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CONTEXT : ROBUST/RELIABLE CONCEPTION

Black-box simulator𝑥

𝑢

𝑓 𝑥, 𝑢
𝑔 𝑥, 𝑢

Uncertain variables

Quantities
of interest

Applications for optimized design
➢Reliability w.r.t environmental conditions (e.g. wind, wave)

➢Robustness to dispersions of design variables (manufacturing), to component characteristics
(e.g. magnetic properties of magnets), … 

« Controlable » variables

= design variables
minimize/maximize

constraints



3 ©  |  2 0 2 1 I F P E N

APPLICATIONS OF EXCURSION SET ESTIMATION

Feasible designs for complex optimal design problems

Pre-calibration (PhDs C. Duhamel, A. Hirvoas) for wind turbine
find a set of structure parameters 𝑥, such that, 
for environmental conditions 𝐔

Γ⋆: = 𝑥 𝑠. 𝑡. ℙ𝐔 𝐷𝑠𝑖𝑚 𝐔, 𝑥 − 𝐷𝑚𝑒𝑎𝑠 𝐔 < 𝑠𝑒𝑢𝑖𝑙 > 1 − 𝛼
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Robust tuning of control systems 
for offshore wind turbines: avoid an unstable float-push system
while staying above a minimum production level (ANR Samourai)

for the de-pollution system of a vehicle (PhD. R. El Amri)
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Γ⋆: = 𝑥 𝑠. 𝑡. 𝔼𝐔 (𝑔1 𝑥, 𝑈) ≤ 𝑠

Feasible input set for complex simulators

Hidden constraints leading to simulation crashes
Γ∗ = {𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑁𝐴𝑁} = {𝑥 ∈ Ω: 𝟙𝑓(𝑥)≠𝑁𝐴𝑁 = 1}

(ANR Samourai)
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OUTLINE

Robust tuning of control systems 
for the de-pollution system of a vehicle (PhD. R. El Amri)

Feasible input set for complex simulators
hidden constraints leading to simulation crashes
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ROBUST TUNING OF CONTROL SYSTEMS 

El Amri et al, Data-driven stochastic inversion via functional quantization, Statistics and Computing, 30, pages 525–541(2020)
El Amri et al, Set inversion under functional uncertainties with Gaussian Process Regression defined in the joint space of control and uncertain, hal-02986558

Control parameters of the depollution system 
(SCR: Selective Catalytic Reduction) 

Ammoniac spike must be smaller
than 30 ppm
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ROBUST INVERSION WITH FUNCTIONAL INPUTS
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TWO STRATEGIES

• Build a meta-model of 𝑓(𝑥)
• Choose 𝑥𝑛+1 ∈ 𝐷,
• Estimate 𝑓 𝐱𝑛+1 = 𝔼[𝑔(𝐱𝑛+1, 𝐕)]

with 𝑙 evaluations of 𝑔 𝐱𝑛+1, . selected 
by quantization in (v1, v2,…, vκ)

Strategy I

• Build a meta-model of g(𝑥, 𝑽)
• Choose 𝑥𝑛+1, v

n+1 ,
• Evaluate 𝔼[ ො𝑔(𝐱𝑛+1, 𝐕)] at this new point

Strategy II

El Amri et al, Data-driven stochastic inversion via functional quantization, 
Statistics and Computing, 30, pages 525–541(2020)

El Amri et al, Set inversion under functional uncertainties with Gaussian Process 
Regression defined in the joint space of control and uncertain variables, hal-02986558
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DIMENSION REDUCTION OF FUNCTIONAL VARIABLES

𝑚 = 2

Karhunen-Loève (KL) expansion
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GAUSSIAN PROCESS METAMODELING

Meta-models based on 
Gaussian Process that
provides uncertainty
estimation
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GP INDUCES RANDOM EXCURSION SET 

Γ:= {𝑥 ∈ 𝐷: 𝑍𝑥|𝑍𝒳𝑛 ≤ 𝑠}
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GP INDUCES RANDOM EXCURSION SET 

How to summarize the distribution on sets?

Estimate Γ∗ with Expectation of random closed sets

(Molchanov, 2006)
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How to summarize the distribution on sets?

Estimate Γ∗ with Expectation of random closed sets
(Molchanov, 2006)

The coverage probability of Γ is given by

𝑝𝑛 𝑥 = ℙ 𝑍𝑛 𝑥 ≤ 𝑠 𝒳𝑛, 𝒴𝑛

= 𝜙
𝑐 − 𝑚𝑛(𝑥)

𝑘𝑛(𝑥, 𝑥)
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GP INDUCES RANDOM EXCURSION SET 

How to summarize the distribution on sets?
Estimate Γ∗ with Expectation of random closed sets

(Molchanov, 2006)

The coverage probability of Γ is given by

𝑝𝑛 𝑥 = ℙ 𝑍𝑛 𝑥 ≤ 𝑠 𝒳𝑛, 𝒴𝑛

= 𝜙
𝑐 −𝑚𝑛(𝑥)

𝑘𝑛(𝑥, 𝑥)

It creates a family of sets 𝑸𝒏,𝜶 = 𝒙 ∈ 𝕏: 𝒑𝒏 𝒙 ≥ 𝜶

Expectation : 𝑸𝒏,𝜶∗

𝛼∗ chosen such that 𝔼 𝜇 Γ = 𝜇( 𝑄𝑛,𝛼∗)

Vorob’ev deviation : 𝑽𝒂𝒓𝒏 𝜞 = 𝔼 𝝁 𝑸𝐧,𝜶∗𝜟𝜞
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STEPWISE UNCERTAINTY REDUCTION  BASED ON VOROB’EV THEORY

