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Context and problem

Functions defined over sets of vectors
• Let F be the family of considered functions.
• Suppose f ∈ F and Df its domain of definition.
•

u ∈ Df ⇒ ∃n ∈ N, d ∈ N, u = {x1, ..., xn}, ∀i , xi ∈ Rd

• n belongs to a finite discrete set.
• For any permutation π of the set {1, ..., n} to a new one {π(1), ..., π(n)}, we denote by uπ

the following set {xπ(1), ..., xπ(n)}.
• Note that ∀π, f (uπ) = f (u) : f is invariant under permutation.
• The variables u will be called clouds of points.
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Related works and domains

Learning functions defined over sets of objects with kernels
• Kernels on bags of vectors, applied to SVM Classification on images in [7].
• Same technique to define kernel on graphs by averaging over kernels between paths in [13]

to measure similarity between shapes.
• Classification on text data with a set representation view in [14].
• A Kernel between sets of points is used in [5] to optimize the layout of a wind farm.

Focus of this presentation
• In this presentation,we discuss some general methods to construct such kernels.
• Confronting them numerically on a a test function mimicking the production of a

windfarm.
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Bayesian Approach

A Gaussian process prior
• Gaussian process is defined by a mean function m and a kernel k over the spaces of inputs
X to approximate the functions.

• Observing D = {(x1, y1)...(xn, yn)} where xi ∈ X and y ∈ R as training data, the
predictive mean and covariance for a new point x are given by:

µ(x ;D) = m(x) + K (X , x)TK (X ,X )−1(y −m(X ))

Σ(x , x ;D) = K (x , x)− K (X , x)TK (X ,X )−1K (X , x)

Necessary Conditions on k
• k must be symmetric and positive definite,i.e, for any M distinct clouds of points, for

any vector c ∈ RM , the following inequality must hold:
∑M

i=1
∑M

j=1 cicjk(Xi ,Xj) ≥ 0
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Bayesian approach: Kernel trick and Mapping

Comparing two clouds
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Aronszajn, Explicit, Implicit Mappings

Feature Mapping, Aronszajn (1950)
Theoreme, Aronszajn [1]
k is a positive definite kernel if and only if there exists a Hilbert space H, and a function
ϕ : X 7−→ H such that ∀x , y , k(x , y) = ⟨ϕ(x), ϕ(y)⟩H.

Explicit and Implicit Mappings
• Explicit Mapping: in some cases ϕ and the scalar product, ⟨., .⟩H are known by definition

or by construction
• Implicit Mapping : in some cases, we just use the compact formula of k

• Substitutions Kernels as in Haasdonk and Bahlmann [8].

7 / 25



Substitution with Hilbertian Distance

Substitution with Exponential

• Firstly, we consider covariance kernels of the form: k(X ,Y ) = σ2exp(−Ψ(X ,Y )
2θ2 ).

• Semi-definite positiveness is equivalent to Ψ be Hermitian (symmetric in the real case)
and conditionally negative semi-definite [2].

• In other words, for any M distinct points and c ∈ RM with
∑M

i=1 ci = 0, the following
inequality must hold:

∑M
i=1

∑M
j=1 cicjΨ(Xi ,Xj) ≤ 0

Metric Cases
• We consider cases where Ψ(X ,Y ) = d(X̃ , Ỹ )2

• d is the distance between X̃ and Ỹ the respective images of X and Y into a known metric
Space.

• The above conditions are equivalent to ensuring that the metric be Hilbertian, as stated
in Haasdonk and Bahlmann [8].
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How to construct X̃ and Ỹ ?

With probabilities
• Case 1 : Suppose we have two clouds X = (x1, ..xn), Y = (y1, ..., ym) and
PX = 1

n

∑n
i=1 δxi , PY = 1

m

∑m
j=1 δyj , the respective associated empirical uniform

distributions.
• Case 2 : We associate to each cloud of point X = (x1, ..xn), Y = (y1, ..., ym), its empirical

Gaussian: NX (mX ,ΣX ) and NY(mY ,ΣY ). item NX is defined by mX = 1
n

∑n
i=1 xi and

ΣX = 1
n

∑n
i=1(xi −mX )(xi −mX )

T

With vectors : vectorization
• X̃ and Ỹ can be two vectors of features characteristics of the clouds.
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Slice Wasserstein Distance and Gaussian approximation

