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Context - Uncertainty Quantification

Simulation code of a mechanical structure:

d parameters An output quantity
(B, v, L, ...) (o,u,...)
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Context - Uncertainty Quantification

Simulation code of a mechanical structure:

d parameters
(E,v,L,...)

In an uncertainty quantification context, those parameters are considered as
an input continuous random vector :

An output quantity
(o,u,...)

10}

with X = (X1, ..., X,4)" with values on the domain X C R* and defined by a
given Probability Density Function (PDF) fx.
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Context - 15! uncertainty source

One could be interested in assessing the following expectation of a particular
function 7 of Y = ¢(X) (e.g. a mean or a probability of failure):

By [ (6(X))] = / (6 (2)) fx () da. (1.1)

T
X
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Context - 15! uncertainty source

One could be interested in assessing the following expectation of a particular
function 7 of Y = ¢(X) (e.g. a mean or a probability of failure):

By [ (6(X))] = / (6 (2)) fx () da. (1.1)

T
X

Assuming 7 = Id, the Monte Carlo (MC) estimator of this integral is given by:
1 Nx
Mo L )
j —ijgﬁ(x ) (12)

with X "% £ and Nx the size of the MC sample.
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Context - 15! uncertainty source

One could be interested in assessing the following expectation of a particular
function 7 of Y = ¢(X) (e.g. a mean or a probability of failure):

Br [r(6(X)] = [ 7(6(@) fx (@) de. (1.1)
X
Assuming 7 = Id, the Monte Carlo (MC) estimator of this integral is given by:
1 Nx
Mo L )
i —NX;as(X ) (12)

with X "% £ and Nx the size of the MC sample. A first uncertainty source
is related to this sample, defined as X in the following process:

— _ ) X
X ={XV j=1,...,Nx} }— aMe
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Context - 2"9 uncertainty source

In a realistic context, the PDF fx may be unknown [1]. Thus, the probabilistic
model must be inferred from experimental tests:

D={D%i=1,... Np} .
with D(i) 1'3;,d' fX X|D

with N the size of the database D. The estimation f, 5 [2, 3] of the PDF
fx induces a second uncertainty source related to D.

[1] G Sarazin. Analyse de sensibilité fiabiliste en présence d'incertitudes épistémiques introduites par les données d’apprentissage, 2021.
[2] K James, Lindsey and others. Parametric statistical inference. Oxford University Press, 1996.

[3] A J Izenman. Recent developments in nonparametric density estimation. Journal of the american statistical association, 1991.
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Context - Small-Data

( — i N\
D={DY,i=1,...,Np}
with DO “&" fy

}
fxm

|

X ={xY,j=1,... Nx}

: S ok &
with X “& i
oy
( A
aMe
| J
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Context - Small-Data

( _ i )
D={DY,i=1,...,Np}
with DO “&" fy
| ¢ J
fx\n
X ={xY,j=1,... Nx}

A i) d.d.d. p
with X “& i
oy
( A
aMe
| J

e The database is of limited size Np:
the small-data context is imposed by costly

experimental tests.
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Context - Small-Data

Do (DViz1. . Np) ) e The database is of Iimitgd §ize Np:
with DO #5 fy the small-data context is imposed by costly
T J experimental tests.
!
m e The MC sample is of limited size Nx:
¢ the small-data context is imposed by the sim-
X ={X9 j=1,.. Nx} ulation time induced by the model complexity.
with X©) “& fX‘D
oy
( A
ﬂMC

cccccccc

] ONERA e w
il ———  INP S|8ma Y BiscAl 2022-10-07 C.SURGET ETICS 2022 5%




Context - Small-Data

) e The database is of limited size Np:
the small-data context is imposed by costly

P
D={DYi=1,...,Np}
with DO “&" fy

T J experimental tests.
fX\D . . . )
e The MC sample is of limited size Nx:
¢ the small-data context is imposed by the sim-
X ={X9 j=1,.. Nx} ulation time induced by the model complexity.

: S ok &
with X “& i

( 2¢ ) l

e [ Test-Simulation trade-off }
. J
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Context - Conditioning on a given database

The expectation (1.1) and its estimator are thus written as following for a given
database D = d:

fx(Bed [p(X)] = ¢> ) fxpoq(x)dz (1.3)
)
N qu (X ) (1.4)
with x () “& fX‘D 5. The estimator (1.4) is now subject to the first uncer-

tainty source conditioned on the database D = d.
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Context - Conditioning on a given database

The expectation (1.1) and its estimator are thus written as following for a given
database D = d:

¢ ) fxpoq(x)dz (1.3)

o qu(xm) (1.4)

[¢ (X)]

fxuj:a

with x () “& fX‘D 5. The estimator (1.4) is now subject to the first uncer-
tainty source conditioned on the database D = d.

However, the uncertainty related to the database is not considered in the fol-
lowing variance :

) = 5= Vi, B OO (15)

Nx fx\p=a
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Context - Problems

( — i N\
D={DY,i=1,...,Np}
with DO "&b po

}
fX\D

|

X ={xY j=1.. Nx}

. i) dd.d. p
with X0 “~ £
oy
( A
ﬂ]\'fc
| J
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Context - Problems

P
D={DY,i=1,...,Np}

with DO "&b po

~

I

fX\D

Problem A
How to take into account the uncertainty of
the database in the variance of the estima-
tor?

|

X ={X9D j=1,... Nx}

. i) dd.d. p
with X0 “~ £

cy

sMC
L
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Context - Problems

— — N Problem A
D={DY,i=1,...,Np} i )
with DO 54 £ How to take into account the uncertainty of
! the database in the variance of the estima-
tor?
fx\D
X ={XW j=1,... Nx} Problem B
with X0 “&- f o In order to improve efficiently the accuracy
s} of the estimator, should the investment of
, ) data be made in the database or the MC
Me sample?
| J
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Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance
of the estimator?
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Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance
of the estimator?

The following expectation takes into account the variation of the database:

]Ef(X)D) /\D/ f(x D) (z, d)de dd. (2.1)
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Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance
of the estimator?

The following expectation takes into account the variation of the database:

Efip [0 /\D/ z) fox oy (@, d)dz dd. (2.1)

An estimator of this integral [4] is the following:

)'de

with X/ leD and N the number of databases of size Np.

[4] V Chabridon. Analyse de sensibilité fiabiliste avec prise en compte d'incertitudes sur le modéle probabiliste, 2018.
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Proposed approach - Empirical variance

1 ) 1 ) . . .
- = The process is repeated in order to estimate the
oy D variance with respect to the database.
fx‘n‘ fX\D\
X, Xy
E¢ E¢ Empirical variance:
v
y . MC - R 1 < am R _MCh2
e e Vi 18] = 57— D2 (1€ = pNFATMO) T (23)
B k=1
N 4
NRA-MC (2.2)
~——
Wy,
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Proposed approach - Small-data context

)
b ~
— In a small-data context, only a database D
¥ RN of limited size Np is available.
D, Dy
7 T Resampling method
Allows to generate N databases from the initial
; : one. [5, 6] (e.g. