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Context and problem

Functions defined over sets of vectors

® Let F be the family of considered functions.

® Suppose f € F and Dr its domain of definition.
[}
vueDf=3IneN,deN,u={x,..,xp},Vi,x; € RY

n belongs to a finite discrete set.

® For any permutation 7 of the set {1, ..., n} to a new one {m(1),...,7(n)}, we denote by u,
the following set {x:(1); -, Xz(n) }-

Note that V7, f(u;) = f(u) : fis invariant under permutation.

The variables u will be called clouds of points.
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Related works and domains

Learning functions defined over sets of objects with kernels

e Kernels on bags of vectors, applied to SVM Classification on images in [7].

® Same technique to define kernel on graphs by averaging over kernels between paths in [13]
to measure similarity between shapes.

¢ Classification on text data with a set representation view in [14].

® A Kernel between sets of points is used in [5] to optimize the layout of a wind farm.

Focus of this presentation

® |n this presentation,we discuss some general methods to construct such kernels.

¢ Confronting them numerically on a a test function mimicking the production of a
windfarm.

4/25



Bayesian Approach

A Gaussian process prior

® Gaussian process is defined by a mean function m and a kernel k over the spaces of inputs
X to approximate the functions.

® Observing D = {(x1, y1).--(xn, ¥n)} where x; € X and y € R as training data, the
predictive mean and covariance for a new point x are given by:

u(x; D) = m(x) + K(X,x)TK(X, X)"}(y — m(X))

Y (x,x; D) = K(x,x) — K(X,x)TK(X, X)"1K(X, x)

Necessary Conditions on k

® k must be symmetric and positive definite,i.e, for any M distinct clouds of points, for

any vector ¢ € RM, the following inequality must hold: S>M, jl\il cicik(Xi, Xj) > 0

A\
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Bayesian approach: Kernel trick and Mapping
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Aronszajn, Explicit, Implicit Mappings

Feature Mapping, Aronszajn (1950)

Theoreme, Aronszajn [1]

k is a positive definite kernel if and only if there exists a Hilbert space #, and a function
¢+ X — H such that Vx, y, k(x,y) = (¢(x), d(y)) -

Explicit and Implicit Mappings

® Explicit Mapping: in some cases ¢ and the scalar product, (.,.)% are known by definition

or by construction

e |mplicit Mapping : in some cases, we just use the compact formula of k
® Substitutions Kernels as in Haasdonk and Bahlmann [8].

7/25




Substitution with Hilbertian Distance

Substitution with Exponential

® Firstly, we consider covariance kernels of the form: k(X,Y) = Uzexp(—w(z)‘;’zy)).

® Semi-definite positiveness is equivalent to W be Hermitian (symmetric in the real case)
and conditionally negative semi-definite [2].

® |n other words, for any M distinct points and ¢ € RM with Z,Ai1 ¢i = 0, the following
inequality must hold: Z,Ail M Z1GqgV(Xi, X)) <0

* We consider cases where W(X, Y) = d(X, Y)?

e d is the distance between X and Y the respective images of X and Y into a known metric
Space.

® The above conditions are equivalent to ensuring that the metric be Hilbertian, as stated
in Haasdonk and Bahlmann [8].
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How to construct X and Y ?

With probabilities
® Case 1 : Suppose we have two clouds X = (xi1,..x5), Y = ()1, ..., ¥m) and
Py = %27:1 dx;» Py = % i1 0y;, the respective associated empirical uniform
distributions.
® Case 2 : We associate to each cloud of point X = (x1,..x,), Y = (y1, ..., ¥m), its empirical
Gaussian: Ny (mx,Xx) and Ny(my,Xy). item Ny is defined by mx = %27:1 x; and
x = %Z?:I(Xi — mx)(X,' — mx)T

With vectors : vectorization

e X and Y can be two vectors of features characteristics of the clouds.
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Slice Wasserstein Distance and Gaussian approximation

