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Introduction

Goal: Enhance the confidence in the practical usage of a black-box model, by assessing its
robustness to input perturbations.

Challenges:

1. Define generic, but understandable input perturbations.
2. Unify ML interpretability and sensitivity analysis (SA)

e ML: Features are modelled as empirical probability measures
e SA: Inputfs are modelled as probability measures admitting a positive density.

3. Local/Global robustness assesssnent of a model, or some of its key characteristics.

lllustrative example: Epistemic uncertainty on a riverbed’s roughness near an industrial site.
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Let P € P(RY) be an initial probability measure. We seek the solution of the projection
problem

Q =argmin  D(P,G)
GEP(RY)

st. GeC,and Cp = Co

where ¢ C P(RY) is a perturbation class, and D a discrepancy between probability
measures. Ideally, P and @ must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaitre et al. 2015) work focus on the
Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.
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where ¢ C P(RY) is a perturbation class, and D a discrepancy between probability
measures. Ideally, P and @ must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaitre et al. 2015) work focus on the
Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.

Drawbacks:
e Generalized moments may not exist.

e Different results depending on P due to
KL.
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Let P € P(RY) be an initial probability measure. We seek the solution of the projection
problem

Q =argmin D (P,G)
GEP(RY)
st. GeC,and Cp = Co

where ¢ C P(RY) is a perturbation class, and D a discrepancy between probability
measures. Ideally, P and @ must have the same copula.

ML interpretability (Bachoc et al. 2020) and SA (Lemaitre et al. 2015) work focus on the
Kullback-Leibler divergence (KL) as a discrepancy, and generalized moments perturbations.

Drawbacks: Solutions:
e Generalized moments may not exist. e Quantile perturbation class.
o Different results depending on P due to o 2-Wasserstein: does not depend on the
KL. nature of P.
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Why quantiles ?

Generalized quantile functions are the generalized inverses (de la Fortelle 2015) of the cdf
of random variables.

F5 (a) =sup {t € R| Fp(t) < a}

=inf {t e R | Fp(t) > a}.

Fe'(a)

e They characterize probability measures (Dufour 1995)

e Univariate quantiles always exist.

T3

F<(y)

z1

=sup {t e R| Fp(t) < a}
=inf {t e R | Fp(t) > a},

F2(y)

o~

Z1

ooy 1
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Quantile perturbation class

The quantile perturbation class Q) is defined using constfraints of the form
Fg (a) > b> Fg' ().
with b € R, and leading to the set
Oy ={QePR)|Fs €V, F§()>b>Fy(a),i=1,...,K}.

included in P(R), and where vV C F is a (smoothing) restriction on the space of quantile
functions.
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Quantile perturbation class

The quantile perturbation class Q) is defined using constfraints of the form
Fg (a) > b> Fg' ().
with b € R, and leading to the set
Oy ={QePR)|Fs €V, F§()>b>Fy(a),i=1,...,K}.

included in P(R), and where vV C F is a (smoothing) restriction on the space of quantile
functions.

Collections of perturbations can be driven by an intensity parameter 6 € [—1, 1]

e Quantile shift: shifting the a-quantile of P between two values.

e Operating domain dilatation: widewing or narrowing the bounds of the support of P
w.r.t. ascaling parameter n € R.

Additional ponctual modelling constraints can also be added (e.g., preservation of
empirical quantiles, expert knowledge).
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The Wasserstein distance

For two probability measure P, Q € P(R?) having the same copula (Alfonsi and Jourdain
2014):

WE(P.Q) =" WE(P, Q). (1)

where each P;, Q; € P(R) is a marginal distribution. Each element of the sum reduces to
(Santambrogio 2015):

WP (Pi, Qi) _/ ‘Fp (x) — |de

whatever the “nature” of P (empirical, contfinuous...).
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2014):

WE(P.Q) =" WE(P, Q). (1)

where each P;, Q; € P(R) is a marginal distribution. Each element of the sum reduces to
(Santambrogio 2015):

WP(P,,Q, _/ ‘Fp (x) — |de
whatever the “nature” of P (empirical, contfinuous...).

