

Using Generative Adversarial Networks to constrain inverse problems resolution.

Matthéo SALDANHA^{1,2}, Bruno GALERNE², Isabelle ABRAHAM¹, Cécile HABERSTICH¹

ETICS | October 2022

CEA,DAM,DIF, F-91297, Arpajon, France
 Orléans University, Institut de Poisson, Orléans, France

Summary

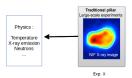
1 Introduction

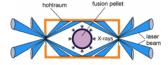
Inverse Problem resolution limits

3 GAN

nverse Problem resolution limits

Inertial Confinement Fusion





X-ray emission calibration

Inertial confinement fusion

Objective: Find physical characteristics (e.g a mesh) from an image measurement of the pellet.

This is an inverse problem.

Summary

Introduction

2 Inverse Problem resolution limits

3 GAN

Inverse problem formalization

Given Ω the set of $N_{pix} \times N_{pix}$ sized images showing a specifical physic characteristic.

$$\mathcal{P}: \begin{array}{l} \Omega \subset \mathbb{R}^{N_{pix} \times N_{pix}} \to \mathbb{R}^{N_{pix_2} \times N_{pix_2}} \\ x \mapsto \mathcal{P}(x) = y \end{array}$$

where:

- x is an image or a vector (e.g. the physical mesh),
- y is an image (the measurement),
- \mathcal{P} is the simulation code's operator.

Objective: Solving the following inverse problem:

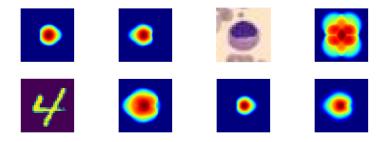
Knowing y determine \hat{x} such that: $\hat{x} = \underset{x \in \mathbb{R}^{N_{pix} \times N_{pix}}}{\operatorname{argmin}} \parallel \mathcal{P}(x) - y \parallel^{2}.$

Issues

The inverse problem is an ill-posed problem.

First objective: Describe $\boldsymbol{\Omega}$

```
Issues: Very high dimension (dim \simeq 10^3)
```



Tools

Deep Learning with Generative Adversarial Networks (GAN).

Introduction 00

Operator \mathcal{P} : an example with the digits

Mathematically $\ensuremath{\mathcal{P}}$ is the following operator:

$$\mathcal{P}: \begin{array}{c} \mathbb{R}^{N_{pix} \times N_{pix}} \to \mathbb{R}^{2N_{pix}} \\ x \longmapsto \begin{pmatrix} \sum_{i} \\ j \\ \sum_{i} \\ j \end{pmatrix} = y \end{array}$$

 $x_{ref} \in \Omega \subset \mathbb{R}^{N_{pix} \times N_{pix}}$ is the targeted image.

Xref

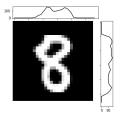
We denote :
$$y_{ref} = \mathcal{P}(x_{ref})$$
.

Introduction 00 Inverse Problem resolution limits

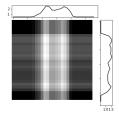
GAN 000000000

cea

Operator \mathcal{P} : an example with the digits - Results



Xref



This is an ill-posed poblem. The generalized inverse is not the solution expected visually.

Summary

Introduction

Inverse Problem resolution limits

3 GAN

Generative Adversarial Network

The GAN is a Neural network whose function is to generate fake images looking like examples.

Example of GAN created faces

GAN

This image generating unsupervised deep learning tool has been introduced by Ian Goodfellow in 2014.

```
Introduction
00
```

nverse Problem resolution limits

Introduction of the distributions

Initial set of the images from $\mathbb{R}^{N_{pix} \times N_{pix}}$



Final set of the images from $\mathbb{R}^{N_{pix} \times N_{pix}}$ with an optimal generator

- The discriminator **D** aims to distinguish the two distributions.
- The generator **G** aims to get the two distributions closer.

Advantage

The GAN generates images and therefore gives access to a generic distribution describing a specific image nature that is now characterizable.

Computational settings

Characteristics

- The GAN is a Convolutionnal network.
- It is a Wasserstein GAN (based on a Wasserstein Distance metric).
- The Optimizer is ADAM (a stochastic gradient descent variant).
- The latent space used has a dimension d = 100.

Introduction 00 nverse Problem resolution limits

GAN 0000000000

Advantages

Elements of a line in $\mathbb{R}^{N_{pix}\,\times\,N_{pix}}$ between two elements of Ω

Elements of that line between these same elements made in $\ensuremath{\mathcal{Z}}$

Advantage

The use of the GAN and its latent space on which it is trained brings the notion of manifold.

GAN for the inverse problem

Now, let's focus on the generator $\mathbf{G}: \mathcal{Z} \subset \mathbb{R}^d \mapsto \Omega$. From here, \mathbf{G} is already trained.

Objective : Resolution of the following inverse problem:

Knowing y determine \hat{x} such that: $\hat{x} = \underset{\substack{x \in \mathbb{R}^{N_{pix} \times N_{pix}} \\ x = \mathbf{G}(z), z \in \mathcal{Z}}}{\operatorname{argmin}} \| \mathcal{P}(x) - y \|^2.$

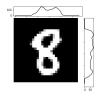
Conclusion

The introduction of G in the problem resolution allows to restrain the domain of search of x.

RS

Results

• This time the minimization is computed on $z \in \mathcal{Z}$ that has been clipped.



Initial $\mathbf{G}(z)$

 $\mathbf{G}(z)$ after 2000 steps

Final $\mathbf{G}(z)$

Perspectives

Perspectives

- Focus on higher dimension data.
- Keep the physical characteristic of the images generated.
 - Bring in a physic validation for generated images.
 - Constrain the distribution of z instead of clipping the latent vector.

Thank you for your attention. Any question ?