Wasserstein Distances

For two measures 1 and v defined over a space X, the Wasserstein distance of positive cost
function p and order p is defined as follows : WJ = inf cnu) [y x 2(X; ¥)PdT(x, y)

Substitution with Hilbertian distance : Sliced Wasserstein Distance (see Annex)

® Let S= {0 € R? ||0|| = 1}. Consider the projected empirical measure on the line directed
by 0 & S: Q*PX = %Z;’:l 5<Xi,9> and G*PY = % Z:n:l 5<}’i79>
* SWZ(Px,Py) = [¢W3(0*Px, 0" Py)df. Implementation using POT [6]

2
® The covariance kernel k(X,Y) = a%xp(—%) is symmetric and semi-definite

positive as in Carriere, Cuturi, and Oudot [4].It will be denoted Sliced Wasserstein subs

Approximate For Gaussian Modeling (see Annex) , Gaussian Wasserstein subs

W2 = ||mx — my|? + ||£¥° — TV/?|12 as in Bui et al. [3] (= if /5% = ¥ /¥ 1/?)

Frobenius
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Distance between embedded laws : Maximum Mean Discrepancy

Substitution with Hilbertian distance: MMD

® There exists a Reproducing Kernel Hilbert Space, H with a characteristic kernel such as
ku(x, ) = exp(— 2y,

® The characteristic nature guarantees the injectivity of the embedding map Muandet et al.
[11]: Px — ux(.) = [ Px(x)ku(x,.)dx.

* MMD?(Px, Py) = |lux — py|l3

® For any kernel ky; of the RKHS, the uniform discrete (supported by points) laws give
MMD?(Px, Py) =
% > 7:1 kn(xi, ) + # > jm:1 kn(yi, yj) — 2% i jm:1 kn(xi, yj)

® The covariance kernel k(X,Y) = azexp(—%iﬂ) is symmetric and definite positive.

e \We will denote the latter as MMD.
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Constructing Features of a cloud

Relevant Features Map Kernel

’ w! —w! 2
® We consider a final kernel of the form k(X,Y) =o?exp (- Y7, ‘J(X)e#) with
J

j
(wi(X), ..., w}

! (X) a vector of features.

® As features we consider:
The coordinates of the mean
the eigenvalues and eigenvectors of the empirical covariance matrix.

the number of points in the set
Greatest and shortest distances between points of the set.

® This kernel will be called Relevant Feature Kernel.
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Explicit Mappings: Probability Product Kernels and Embeddings

Explicit Mappings (see Annex)

e Recall k(x,y) =< ¢(x), d(y) >
® \We consider the case where the mapping ¢ is known.
* $(X) = Py with p €]0,1] Where Px is an underlying empirical
dlstrlbutlon k(x,y) = Jq P(x)?P'"?(x)dx, Jebara and Kondor [9]. This family of kernels are

called Probability Product Kernels For two Gaussians Px = N(u, X) and Py = N (¢, ¥') ,
one gets:

_ _ _ p _ p _ 1
k(x,y):(Qﬂ-)(l 2p)D/2|Z+|1/2|z‘ p/zm p/2exp(_§MTz 1M_§N/TZ/ IM/+§M+TZ+TM+)

where ¥+ = (pZ 1+ pZ Y~ and pt = pZ 1+ px/ 1/
® If p=1, itis called the Bhattacharrya Kernel and when p = 1 Expected Likelihood Kernel.
® §(X) = ux where px is the embedding of the underlying empirical distribution into an
RKHS. k(x,y) =< px, iy > it will be called MMK, Mean Map Kernel, for the remainder.
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A test function

Mimicking wind farms

® \We consider the following family of test functions mimicking wind-farms productions

F({Xl, ...,Xn}) = Z Z fp(Xjaxi)fb(Xi)
i=1 ,/
Xj1 < Xj1

where f,(x;j, x;) expresses the energy loss over x; that is caused by x; and f; is a constant.
x; € R? and € {10,11,..,20}
® The function x; — f5(X;, X;) can be parametrized differently:

® [t can be unidirectional with an arbitrary angle

® |t can be multi-directional
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A test function

Mimicking wind farms :Example

In the following we represent: x; — f,(xo, x;) on the left, F with a one varying point on the
right. We note F with f, on left Fy.