Wasserstein Distances
For two measures µ and ν defined over a space X , the Wasserstein distance of positive cost
function ρ and order p is defined as follows : W p

p = infπ∈Π(µ,ν)
∫
X×X ρ(x , y)pdπ(x , y)

Substitution with Hilbertian distance : Sliced Wasserstein Distance (see Annex)
• Let S = {θ ∈ R2, ||θ|| = 1}. Consider the projected empirical measure on the line directed

by θ ∈ S: θ∗PX = 1
n

∑n
i=1 δ<xi ,θ> and θ∗PY = 1

m

∑m
i=1 δ<yi ,θ>

• SW 2
2 (PX ,PY ) =

∫
S W2

2 (θ
∗PX , θ

∗PY )dθ. Implementation using POT [6]

• The covariance kernel k(X ,Y ) = σ2exp(−SW 2
2 (PX ,PY )
2θ2 ) is symmetric and semi-definite

positive as in Carriere, Cuturi, and Oudot [4].It will be denoted Sliced Wasserstein subs

Approximate For Gaussian Modeling (see Annex) , Gaussian Wasserstein subs

W 2
2 ≈ ||mX −mY ||2 + ||Σ1/2

X − Σ
1/2
Y ||2Frobenius as in Bui et al. [3] (= if Σ1/2

X Σ
1/2
Y = Σ

1/2
X Σ

1/2
Y )
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Distance between embedded laws : Maximum Mean Discrepancy

Substitution with Hilbertian distance: MMD
• There exists a Reproducing Kernel Hilbert Space, H with a characteristic kernel such as
kH(x , .) = exp(− ||x−.||2

2θ2 ).
• The characteristic nature guarantees the injectivity of the embedding map Muandet et al.

[11]: PX 7−→ µX (.) =
∫
PX (x)kH(x , .)dx .

• MMD2(PX ,PY ) = ||µX − µY ||2H
• For any kernel kH of the RKHS, the uniform discrete (supported by points) laws give
MMD2(PX ,PY ) =
1
n2

∑n
i=1

∑n
j=1 kH(xi , xj) +

1
m2

∑m
i=1

∑m
j=1 kH(yi , yj)− 2 1

nm

∑n
i=1

∑m
j=1 kH(xi , yj)

• The covariance kernel k(X ,Y ) = σ2exp(− ||µX−µY ||2H
2θ2 ) is symmetric and definite positive.

• We will denote the latter as MMD.
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Constructing Features of a cloud

Relevant Features Map Kernel

• We consider a final kernel of the form k(X ,Y ) = σ2 exp
(
−
∑n′

j=1
|w ′

j (X )−w ′
j (Y )|2

θ′j
2

)
with

(w ′
1(X ), ...,w ′

n(X ) a vector of features.
• As features we consider:

• The coordinates of the mean
• the eigenvalues and eigenvectors of the empirical covariance matrix.
• the number of points in the set
• Greatest and shortest distances between points of the set.

• This kernel will be called Relevant Feature Kernel.
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Explicit Mappings: Probability Product Kernels and Embeddings

Explicit Mappings (see Annex)
• Recall k(x , y) =< ϕ(x), ϕ(y) >
• We consider the case where the mapping ϕ is known.

• ϕ(X ) = Pρ
X with ρ ∈]0, 1] where PX is an underlying empirical

distribution.k(x , y) =
∫
Ω
P(x)ρP ′ρ(x)dx , Jebara and Kondor [9]. This family of kernels are

called Probability Product Kernels. For two Gaussians PX = N (µ,Σ) and PY = N (µ′,Σ′) ,
one gets:

k(x , y) = (2π)(1−2ρ)D/2|Σ+|1/2|Σ|−ρ/2|Σ|−ρ/2 exp
(
−ρ

2
µ⊤Σ−1µ−ρ

2
µ′⊤Σ′−1µ′+

1
2
µ+⊤Σ+⊤µ+

)
where Σ+ = (ρΣ−1 + ρΣ−1)−1 and µ+ = ρΣ−1µ+ ρΣ′−1µ′

• If ρ = 1
2 , it is called the Bhattacharrya Kernel and when ρ = 1 Expected Likelihood Kernel.