In particular, the 2-Wasserstein distance metricizes weak convergence on the set of
probability measure with finite 2nd order moments P»(R) (Villani 2003).
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The Wasserstein distance

For two probability measure P, Q € P(R?) having the same copula (Alfonsi and Jourdain
2014):

WE(P.Q) =" WE(P, Q). (1)

where each P;, Q; € P(R) is a marginal distribution. Each element of the sum reduces to
(Santambrogio 2015):

W2 (P, Q) _/ IF2* (x) — Fa (x)|? dx
whatever the “nature” of P (empirical, contfinuous...).
In particular, the 2-Wasserstein distance metricizes weak convergence on the set of
probability measure with finite 2nd order moments P»(R) (Villani 2003).
¢ Solving d univariate perturbation problems.
 Optimal transportation map preserves the copula: 7; = (F5 o Fp,)
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Wasserstein and [? projections

Hence, one focuses on the marginal perturbation problem:

Q =argmin W, (P, G)
GeP(R) (2)

st. GeQy

The solution Q of the problem in Eq. (2) is uniquely characterized by its quantile function being the
solution

A — e / (L(x) — F" (x))>
Lel2(j0,1])
s.t. L(Oc,‘)Sb,‘SL(a,-), i=1,...,K,

Ley
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Solving the perturbation problem

If v = F<, there exists a unique analytical solution Q to the problem:

Q is the same as P, except on the intervals between F;(«;) and b; which have no mass,
and an atom is added at b;, taking the initial mass of the interval.

—— Initial quantile function
S 4 0 Quantile constraint
Projection solution

0.0 0.2 0.4 0.6 0.8 1.0
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Solving the perturbation problem

If v = F<, there exists a unique analytical solution Q to the problem:

Q is the same as P, except on the intervals between F;(«;) and b; which have no mass,
and an atom is added at b;, taking the initial mass of the interval.

—— Initial quantile function
S 4 0 Quantile constraint
Projection solution
2 - -

o]

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

How to explicitly enforce “smoothness” to the resulting perturbed quantile
function ?
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Isotonic interpolating piece-wise continuous polynomials

Idea: Using piece-wise continuous polynomials of degree p to ensure continuity.

Partition [0, 1] according into interval (¢, tjt1],i = 0,..., K with to = 0, tk41 = 1, and t; = «;
(ordered increasingly), and solve for

tj
S — argmin / Fo (x) — G(x))Pdx
GER[x]<p ti

s.t. G(t;) = b;, G(I’,url) = b,‘+1
G/(X) >0, Vxe [to, tl]

(3)

Proposition
The polynomial solution of Eq. (3) admits as coefficients
s =argmin s Ms—2s'r
sERPHL

st. sek

where M is the moment matrix of the Lebesgue measure on [t;, ti11], r is the moment vector of Fp’,

and K is a closed convex subset of RP*1, 8/17



Isotonic interpolation piece-wise continuous polynomials

It is a Convex Constrained Quadratic Problem which can be solved using numerical solvers
(e.g., CVXR (Fu, Narasimhan, and Boyd 2020)).

—— Initial quantile function
& - o Quantile constraint
Projection solution

0.0 0.2 0.4 0.6 0.8 1.0

Each marginal input X; ~ P; can be perturbed using the optimal monotone perturbation
map
X; = Ti(X) = (F§, © Fp)(X)

preserving the (empirical) copula between all the inputs. o/17



SIPA framework for model-agnostic interpretation

Our methodology follows the SIPA framework (Scholbeck et al. 2020):

1. Sampling: Observed (ML) or simulated (UQ) values of P.

2. Intervention: Define optimal perturbations under quantile constraints and apply the
perturbation map, resulting in perturbed inputs X = T(X) with the same dependence
structure.

3. Prediction: Evaluate the model G (numerical in UQ, learned in ML) on the perturbed
inputs.

4. Aggregation: Estimate local or global statistics on the perturbed output ¥ = G(X).
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Simplified hydrological model

Model of the water level of a river. Simplification of the one-dimensional Saint-Venant
equation, with a uniform and constant flow rate (looss and Lemaitre 2015; Fu, Couplet, and
Bousquet 2017)

Q: River maximum annual water flow rate.

Ks: Strickler riverbed roughness coefficient.

Z,. Downstream river level.

Zm: Upstream river level.

L: River length.

Application Domain

e B: River width.

Input Distribution

Q G(1013,558) frunc.
Ks N(35,5) trunc.
Z, T (49,50,51)
Zm T (54,55, 56)

L T (4990, 5000, 5010)
B T (295,300, 305)

(500, 3000]
20, 50]
[49,51]
(54, 56]

[4990, 5010]

[295, 305]

Model:

3/5

Q

Gaussian copula with covariance maitrix

Y:ZV+

1 05 0 0 0 0
05 1 0 0 0
0 0 1 03 0 0
Rp =
0 0 03 1 0 0
0 0 0 1 03
0 0 0 0 03 1
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urbation strategy

. Application domain dilatation on K (n = 2)
Ponctual perturbations

Narrowed application domain of K, (8=-1) Widened application domain of K. (8=1)
Q:
e Shift of the application domain from [500, 3000] to ]
[500, 3200]. sl
e Preserve the median of the distribution. o P
3 g1 K]
e Increase the initial 0.15-quantile by 75. H 1
e Decrease the initial 0.75-quantile by 125. A N
L &1
e Shift the application domain from [4990, 5010] fo -]
[4988, 5012].
e Preserve the median of the distribution. o o o o o o o o o o o o
Quantile level Quantile level
Zm : — — Wasserstein Projection Initial Application Domain
. . . . — Initial Quantile Function Dilated Application Domain
e Preserve the application domain and the median © Interpolation points
of the initial distribution. e 0 = —1: Riverbed between a slow winding natural river, up to a plain
e Increase the 0.8 and 0.9-quantiles by 0.1. river without shrub vegetation (Ks € [27.5, 42.5]).
e Decrease the 0.25-quantile by 0.05. e 0 = 1: Riverbed roughness from proliferating algae up to smooth

concrete (Ks € [5, 65]).

Optimal perturbation problems are solved with polynomial smoothing (arbitrary degree equal fo 12). 12/17
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Initial 95% coverage
Initial Min/Max

Initial Mean Value -+
+ Initial std. =%

-4

+ std.
Min/Max

Mean Value
95% Coverage




Shapley effects

05

0.4

0.4

0.2

Initial Shapley Effects
0.2 0.3
1 1
Perturbed Shapley Effects

0.1
0.1

0.0

o é) /\% Q T T T T T

-1.0 -05 0.0 0.5 1.0

. - e
/\§ ~
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Double Monte Carlo estimation with N, = 10°, N, = 3 x 10% and N; = 300.



Conclusion & perspectives

Generic and interpretable marginal perturbation scheme.
Local and global robustness assessment of black-box numerical (SA) and predictive models
(ML).

Perspectives:

o Optimal degree selection, and derivability of the resulting polynomial.
e Multivariate quantile perturbation.
e More general smoothing spaces (monotone Sobolev functions, RKHS).
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Conclusion & perspectives

Generic and interpretable marginal perturbation scheme.
Local and global robustness assessment of black-box numerical (SA) and predictive models
(ML).

Perspectives:

o Optimal degree selection, and derivability of the resulting polynomial.
e Multivariate quantile perturbation.
e More general smoothing spaces (monotone Sobolev functions, RKHS).

More details and ML application (Acoustic Fire Extinguisher) in our pre-print
(HAL/arXiv) (1. et al. 2022):

Quantile-constrained Wasserstein projections for robust interpretability
of numerical and machine learning models

Marouane 1l Idrissi*>*¢, Nicolas Bousquet®*9, Fabrice Gamboa®, Bertrand [ooss®<, Jean-Michel

Loubes® 15 / 17
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THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?