Choose next point 𝑥𝑛+1 to reduce expected uncertainty 𝐻𝑛+1 on the future model:

Choose next curve

𝒙𝑛+1= 𝑎𝑟𝑔min
𝒙∈𝐷

𝔼𝑛,𝑌𝑛+1 𝒙 [𝐻𝑛+1]

(Strategy II)

V
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APPLICATION ON AN ANALYTICAL EXAMPLE WITH V A BROWNIAN MOTION
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COMPARISON STRATEGY I (QUANTIZATION) AND STRATEGY II (MM IN JOINT SPACE)

APPLICATION ON AN ANALYTICAL EXAMPLE WITH V A BROWNIAN MOTION
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APPLICATION ON AN ANALYTICAL EXAMPLE WITH V A BROWNIAN MOTION

# simulations

KL truncation
Argument 𝑚

STRATEGY II (MM IN JOINT SPACE)
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NUMERICAL RESULTS

• Small dimension
Algo II > Algo I

• Larger dimension
Algo I > Algo II
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CONCLUSIONS FOR ROBUST INVERSION PART

Two strategies for robust inversion strategy based on GP regression
MM in control space with expectation estimated by quantization (El Amri et al, 2020)

MM in joint space of control and uncertain variables (El Amri et al, 2021)

Application to a depollution control system

Perspectives : phD thesis of Clément Duhamel (INRIA AIRSEA team, IFPEN)

Extend strategies to correlated responses (multiple objectives) 

Deal with other measures of robustness : quantiles …

Other applications : offshore wind turbines
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OUTLINE

Robust tuning of control systems
for the de-pollution system of a vehicle (PhD. R. El Amri)

Feasible input set for complex simulators
hidden constraints leading to simulation crashes
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SECOND PART: LEARNING HIDDEN CONSTRAINTS

Context

crash of expensive simulator 

➔ Learn hidden constraints with limited number of evaluations
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PROBLEM STATEMENT

𝑓: a simulator with inputs 𝑥 ∈ Ω ⊂ ℝ𝑚 with simulation failures on Ω

Our objective: determine the feasible set
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GAUSSIAN PROCESS BASED CLASSIFICATION

Learning hidden constraint is a binary classification problem

We have binary observations 

with

Objective: predict the probability of belonging to the failure/non-failure class 

The formulation of the classification model is based on a Gaussian Process (GP) surrogate
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GAUSSIAN PROCESS CLASSIFIER (GPC) FORMULATION

A GPC is based on a latent GP      conditioned on observations

(as                                            is not available)

conditioned mean and kernel of 
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GAUSSIAN PROCESS CLASSIFIER (GPC) FORMULATION
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GAUSSIAN PROCESS CLASSIFIER (GPC) FORMULATION
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EXAMPLE OF A GPC FOR HIDDEN CONSTRAINT



34 ©  |  2 0 2 1 I F P E N

EXAMPLE OF A GPC FOR HIDDEN CONSTRAINT

Characterization of the feasible set by quantiles
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STEPWISE UNCERTAINTY REDUCTION STRATEGY

To reduce the computational time, we can get rid of the integration w.r.t. the realizations
of the latent GP, using the conditional Bernouilli process 

→ ARCHISSUR criterion: Active Recovery of Constrained and Hidden Subset by SUR
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ARCHISSUR ON A 2D EXAMPLE (Branin function)
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COMPARISON OF DIFFERENT ENRICHMENT CRITERIA

Compared strategies

ARCHISSUR criterion: Active Recovery of Constrained and Hidden Subset by SUR

Mixed enrichment criterion: add the point corresponding to the maximum of the GP 
variance (exploration) and the one where              value is the closest to     (exploitation) 
simultaneously

SMOCU enrichment measure: Soft-MOCU (Mean Objective Cost of Uncertainty) method 
[Zhao et al., 2021]

Comparison criterion
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RESULTS ON BRANIN FUNCTION (2D)
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RESULTS FOR DAMAGE PREDICTION OF A WIND TURBINE

Wind turbine subject to wind loads described by 3 parameters:
ഥ𝑼 mean of wind speed (10mn), 𝑻𝑰 turbulence intensity, 
𝑵𝒂𝒄𝒀𝒂𝒘 misalignment angle

+
FAST simulator 

+ Python scripts

→

Predictions of damage at 
the bottom of the tower

TurbSim to simulate
multiple realizations

of wind
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RESULTS FOR DAMAGE PREDICTION OF A WIND TURBINE
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RESULTS ON A 10D FUNCTION 
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CONCLUSIONS

Archissur has a good potential to learn non-convex feasible sets regarding crash constraints

Optimization of the computation time for the criterion 

But Archissur is not suited for

Perspectives

Coupling with optimization: Bayesian optimization and Direct Search methods

→ ANR Samourai (with Polytechnique Montréal)  

More than 2 classes: multiple robustness or convergence levels 



48 ©  |  2 0 2 1 I F P E N

CONCLUSIONS

Archissur has a good potential to learn non-convex feasible sets regarding crash constraints

Optimization of the computation time for the criterion 

But Archissur is not suited for

Perspectives

Coupling with optimization: Bayesian optimization and Direct Search methods

→ ANR Samourai (with Polytechnique Montréal)  

More than 2 classes: multiple robustness or convergence levels 



49 ©  |  2 0 2 1 I F P E N

REFERENCES



50 ©  |  2 0 2 1 I F P E N

www.ifpenergiesnouvelles.com

@IFPENinnovation

Find us on:


