Kernel over sets of vectors.

Phd Student: Babacar SOW

Contract duration: From 01/11/2021 to 31/10/2024

Project: ANR SAMOURAI

University: Ecole Des Mines de Saint-Etienne

Supervisors: Merlin KELLER (EDF), Rodolphe LE RICHE (CNRS/LIMOS), Julien PELAMATTI (EDF), Sanaa ZANNANE (EDF)

ETICS :October 3 to 7, 2022

- 1. Context and Problem
- 2. Bayesian Approach and Kernels between clouds of points
- 3. Perspectives
- 4. Bibliography

Context and problem

Functions defined over sets of vectors

- Let ${\mathcal F}$ be the family of considered functions.
- Suppose $f \in \mathcal{F}$ and \mathcal{D}_f its domain of definition.

$$u \in \mathcal{D}_f \Rightarrow \exists n \in \mathbb{N}, d \in \mathbb{N}, u = \{x_1, ..., x_n\}, \forall i, x_i \in \mathbb{R}^d$$

- n belongs to a finite discrete set.
- For any permutation π of the set {1,..., n} to a new one {π(1), ..., π(n)}, we denote by u_π the following set {x_{π(1)}, ..., x_{π(n)}}.
- Note that $\forall \pi, f(u_{\pi}) = f(u)$: f is invariant under permutation.
- The variables *u* will be called **clouds of points**.

Learning functions defined over sets of objects with kernels

- Kernels on bags of vectors, applied to SVM Classification on images in [7].
- Same technique to define kernel on graphs by averaging over kernels between paths in [13] to measure similarity between shapes.
- Classification on text data with a set representation view in [14].
- A Kernel between sets of points is used in [5] to optimize the layout of a wind farm.

Focus of this presentation

- In this presentation, we discuss some general methods to construct such kernels.
- Confronting them numerically on a a test function mimicking the production of a windfarm.

Bayesian Approach

A Gaussian process prior

- Gaussian process is defined by a mean function m and a kernel k over the spaces of inputs \mathcal{X} to approximate the functions.
- Observing D = {(x₁, y₁)...(x_n, y_n)} where x_i ∈ X and y ∈ ℝ as training data, the predictive mean and covariance for a new point x are given by:

$$\mu(x; D) = m(x) + K(X, x)^T K(X, X)^{-1} (y - m(X))$$

$$\Sigma(x, x; D) = K(x, x) - K(X, x)^T K(X, X)^{-1} K(X, x)$$

Necessary Conditions on k

k must be symmetric and positive definite, i.e, for any M distinct clouds of points, for any vector c ∈ ℝ^M, the following inequality must hold: ∑_{i=1}^M ∑_{i=1}^M c_ic_jk(X_i, X_j) ≥ 0

Bayesian approach: Kernel trick and Mapping

Comparing two clouds

Feature Mapping, Aronszajn (1950)

Theoreme, Aronszajn [1] k is a positive definite kernel if and only if there exists a Hilbert space \mathcal{H} , and a function $\phi : \mathcal{X} \longmapsto \mathcal{H}$ such that $\forall x, y, k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$.

Explicit and Implicit Mappings

- Explicit Mapping: in some cases ϕ and the scalar product, $\langle ., . \rangle_{\mathcal{H}}$ are known by definition or by construction
- \bullet Implicit Mapping : in some cases, we just use the compact formula of k
 - Substitutions Kernels as in Haasdonk and Bahlmann [8].

Substitution with Hilbertian Distance

Substitution with Exponential

- Firstly, we consider covariance kernels of the form: $k(X, Y) = \sigma^2 exp(-\frac{\Psi(X,Y)}{2\theta^2})$.
- Semi-definite positiveness is equivalent to Ψ be Hermitian (symmetric in the real case) and conditionally negative semi-definite [2].
- In other words, for any M distinct points and c ∈ R^M with ∑_{i=1}^M c_i = 0, the following inequality must hold: ∑_{i=1}^M ∑_{j=1}^M c_ic_jΨ(X_i, X_j) ≤ 0

Metric Cases

- We consider cases where $\Psi(X,Y) = d(ilde{X}, ilde{Y})^2$
- d is the distance between \tilde{X} and \tilde{Y} the respective images of X and Y into a known metric Space.
- The above conditions are equivalent to ensuring that the metric be **Hilbertian**, as stated in Haasdonk and Bahlmann [8].

