Kernel over sets of vectors.

Phd Student: Babacar SOW

Contract duration: From 01/11/2021 to 31/10/2024
Project: ANR SAMOURAI

University: Ecole Des Mines de Saint-Etienne
Supervisors: Merlin KELLER (EDF), Rodolphe LE RICHE (CNRS/LIMOS), Julien PELAMATTI (EDF), Sanaa ZANNANE (EDF)

Table of contents

1. Context and Problem
2. Bayesian Approach and Kernels between clouds of points
3. Perspectives
4. Bibliography

Context and problem

Functions defined over sets of vectors

- Let \mathcal{F} be the family of considered functions.
- Suppose $f \in \mathcal{F}$ and \mathcal{D}_{f} its domain of definition.
-

$$
u \in \mathcal{D}_{f} \Rightarrow \exists n \in \mathbb{N}, d \in \mathbb{N}, u=\left\{x_{1}, \ldots, x_{n}\right\}, \forall i, x_{i} \in \mathbb{R}^{d}
$$

- n belongs to a finite discrete set.
- For any permutation π of the set $\{1, \ldots, n\}$ to a new one $\{\pi(1), \ldots, \pi(n)\}$, we denote by u_{π} the following set $\left\{x_{\pi(1)}, \ldots, x_{\pi(n)}\right\}$.
- Note that $\forall \pi, f\left(u_{\pi}\right)=f(u)$: \mathbf{f} is invariant under permutation.
- The variables u will be called clouds of points.

Related works and domains

Learning functions defined over sets of objects with kernels

- Kernels on bags of vectors, applied to SVM Classification on images in [7].
- Same technique to define kernel on graphs by averaging over kernels between paths in [13] to measure similarity between shapes.
- Classification on text data with a set representation view in [14].
- A Kernel between sets of points is used in [5] to optimize the layout of a wind farm.

Focus of this presentation

- In this presentation, we discuss some general methods to construct such kernels.
- Confronting them numerically on a a test function mimicking the production of a windfarm.

Bayesian Approach

A Gaussian process prior

- Gaussian process is defined by a mean function m and a kernel k over the spaces of inputs \mathcal{X} to approximate the functions.
- Observing $D=\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right)\right\}$ where $x_{i} \in \mathcal{X}$ and $y \in \mathbb{R}$ as training data, the predictive mean and covariance for a new point x are given by:

$$
\begin{gathered}
\mu(x ; D)=m(x)+K(X, x)^{T} K(X, X)^{-1}(y-m(X)) \\
\Sigma(x, x ; D)=K(x, x)-K(X, x)^{T} K(X, X)^{-1} K(X, x)
\end{gathered}
$$

Necessary Conditions on k

- k must be symmetric and positive definite,i.e, for any M distinct clouds of points, for any vector $c \in \mathbb{R}^{M}$, the following inequality must hold: $\sum_{i=1}^{M} \sum_{j=1}^{M} c_{i} c_{j} k\left(X_{i}, X_{j}\right) \geq 0$

Bayesian approach: Kernel trick and Mapping

Comparing two clouds

Aronszajn, Explicit, Implicit Mappings

Feature Mapping, Aronszajn (1950)

Theoreme, Aronszajn [1]
k is a positive definite kernel if and only if there exists a Hilbert space \mathcal{H}, and a function $\phi: \mathcal{X} \longmapsto \mathcal{H}$ such that $\forall x, y, k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$.

Explicit and Implicit Mappings

- Explicit Mapping: in some cases ϕ and the scalar product, $\langle., .\rangle_{\mathcal{H}}$ are known by definition or by construction
- Implicit Mapping : in some cases, we just use the compact formula of k
- Substitutions Kernels as in Haasdonk and Bahlmann [8].

