}^{-1}$, $i = 1, \ldots, d$ is strictly increasing, then the random vectors X and \tilde{X} have the same copula. Moreover, each perturbed marginal $\tilde{X}_i \sim Q_i$.

Let P be a probability measure in $\mathcal{P}_2(\mathbb{R})$. Let C be a non-empty perturbation class characterized by a set of K quantile constraints. Assume, without loss of generality, for $i = 1, \ldots, K$, that $\alpha_1 < \cdots < \alpha_K$ along with $b_1 < \cdots < b_K$. Let $\beta_i = F_P(b_i)$ for $i = 1, \ldots, K$. Define the intervals $A_i = (c_i, d_i]$ for $i = 1, \ldots, K$, such that:

\[c_1 = \min(\beta_1, \alpha_1), \quad c_i = \min \left[\max(\alpha_{i-1}, \beta_i), \alpha_i \right], i = 2, \ldots, K, \]
\[d_K = \max(\beta_K, \alpha_K), \quad d_j = \max \left[\min(\beta_j, \alpha_{j+1}), \alpha_j \right], j = 1, \ldots, K - 1. \]

Let $A = \bigcup_{i=1}^{K} A_i$ and $\overline{A} = [0, 1] \setminus A$. Then the problem has a unique solution which can be written as, for any $y \in [0, 1]$:

\[F_{Q}^{-} (y) = \begin{cases} F_P^{-}(y) & \text{if } y \in \overline{A}, \\ b_i & \text{if } y \in A_i, \quad i = 1, \ldots, K. \end{cases} \]
Theorem (Non-negativity of polynomials on closed intervals)

Let \(t_0, t_1 \in \mathbb{R} \) such that \(t_0 < t_1 \), and let \(p \in \mathbb{N}^* \).

A univariate polynomial \(S \) of even degree \(d = 2p \) is non-negative on \([t_0, t_1]\) if and only if it can be written as,
\[
\forall x \in [t_0, t_1] \quad S(x) = Z(x) + (x - t_0)(t_1 - x)W(x)
\]
where \(Z \) is an SOS polynomial of degree at most equal to \(d \), and \(W \) is an SOS polynomial of degree at most equal to \(d - 2 \).

A univariate polynomial \(S \) of odd degree \(d = 2p + 1 \) is non-negative on \([t_0, t_1]\) if and only if it can be written as,
\[
\forall x \in [t_0, t_1] \quad S(x) = (x - t_0)Z(x) + (t_1 - x)W(x)
\]
where \(Z, W \) are SOS polynomials of degree at most equal to \(d \).
SDP representation of SOS polynomials

Let S be an univariate polynomial of even degree $d = 2p$, with coefficients $s = (s_0, \ldots, s_d)$, and denote x_p the usual monomial basis of polynomials of degree at most equal to p, i.e., $x_p = (1, x, x^2, \ldots, x^{p-1}, x^p)^\top$. S is an SOS polynomial if and only if there exists a $(p \times p)$ symmetric semi definite positive (SDP) matrix

$$
\Gamma = \begin{bmatrix}
\Gamma_{ij}
\end{bmatrix}_{i,j=1,\ldots,p}
$$

that satisfies, $\forall x \in \mathbb{R}$,

$$
S(x) = x_p^\top \Gamma x_p.
$$

Moreover, for $k = 0, \ldots, d$, let Π^p_k be the $(p \times p)$ matrix defined by, for $i, j = 1, \ldots, p$:

$$
\left[\Pi^p_k \right]_{i,j} = 1_{\{i+j=k+2\}}(i,j).
$$

If there exists a matrix Γ such that S is SOS, then one has that, for $i = 0, \ldots, d$

$$
s_i = \langle \Pi^p_i, \Gamma \rangle_F = \sum_{j+k=i+2} \Gamma_{j,k}
$$

where, $\langle ., . \rangle_F$ denotes the Frobenius norm on matrices.
Equivalent optimization formulation

Let \([t_0, t_1] \subset [0, 1]\), and let \(s = (s_0, \ldots, s_d)^\top \in \mathbb{R}^{d+1}\), \(M\) be the symmetric \((d+1 \times d+1)\) moment matrix of the Lebesgue measure on \([t_0, t_1]\), i.e. for \(i, j = 1, \ldots, d + 1\),

\[
M_{ij} = \int_{t_0}^{t_1} x^{i+j-2} dx = \frac{(t_1)^{i+j-1} - (t_0)^{i+j-1}}{i+j-1},
\]

and denote \(r \in \mathbb{R}^{d+1}\) the moment vector of \(A(x)\), i.e., for \(i = 0, \ldots, d\)

\[
r_i = \int_{t_0}^{t_1} x^i F^{-\to}_p(x) dx
\]

Then, the optimization problem can be equivalently solved by finding \(s\) as being the solution of the following convex constrained quadratic program,

\[
s^* = \arg\min_{s \in \mathbb{R}^{p+1}} s^\top Ms - 2s^\top r
\]
\[
\text{s.t. } s \in \mathcal{K}
\]

where \(\mathcal{K}\) is a closed convex subset of \(\mathbb{R}^{p+1}\).