• ϕ(X ) = µX where µX is the embedding of the underlying empirical distribution into an
RKHS. k(x , y) =< µX , µY > it will be called MMK, Mean Map Kernel, for the remainder.
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A test function

Mimicking wind farms
• We consider the following family of test functions mimicking wind-farms productions

F ({x1, ..., xn}) =
n∑

i=1

∑
j

xj ,1 ≤ xi ,1

fp(xj , xi )f0(xi )

where fp(xj , xi ) expresses the energy loss over xi that is caused by xj and f0 is a constant.
xi ∈ R2 and ∈ {10, 11, .., 20}

• The function xi 7−→ fp(xj , xi ) can be parametrized differently:

• It can be unidirectional with an arbitrary angle

• It can be multi-directional
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A test function

Mimicking wind farms :Example
In the following we represent: xi 7−→ fp(x0, xi ) on the left, F with a one varying point on the
right. We note F with fp on left F0.

Mimicking wind farms : Illustration
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A test function

Mimicking wind farms : Example
In the following we represent: xi 7−→ fp(x0, xi ) with π/4 rotated direction, and 40 directions on
the right.We note F with fp on left F45 and F40d for the fp on the right.

Mimicking wind farms : Illustration
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Preleminary Results: 0°Interaction Function
- Modeling with Gaussians distributions is weaker than with discrete uniform ones for this
function.
- Sliced Wasserstein Kernel is very competitive with MMD ;
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Results: 45° direction Interaction
- 45° direction does not change performance for lot of kernels but Feature Map Kernel .
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Preleminary Results: 40 directions integrated
- 40 directions integrated Function improves slightly Gaussian based kernels.
- MMD shows better results than Relevant Feature kernel and Sliced Wasserstein
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Summary

Table: Summary of the Q2 observed : Battacha refers to Bhattacharrya kernel, RFK (Relevant Feture kernel),
SWS (Sliced Wasserstein subs), GWS (Gaussian Wasserstein subs)

Function
Kernels MMD MMK Battacha RFK SWS GWS

F0 0.917 0.711 0.144 0.813 0.812 0.174
F45 0.887 0.739 0.186 0.74 0.841 0.189
F40d 0.88 0.279 0.314 0.688 0.798 0.259

• MMD remains the most robust kernels. MMK fails to model a lot of directions integrated.
• Modeling clouds as Gaussian seem very poor in front of discrete uniforms modelization.
• SWS and RFK are very competitive with MMD.
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Perspectives

Scientific Perspectives
• Concerning Relevant Feature kernel, find automatically the most relevant features for a

given function
• For MMD and MMK, model with non uniform probabilities. Considering different

weights on points could allow giving more importance to some specific points of the cloud.
• Define the directions of Sliced Wasserstein Distance by Log Likelihood.
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Thanks For Your Attention !
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Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance : Wasserstein Distance in 1D Case
• Definition and properties see Carriere, Cuturi, and Oudot [4] and Kolouri, Zou, and Rohde

[10]
• Let µ and ν be two nonnegative measures in R with µ(R) = ν(R) = 1. The Wasserstein

distance of order 2 between µ and ν is defined as folllows:

W2
2 (µ, ν) = inf

P∈Π(µ,ν)

∫ ∫
R×R

|x − y |2P(dx , dy)

• Let Cµ(x) =
∫ x
−∞ dµ, Cν(x) =

∫ x
−∞ dν their cumulative distribution function.

• Pseudo-inverse : ∀r ∈ [0, 1], C−1
µ (r) = minx{x ∈ R ∪ {−∞} : Cµ(r) ≥ x}

• Then W2
2 (µ, ν) = ||C−1

µ − C−1
ν ||2Lp([0,1]), see Peyré, Cuturi, et al. [12]

• W2
2 (µ, ν) is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [10])

• If µ and ν are defined in R× R, the above condition is no longer guaranteed.
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Distance between laws: Wasserstein Distance between Gaussians

Substitution with Hilbertian distance: Wasserstein Distance Between Gaussians
• For two measures µ and ν defined over a space X , the Wasserstein distance of positive

cost function ρ and order p is defined as follows : W p
p = infπ∈Π(µ,ν)

∫
X×X ρ(x , y)pdπ(x , y)

• We consider the case 2
• For an Euclidean cost in 2D , the Wasserstein distance of two Gaussians is given in a

closed form as : W 2
2 = ||mX −mY ||2 + tr(ΣX +ΣY − 2(Σ1/2

X ΣYΣ
1/2
X )1/2)

• Consider the version W 2
2 = ||mX −mY ||2 + ||Σ1/2

X − Σ
1/2
Y ||2Frobenius as in Bui et al. [3]

• The above distance is conditionally negative definite and k(X ,Y ) = σ2exp(−W 2
2

2θ2 ) is
therefore a valid kernel.
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