River water level ponctual perturbations
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Copula preservation

Let X C RY, for d a positive infeger, and P € P(X). Let Q; be the solution of the optimal projection problem with C = Cy,, for every
marginal distribution P; of P,i =1,...,d, and where V C ®J‘.’:1]-‘j“. Let the random vectors

where
T X — X
x1 T1(x1)
— 4)
Xd Ta(xd)
where
T/.:(ngofrpj), j=1,...,d.

1. If Pis an empirical measure (i.e., X represents a dataset), then X and the perturbed dataset X
have the same empirical copula. Moreover, the empirical measure of every perturbed marginal
sample )~<,- converges fowards Q;, i =1,...,d.

2. If Pis atomless, and assuming additionally that V is such that every Ff, i=1,...,disstrictly
increasing, then the random vectors X and X have the same copula. Moreover, each perturbed
marginal X; ~ Q;.



Projecting without smoothing

Let P be a probability measure in P»2(R). Let C be a non-empty perturbation class characterized by a

set of K quantile constraints. Assume, without loss of generality, fori = 1,... K, that a; < --- < ag
along with by < -+ < bk. Let B; = Fp(b;) fori =1,..., K. Define the intervals A; = (¢, d;j] fori =1,..., K,
such that:

c1 = min(f1,a1), ¢ = min [max(a,-,l,ﬁ,-),a,-] J=2,...,K,
dK = max(ﬁK,aK), C/j = max[min(ﬁj,aﬁl),aj} ,j = ].7 vy K —1.

Let A= U,K:1 A; and A = [0,1] \ A. Then the problem has a unique solution which can be written as, for
any y € [0,1]:

Fa'(y) ify €A,

F&(y) = 5
Q) {b; fycA, i=1,...K. ®)



Non-negativity of polynomials on closed intervals

Theorem (Non-negativity of polynomials on closed intervals)
Let ty, t1 € R such that ty < t1, and let p € N*.

A univariate polynomial S of even degree d = 2p is non-negative on [ty, t1] if and only if it can be written as,
Vx € [to, t1]
S(x) = Z(x) + (x — to)(t1 — x)W(x)

where Z is an SOS polynomial of degree at most equal to d, and W is an SOS polynomial of degree at most
equal to d — 2.

A univariate polynomial S of odd degree d = 2p + 1 is non-negative on [to, t1] if and only if it can be written
as, Vx € [to, t1]
S(x) = (x — to)Z(x) + (t1 — x)W(x)

where Z, W are SOS polynomials of degree at most equal to d.



SDP representation of SOS polynomials

Let S be an univariate polynomial of even degree d = 2p, with coefficients s = (s, . . ., s4), and denote
xp The usual monomial basis of polynomials of degree at most equal fo p, i.e.,
xp = (1,%,x2,...,xP~1 xP)T. Sis an SOS polynomial if and only if there exists a (p x p) symmetric semi

definite positive (SDP) matrix

that satisfies, Vx € R,
S(x) = x, Mxp.

Moreover, for k = 0,...,d, let ]Ii be the (p x p) matrix defined by, fori,j =1,...,p:

[Hi] L= L jmnr2y (0,4)-

p

If there exists a matrix I' such that S is SOS, then one has that, fori =0,...,d

=P Nr= > T«

Jjtk=i+2

where, (., .)r denotes the Frobenius norm on matrices.



Equivalent optimization formulation

Let [to, t1] C [0,1], and let s = (so,...,s4) T € RYTL, M be the symmetric ((d + 1 x d + 1)) moment matrix
of the Lebesgue measure on [t, t1].i.e. fori,j=1,...,d + 1,

)

e — /n 2y (tl)i+j—1 _ (to)iﬂ'ﬂ
y t i+j—1

and denote r € RY*! the moment vector of A(x),i.e.,fori=0,...,d
o
r= / x'F5~ (x)dx
to

Then, the optimization problem can be equivalently solved by finding s as being the solution of the
following convex constrained quadratic program,

s* =argmins' Ms —2s'r
seRpt1

st.sek

where K is a closed convex subset of RPH1,
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