With probabilities

- Case 1 : Suppose we have two clouds $X = (x_1, ..., x_n)$, $Y = (y_1, ..., y_m)$ and $P_X = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$, $P_Y = \frac{1}{m} \sum_{j=1}^m \delta_{y_j}$, the respective associated empirical uniform distributions.
- Case 2 : We associate to each cloud of point $X = (x_1, ..., x_n)$, $Y = (y_1, ..., y_m)$, its empirical Gaussian: $\mathcal{N}_{\mathcal{X}}(m_X, \Sigma_X)$ and $\mathcal{N}_{\mathcal{Y}}(m_Y, \Sigma_Y)$. item $\mathcal{N}_{\mathcal{X}}$ is defined by $m_X = \frac{1}{n} \sum_{i=1}^n x_i$ and $\Sigma_X = \frac{1}{n} \sum_{i=1}^n (x_i m_X)(x_i m_X)^T$

With vectors : vectorization

• \tilde{X} and \tilde{Y} can be two vectors of features characteristics of the clouds.

Slice Wasserstein Distance and Gaussian approximation

Wasserstein Distances

For two measures μ and ν defined over a space \mathcal{X} , the Wasserstein distance of positive cost function ρ and order p is defined as follows : $W_{\rho}^{p} = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{X}} \rho(x, y)^{p} d\pi(x, y)$

Substitution with Hilbertian distance : Sliced Wasserstein Distance (see Annex)

- Let $S = \{\theta \in \mathbb{R}^2, ||\theta|| = 1\}$. Consider the projected empirical measure on the line directed by $\theta \in S$: $\theta^* P_X = \frac{1}{n} \sum_{i=1}^n \delta_{\langle x_i, \theta \rangle}$ and $\theta^* P_Y = \frac{1}{m} \sum_{i=1}^m \delta_{\langle y_i, \theta \rangle}$
- $SW_2^2(P_X, P_Y) = \int_S W_2^2(\theta^* P_X, \theta^* P_Y) d\theta$. Implementation using POT [6]
- The covariance kernel $k(X, Y) = \sigma^2 exp(-\frac{SW_2^2(P_X, P_Y)}{2\theta^2})$ is symmetric and semi-definite positive as in Carriere, Cuturi, and Oudot [4]. It will be denoted **Sliced Wasserstein subs**

Approximate For Gaussian Modeling (see Annex), Gaussian Wasserstein subs $W_2^2 \approx ||m_X - m_Y||^2 + ||\Sigma_X^{1/2} - \Sigma_Y^{1/2}||_{Frobenius}^2$ as in Bui et al. [3] (= if $\Sigma_X^{1/2} \Sigma_Y^{1/2} = \Sigma_X^{1/2} \Sigma_Y^{1/2})$

Substitution with Hilbertian distance: MMD

- There exists a Reproducing Kernel Hilbert Space, \mathcal{H} with a characteristic kernel such as $k_{\mathcal{H}}(x, .) = exp(-\frac{||x-.||^2}{2\theta^2}).$
- The characteristic nature guarantees the injectivity of the embedding map Muandet et al.
 [11]: P_X → μ_X(.) = ∫ P_X(x)k_H(x,.)dx.
- $MMD^2(P_X, P_Y) = ||\mu_X \mu_Y||^2_{\mathcal{H}}$
- For any kernel $k_{\mathcal{H}}$ of the RKHS, the uniform discrete (supported by points) laws give $MMD^2(P_X, P_Y) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n k_{\mathcal{H}}(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \sum_{j=1}^m k_{\mathcal{H}}(y_i, y_j) - 2\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m k_{\mathcal{H}}(x_i, y_j)$
- The covariance kernel $k(X, Y) = \sigma^2 exp(-\frac{||\mu_X \mu_Y||_{\mathcal{H}}^2}{2\theta^2})$ is symmetric and definite positive.
- We will denote the latter as MMD.

Relevant Features Map Kernel

- We consider a final kernel of the form $k(X, Y) = \sigma^2 \exp\left(-\sum_{j=1}^{n'} \frac{|w'_j(X) w'_j(Y)|^2}{\theta_j'^2}\right)$ with $(w'_1(X), ..., w'_n(X)$ a vector of features.
- As features we consider:
 - The coordinates of the mean
 - the eigenvalues and eigenvectors of the empirical covariance matrix.
 - the number of points in the set
 - Greatest and shortest distances between points of the set.
- This kernel will be called Relevant Feature Kernel.