Substitution with Hilbertian Distance

Substitution with Exponential

- Firstly, we consider covariance kernels of the form: $k(X, Y)=\sigma^{2} \exp \left(-\frac{\Psi(X, Y)}{2 \theta^{2}}\right)$.
- Semi-definite positiveness is equivalent to Ψ be Hermitian (symmetric in the real case) and conditionally negative semi-definite [2].
- In other words, for any M distinct points and $c \in R^{M}$ with $\sum_{i=1}^{M} c_{i}=0$, the following inequality must hold: $\sum_{i=1}^{M} \sum_{j=1}^{M} c_{i} c_{j} \Psi\left(X_{i}, X_{j}\right) \leq 0$

Metric Cases

- We consider cases where $\Psi(X, Y)=d(\tilde{X}, \tilde{Y})^{2}$
- d is the distance between \tilde{X} and \tilde{Y} the respective images of X and Y into a known metric Space.
- The above conditions are equivalent to ensuring that the metric be Hilbertian, as stated in Haasdonk and Bahlmann [8].

How to construct \tilde{X} and \tilde{Y} ?

With probabilities

- Case 1: Suppose we have two clouds $X=\left(x_{1}, . . x_{n}\right), Y=\left(y_{1}, \ldots, y_{m}\right)$ and $P_{X}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}, P_{Y}=\frac{1}{m} \sum_{j=1}^{m} \delta_{y_{j}}$, the respective associated empirical uniform distributions.
- Case 2 : We associate to each cloud of point $X=\left(x_{1}, . . x_{n}\right), Y=\left(y_{1}, \ldots, y_{m}\right)$, its empirical Gaussian: $\mathcal{N}_{\mathcal{X}}\left(m_{X}, \Sigma_{X}\right)$ and $\mathcal{N}_{\mathcal{Y}}\left(m_{Y}, \Sigma_{Y}\right)$. item $\mathcal{N}_{\mathcal{X}}$ is defined by $m_{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\Sigma_{X}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m_{X}\right)\left(x_{i}-m_{X}\right)^{T}$

With vectors : vectorization

- \tilde{X} and \tilde{Y} can be two vectors of features characteristics of the clouds.

Slice Wasserstein Distance and Gaussian approximation

Wasserstein Distances

For two measures μ and ν defined over a space \mathcal{X}, the Wasserstein distance of positive cost function ρ and order p is defined as follows: $W_{p}^{p}=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{X}} \rho(x, y)^{p} \mathrm{~d} \pi(x, y)$

Substitution with Hilbertian distance : Sliced Wasserstein Distance (see Annex)

- Let $\mathcal{S}=\left\{\theta \in \mathbb{R}^{2},\|\theta\|=1\right\}$. Consider the projected empirical measure on the line directed by $\theta \in \mathcal{S}: \theta^{*} P_{X}=\frac{1}{n} \sum_{i=1}^{n} \delta_{<x_{i}, \theta>}$ and $\theta^{*} P_{Y}=\frac{1}{m} \sum_{i=1}^{m} \delta_{<y_{i}, \theta>}$
- $S W_{2}^{2}\left(P_{X}, P_{Y}\right)=\int_{\mathcal{S}} \mathcal{W}_{2}^{2}\left(\theta^{*} P_{X}, \theta^{*} P_{Y}\right) \mathrm{d} \theta$. Implementation using POT [6]
- The covariance kernel $k(X, Y)=\sigma^{2} \exp \left(-\frac{S W_{2}^{2}\left(P_{X}, P_{Y}\right)}{2 \theta^{2}}\right)$ is symmetric and semi-definite positive as in Carriere, Cuturi, and Oudot [4].It will be denoted Sliced Wasserstein subs

Approximate For Gaussian Modeling (see Annex) , Gaussian Wasserstein subs
$W_{2}^{2} \approx\left\|m_{X}-m_{Y}\right\|^{2}+\left\|\Sigma_{X}^{1 / 2}-\Sigma_{Y}^{1 / 2}\right\|_{\text {Frobenius }}^{2}$ as in Bui et al. [3] $\left(=\right.$ if $\left.\Sigma_{X}^{1 / 2} \Sigma_{Y}^{1 / 2}=\Sigma_{X}^{1 / 2} \Sigma_{Y}^{1 / 2}\right)$