Mimicking wind farms : lllustration
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A test function

Mimicking wind farms : Example

In the following we represent: x; — f,(xo, x;) with /4 rotated direction, and 40 directions on
the right.We note F with f, on left Fa5 and Faoq4 for the f, on the right.

Mimicking wind farms : lllustration
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Preleminary Results: 0°Interaction Function

- Modeling with Gaussians distributions is weaker than with discrete uniform ones for this
function.
- Sliced Wasserstein Kernel is very competitive with MMD ;
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Results: 45° direction Interaction

- 45° direction does not change performance for lot of kernels but Feature Map Kernel .
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Figure: Prediction performance on 45° direction Interaction Function
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Preleminary Results: 40 directions integrated

- 40 directions integrated Function improves slightly Gaussian based kernels.
- MMD shows better results than Relevant Feature kernel and Sliced Wasserstein
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Table: Summary of the Q2 observed : Battacha refers to Bhattacharrya kernel, RFK (Relevant Feture kernel),
SWS (Sliced Wasserstein subs), GWS (Gaussian Wasserstein subs)

Functioi—Kemels | MMD | MMK | Battacha | RFK SWS GWS
Fo 0.017 | 0.711 | 0.144 0.813 0.812 0.174
Fus 0.887 | 0.739 | 0.186 0.74 0.841 0.189
Faod 0.88 | 0.279 | 0.314 0.688 0.798 0.259

e MMD remains the most robust kernels. MMK fails to model a lot of directions integrated.

® Modeling clouds as Gaussian seem very poor in front of discrete uniforms modelization.

® SWS and RFK are very competitive with MMD.
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Perspectives

Scientific Perspectives

e Concerning Relevant Feature kernel, find automatically the most relevant features for a
given function

e For MMD and MMK, model with non uniform probabilities. Considering different
weights on points could allow giving more importance to some specific points of the cloud.
® Define the directions of Sliced Wasserstein Distance by Log Likelihood.
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Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance : Wasserstein Distance in 1D Case

® Definition and properties see Carriere, Cuturi, and Oudot [4] and Kolouri, Zou, and Rohde
[10]

Let 1 and v be two nonnegative measures in R with u(R) = v(R) = 1. The Wasserstein
distance of order 2 between p and v is defined as folllows:

Wau) = inf [ [ k= yPP(exdy)
4 X

Pe(u,

Let Cu(x) = [~ du, Cu(x) = [*__ dv their cumulative distribution function.
Pseudo-inverse : Vr € [0,1],C;}(r) = min,{x € RU{—o00} : C,(r) > x}

Then W3 (p,v) = |IC; ! — C;llﬁp([&ll), see Peyré, Cuturi, et al. [12]

W3(u,v) is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [10])

If 4 and v are defined in R x R, the above condition is no longer guaranteed.
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Distance between laws: Wasserstein Distance between Gaussians

Substitution with Hilbertian distance: Wasserstein Distance Between Gaussians

® For two measures 1 and v defined over a space X, the Wasserstein distance of positive
cost function p and order p is defined as follows : W = inf cn(u.) [y, x 2(X; ¥)Pdm(x,y)

® \We consider the case 2

® For an Euclidean cost in 2D , the Wasserstein distance of two Gaussians is given in a
closed form as : W2 = ||mx — my||> + tr(Ex + Zy — 2(2;/223/2;/2)1/2)

e Consider the version W2 = |[mx — my||? + ||Z§</2 - Zy2||%robenius as in Bui et al. [3]

2
® The above distance is conditionally negative definite and k(X,Y) = Uzexp(—%) is
therefore a valid kernel.
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