Explicit Mappings: Probability Product Kernels and Embeddings

Explicit Mappings (see Annex)

- Recall $k(x, y) = \langle \phi(x), \phi(y) \rangle$
- We consider the case where the mapping ϕ is known.
 - $\phi(X) = P_X^{\rho}$ with $\rho \in]0, 1]$ where P_X is an underlying empirical distribution. $k(x, y) = \int_{\Omega} P(x)^{\rho} P'^{\rho}(x) dx$, Jebara and Kondor [9]. This family of kernels are called Probability Product Kernels. For two Gaussians $P_X = \mathcal{N}(\mu, \Sigma)$ and $P_Y = \mathcal{N}(\mu', \Sigma')$, one gets:

$$k(x,y) = (2\pi)^{(1-2\rho)D/2} |\Sigma^{+}|^{1/2} |\Sigma|^{-\rho/2} |\Sigma|^{-\rho/2} \exp\left(-\frac{\rho}{2}\mu^{\top}\Sigma^{-1}\mu - \frac{\rho}{2}\mu'^{\top}\Sigma'^{-1}\mu' + \frac{1}{2}\mu^{+\top}\Sigma^{+\top}\mu^{+1}\mu^{+1}\right)$$

where $\Sigma^+ = (\rho \Sigma^{-1} + \rho \Sigma^{-1})^{-1}$ and $\mu^+ = \rho \Sigma^{-1} \mu + \rho \Sigma'^{-1} \mu'$

- If $\rho = \frac{1}{2}$, it is called the **Bhattacharrya Kernel** and when $\rho = 1$ Expected Likelihood Kernel.
- $\phi(X) = \mu_X$ where μ_X is the embedding of the underlying empirical distribution into an RKHS. $k(x, y) = \langle \mu_X, \mu_Y \rangle$ it will be called **MMK**, Mean Map Kernel, for the remainder.

A test function

Mimicking wind farms

• We consider the following family of test functions mimicking wind-farms productions

$$F(\{x_1,...,x_n\}) = \sum_{i=1}^n \sum_{\substack{j \\ x_{j,1} \leq x_{i,1}}} f_p(x_j,x_i) f_0(x_i)$$

where $f_p(x_j, x_i)$ expresses the energy loss over x_i that is caused by x_j and f_0 is a constant. $x_i \in \mathbb{R}^2$ and $\in \{10, 11, ..., 20\}$

- The function $x_i \mapsto f_p(x_j, x_i)$ can be parametrized differently:
 - It can be unidirectional with an arbitrary angle
 - It can be multi-directional

A test function

Mimicking wind farms :Example

In the following we represent: $x_i \mapsto f_p(x_0, x_i)$ on the left, F with a one varying point on the right. We note F with f_p on left F_0 .

Mimicking wind farms : Illustration

A test function

Mimicking wind farms : Example

In the following we represent: $x_i \mapsto f_p(x_0, x_i)$ with $\pi/4$ rotated direction, and 40 directions on the right. We note F with f_p on left F_{45} and F_{40d} for the f_p on the right.

Mimicking wind farms : Illustration

Preleminary Results: 0°Interaction Function

- Modeling with Gaussians distributions is weaker than with discrete uniform ones for this function.

- Sliced Wasserstein Kernel is very competitive with MMD ;

Results: 45° direction Interaction

- 45° direction does not change performance for lot of kernels but Feature Map Kernel .

Figure: Prediction performance on 45° direction Interaction Function

Preleminary Results: 40 directions integrated

- 40 directions integrated Function improves slightly Gaussian based kernels.
- MMD shows better results than Relevant Feature kernel and Sliced Wasserstein

Figure: Prediction performance on 40 directions integrated function

Table: Summary of the Q2 observed : Battacha refers to Bhattacharrya kernel, RFK (Relevant Feture kernel), SWS (Sliced Wasserstein subs), GWS (Gaussian Wasserstein subs)

Function	MMD	ММК	Battacha	RFK	SWS	GWS
F ₀	0.917	0.711	0.144	0.813	0.812	0.174
F ₄₅	0.887	0.739	0.186	0.74	0.841	0.189
F _{40d}	0.88	0.279	0.314	0.688	0.798	0.259

- MMD remains the most robust kernels. MMK fails to model a lot of directions integrated.
- Modeling clouds as Gaussian seem very poor in front of discrete uniforms modelization.
- SWS and RFK are very competitive with MMD.

Scientific Perspectives

- Concerning Relevant Feature kernel, find automatically the most relevant features for a given function
- For MMD and MMK, model with **non uniform probabilities**. Considering different weights on points could allow giving more importance to some specific points of the cloud.
- Define the directions of Sliced Wasserstein Distance by Log Likelihood.

Thanks For Your Attention !

Bibliography I

- Nachman Aronszajn. "Theory of reproducing kernels". In: Transactions of the American mathematical society 68.3 (1950), pp. 337–404.
- [2] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. *Harmonic analysis on semigroups: theory of positive definite and related functions*. Vol. 100. Springer, 1984.
- [3] Thi Thien Trang Bui et al. "Distribution regression model with a Reproducing Kernel Hilbert Space approach". In: *arXiv preprint arXiv:1806.10493* (2018).
- [4] Mathieu Carriere, Marco Cuturi, and Steve Oudot. "Sliced Wasserstein kernel for persistence diagrams". In: International conference on machine learning. PMLR. 2017, pp. 664–673.
- [5] Tinkle Chugh and Endi Ymeraj. "Wind Farm Layout Optimisation using Set Based Multi-objective Bayesian Optimisation". In: *arXiv preprint arXiv:2203.17065* (2022).