Distance between embedded laws : Maximum Mean Discrepancy

Substitution with Hilbertian distance: MMD

- There exists a Reproducing Kernel Hilbert Space, \mathcal{H} with a characteristic kernel such as $k_{\mathcal{H}}(x,)=.\exp \left(-\frac{\|x-.\| \|^{2}}{2 \theta^{2}}\right)$.
- The characteristic nature guarantees the injectivity of the embedding map Muandet et al. [11]: $P_{X} \longmapsto \mu_{X}()=.\int P_{X}(x) k_{\mathcal{H}}(x,) \mathrm{d} x.$.
- $M M D^{2}\left(P_{X}, P_{Y}\right)=\left\|\mu_{X}-\mu_{Y}\right\|_{\mathcal{H}}^{2}$
- For any kernel $k_{\mathcal{H}}$ of the RKHS, the uniform discrete (supported by points) laws give $M M D^{2}\left(P_{X}, P_{Y}\right)=$ $\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} k_{\mathcal{H}}\left(x_{i}, x_{j}\right)+\frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} k_{\mathcal{H}}\left(y_{i}, y_{j}\right)-2 \frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} k_{\mathcal{H}}\left(x_{i}, y_{j}\right)$
- The covariance kernel $k(X, Y)=\sigma^{2} \exp \left(-\frac{\left\|\mu_{X}-\mu_{Y}\right\|_{\neq \mathcal{H}}^{2}}{2 \theta^{2}}\right)$ is symmetric and definite positive.
- We will denote the latter as MMD.

Constructing Features of a cloud

Relevant Features Map Kernel

- We consider a final kernel of the form $k(X, Y)=\sigma^{2} \exp \left(-\sum_{j=1}^{n^{\prime}} \frac{\left|w_{j}^{\prime}(X)-w_{j}^{\prime}(Y)\right|^{2}}{\theta_{j}^{\prime 2}}\right)$ with $\left(w_{1}^{\prime}(X), \ldots, w_{n}^{\prime}(X)\right.$ a vector of features.
- As features we consider:
- The coordinates of the mean
- the eigenvalues and eigenvectors of the empirical covariance matrix.
- the number of points in the set
- Greatest and shortest distances between points of the set.
- This kernel will be called Relevant Feature Kernel.

Explicit Mappings: Probability Product Kernels and Embeddings

Explicit Mappings (see Annex)

- Recall $k(x, y)=<\phi(x), \phi(y)>$
- We consider the case where the mapping ϕ is known.
- $\phi(X)=P_{X}^{\rho}$ with $\left.\left.\rho \in\right] 0,1\right]$ where P_{X} is an underlying empirical distribution. $k(x, y)=\int_{\Omega} P(x)^{\rho} P^{\prime \rho}(x) \mathrm{d} x$, Jebara and Kondor [9]. This family of kernels are called Probability Product Kernels. For two Gaussians $P_{X}=\mathcal{N}(\mu, \Sigma)$ and $P_{Y}=\mathcal{N}\left(\mu^{\prime}, \Sigma^{\prime}\right)$, one gets:
$k(x, y)=(2 \pi)^{(1-2 \rho) D / 2}\left|\Sigma^{+}\right|^{1 / 2}|\Sigma|^{-\rho / 2}|\Sigma|^{-\rho / 2} \exp \left(-\frac{\rho}{2} \mu^{\top} \Sigma^{-1} \mu-\frac{\rho}{2} \mu^{\top \top} \Sigma^{\prime-1} \mu^{\prime}+\frac{1}{2} \mu^{+\top} \Sigma^{+\top} \mu^{+}\right)$
where $\Sigma^{+}=\left(\rho \Sigma^{-1}+\rho \Sigma^{-1}\right)^{-1}$ and $\mu^{+}=\rho \Sigma^{-1} \mu+\rho \Sigma^{\prime-1} \mu^{\prime}$
- If $\rho=\frac{1}{2}$, it is called the Bhattacharrya Kernel and when $\rho=1$ Expected Likelihood Kernel.
- $\phi(X)=\mu_{X}$ where μ_{X} is the embedding of the underlying empirical distribution into an RKHS. $k(x, y)=<\mu_{X}, \mu_{Y}>$ it will be called MMK, Mean Map Kernel, for the remainder.

A test function

Mimicking wind farms

- We consider the following family of test functions mimicking wind-farms productions

$$
\begin{gathered}
F\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=\sum_{i=1}^{n} \sum_{j} f_{p}\left(x_{j}, x_{i}\right) f_{0}\left(x_{i}\right) \\
x_{j, 1} \leq x_{i, 1}
\end{gathered}
$$

where $f_{p}\left(x_{j}, x_{i}\right)$ expresses the energy loss over x_{i} that is caused by x_{j} and f_{0} is a constant. $x_{i} \in \mathbb{R}^{2}$ and $\in\{10,11, . ., 20\}$

- The function $x_{i} \longmapsto f_{p}\left(x_{j}, x_{i}\right)$ can be parametrized differently:
- It can be unidirectional with an arbitrary angle
- It can be multi-directional

A test function

Mimicking wind farms : Example

In the following we represent: $x_{i} \longmapsto f_{p}\left(x_{0}, x_{i}\right)$ on the left, F with a one varying point on the right. We note F with f_{p} on left F_{0}.

Mimicking wind farms : Illustration

A test function

Mimicking wind farms : Example

In the following we represent: $x_{i} \longmapsto f_{p}\left(x_{0}, x_{i}\right)$ with $\pi / 4$ rotated direction, and 40 directions on the right. We note F with f_{p} on left F_{45} and $F_{40 d}$ for the f_{p} on the right.

Mimicking wind farms : Illustration

Preleminary Results: 0° Interaction Function

- Modeling with Gaussians distributions is weaker than with discrete uniform ones for this function.
- Sliced Wasserstein Kernel is very competitive with MMD ;

Results: 45° direction Interaction

- 45° direction does not change performance for lot of kernels but Feature Map Kernel .

Figure: Prediction performance on 45° direction Interaction Function

Preleminary Results: 40 directions integrated

- 40 directions integrated Function improves slightly Gaussian based kernels.
- MMD shows better results than Relevant Feature kernel and Sliced Wasserstein

Summary

Table: Summary of the Q2 observed: Battacha refers to Bhattacharrya kernel, RFK (Relevant Feture kernel), SWS (Sliced Wasserstein subs), GWS (Gaussian Wasserstein subs)

Function Kernels	MMD	MMK	Battacha	RFK	SWS	GWS
F_{0}	0.917	0.711	0.144	0.813	0.812	0.174
F_{45}	0.887	0.739	0.186	0.74	0.841	0.189
$F_{40 d}$	0.88	0.279	0.314	0.688	0.798	0.259

- MMD remains the most robust kernels. MMK fails to model a lot of directions integrated.
- Modeling clouds as Gaussian seem very poor in front of discrete uniforms modelization.
- SWS and RFK are very competitive with MMD.

Perspectives

Scientific Perspectives

- Concerning Relevant Feature kernel, find automatically the most relevant features for a given function
- For MMD and MMK, model with non uniform probabilities. Considering different weights on points could allow giving more importance to some specific points of the cloud.
- Define the directions of Sliced Wasserstein Distance by Log Likelihood.

Thanks For Your Attention!

Bibliography I

[1] Nachman Aronszajn. "Theory of reproducing kernels". In: Transactions of the American mathematical society 68.3 (1950), pp. 337-404.
[2] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on semigroups: theory of positive definite and related functions. Vol. 100. Springer, 1984.
[3] Thi Thien Trang Bui et al. "Distribution regression model with a Reproducing Kernel Hilbert Space approach". In: arXiv preprint arXiv:1806.10493 (2018).
[4] Mathieu Carriere, Marco Cuturi, and Steve Oudot. "Sliced Wasserstein kernel for persistence diagrams". In: International conference on machine learning. PMLR. 2017, pp. 664-673.
[5] Tinkle Chugh and Endi Ymeraj. "Wind Farm Layout Optimisation using Set Based Multi-objective Bayesian Optimisation". In: arXiv preprint arXiv:2203.17065 (2022).

Bibliography II

[6] Rémi Flamary et al. "Pot: Python optimal transport". In: Journal of Machine Learning Research 22.78 (2021), pp. 1-8.
[7] Philippe H Gosselin, Matthieu Cord, and Sylvie Philipp-Foliguet. "Kernels on bags for multi-object database retrieval". In: Proceedings of the 6th ACM international conference on Image and video retrieval. 2007, pp. 226-231.
[8] Bernard Haasdonk and Claus Bahlmann. "Learning with distance substitution kernels". In: Joint pattern recognition symposium. Springer. 2004, pp. 220-227.
[9] Tony Jebara and Risi Kondor. "Bhattacharyya and expected likelihood kernels". In: Learning theory and kernel machines. Springer, 2003, pp. 57-71.
[10] Soheil Kolouri, Yang Zou, and Gustavo K Rohde. "Sliced Wasserstein kernels for probability distributions". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 5258-5267.