Bibliography II

- [6] Rémi Flamary et al. "Pot: Python optimal transport". In: Journal of Machine Learning Research 22.78 (2021), pp. 1–8.
- [7] Philippe H Gosselin, Matthieu Cord, and Sylvie Philipp-Foliguet. "Kernels on bags for multi-object database retrieval". In: Proceedings of the 6th ACM international conference on Image and video retrieval. 2007, pp. 226–231.
- [8] Bernard Haasdonk and Claus Bahlmann. "Learning with distance substitution kernels". In: *Joint pattern recognition symposium.* Springer. 2004, pp. 220–227.
- [9] Tony Jebara and Risi Kondor. "Bhattacharyya and expected likelihood kernels". In: *Learning theory and kernel machines.* Springer, 2003, pp. 57–71.
- [10] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. "Sliced Wasserstein kernels for probability distributions". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 5258–5267.

Bibliography III

- [11] Krikamol Muandet et al. "Kernel mean embedding of distributions: A review and beyond". In: Foundations and Trends in Machine Learning 10.1-2 (2017), pp. 1–141.
- [12] Gabriel Peyré, Marco Cuturi, et al. "Computational optimal transport". In: Center for Research in Economics and Statistics Working Papers 2017-86 (2017).
- [13] Frédéric Suard, Alain Rakotomamonjy, and Abdelaziz Bensrhair. "Kernel on Bag of Paths For Measuring Similarity of Shapes.". In: ESANN. Citeseer. 2007, pp. 355–360.
- [14] Yuya Yoshikawa et al. "Cross-domain matching for bag-of-words data via kernel embeddings of latent distributions". In: Advances in Neural Information Processing Systems 28 (2015).

Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance : Wasserstein Distance in 1D Case

- Definition and properties see Carriere, Cuturi, and Oudot [4] and Kolouri, Zou, and Rohde [10]
- Let μ and ν be two nonnegative measures in \mathbb{R} with $\mu(\mathbb{R}) = \nu(\mathbb{R}) = 1$. The Wasserstein distance of order 2 between μ and ν is defined as follows:

$$\mathcal{W}_2^2(\mu,\nu) = \inf_{P \in \Pi(\mu,\nu)} \int \int_{\mathbb{R} \times \mathbb{R}} |x-y|^2 P(dx,dy)$$

- Let $C_{\mu}(x) = \int_{-\infty}^{x} d\mu$, $C_{\nu}(x) = \int_{-\infty}^{x} d\nu$ their cumulative distribution function.
- Pseudo-inverse : $\forall r \in [0,1], \mathcal{C}_{\mu}^{-1}(r) = \min_{x} \{x \in \mathbb{R} \cup \{-\infty\} : \mathcal{C}_{\mu}(r) \geq x\}$
- Then $\mathcal{W}_2^2(\mu,\nu) = ||\mathcal{C}_{\mu}^{-1} \mathcal{C}_{\nu}^{-1}||_{L^p([0,1])}^2$, see Peyré, Cuturi, et al. [12]
- $\mathcal{W}_2^2(\mu,
 u)$ is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [10])
- If μ and ν are defined in $\mathbb{R} \times \mathbb{R}$, the above condition is no longer guaranteed.

Substitution with Hilbertian distance: Wasserstein Distance Between Gaussians

- For two measures μ and ν defined over a space X, the Wasserstein distance of positive cost function ρ and order p is defined as follows : $W_{\rho}^{p} = \inf_{\pi \in \Pi(\mu,\nu)} \int_{X \times X} \rho(x, y)^{p} d\pi(x, y)$
- We consider the case 2
- For an Euclidean cost in 2D , the Wasserstein distance of two Gaussians is given in a closed form as : $W_2^2 = ||m_X m_Y||^2 + tr(\Sigma_X + \Sigma_Y 2(\Sigma_X^{1/2}\Sigma_Y\Sigma_X^{1/2})^{1/2})$
- Consider the version $W_2^2 = ||m_X m_Y||^2 + ||\Sigma_X^{1/2} \Sigma_Y^{1/2}||_{Frobenius}^2$ as in Bui et al. [3]
- The above distance is conditionally negative definite and $k(X, Y) = \sigma^2 exp(-\frac{W_2^2}{2\theta^2})$ is therefore a valid kernel.