Bibliography III

[11] Krikamol Muandet et al. "Kernel mean embedding of distributions: A review and beyond". In: Foundations and Trends® in Machine Learning 10.1-2 (2017), pp. 1-141.
[12] Gabriel Peyré, Marco Cuturi, et al. "Computational optimal transport". In: Center for Research in Economics and Statistics Working Papers 2017-86 (2017).
[13] Frédéric Suard, Alain Rakotomamonjy, and Abdelaziz Bensrhair. "Kernel on Bag of Paths For Measuring Similarity of Shapes.". In: ESANN. Citeseer. 2007, pp. 355-360.
[14] Yuya Yoshikawa et al. "Cross-domain matching for bag-of-words data via kernel embeddings of latent distributions". In: Advances in Neural Information Processing Systems 28 (2015).

Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance : Wasserstein Distance in 1D Case

- Definition and properties see Carriere, Cuturi, and Oudot [4] and Kolouri, Zou, and Rohde [10]
- Let μ and ν be two nonnegative measures in \mathbb{R} with $\mu(\mathbb{R})=\nu(\mathbb{R})=1$. The Wasserstein distance of order 2 between μ and ν is defined as folllows:

$$
\mathcal{W}_{2}^{2}(\mu, \nu)=\inf _{P \in \Pi(\mu, \nu)} \iint_{\mathbb{R} \times \mathbb{R}}|x-y|^{2} P(d x, d y)
$$

- Let $\mathcal{C}_{\mu}(x)=\int_{-\infty}^{x} d \mu, \mathcal{C}_{\nu}(x)=\int_{-\infty}^{x} d \nu$ their cumulative distribution function.
- Pseudo-inverse : $\forall r \in[0,1], \mathcal{C}_{\mu}^{-1}(r)=\min _{x}\left\{x \in \mathbb{R} \cup\{-\infty\}: \mathcal{C}_{\mu}(r) \geq x\right\}$
- Then $\mathcal{W}_{2}^{2}(\mu, \nu)=\left\|\mathcal{C}_{\mu}^{-1}-\mathcal{C}_{\nu}^{-1}\right\|_{L^{p}([0,1])}^{2}$, see Peyré, Cuturi, et al. [12]
- $\mathcal{W}_{2}^{2}(\mu, \nu)$ is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [10])
- If μ and ν are defined in $\mathbb{R} \times \mathbb{R}$, the above condition is no longer guaranteed.

Distance between laws: Wasserstein Distance between Gaussians

Substitution with Hilbertian distance: Wasserstein Distance Between Gaussians

- For two measures μ and ν defined over a space X, the Wasserstein distance of positive cost function ρ and order p is defined as follows: $W_{p}^{p}=\inf _{\pi \in \Pi(\mu, \nu)} \int_{X \times X} \rho(x, y)^{p} \mathrm{~d} \pi(x, y)$
- We consider the case 2
- For an Euclidean cost in 2D, the Wasserstein distance of two Gaussians is given in a closed form as : $W_{2}^{2}=\left\|m_{X}-m_{Y}\right\|^{2}+\operatorname{tr}\left(\Sigma_{X}+\Sigma_{Y}-2\left(\Sigma_{X}^{1 / 2} \Sigma_{Y} \Sigma_{X}^{1 / 2}\right)^{1 / 2}\right)$
- Consider the version $W_{2}^{2}=\left\|m_{X}-m_{Y}\right\|^{2}+\left\|\Sigma_{X}^{1 / 2}-\Sigma_{Y}^{1 / 2}\right\|_{\text {Frobenius }}^{2}$ as in Bui et al. [3]
- The above distance is conditionally negative definite and $k(X, Y)=\sigma^{2} \exp \left(-\frac{W_{2}^{2}}{2 \theta^{2}}\right)$ is therefore a valid kernel.

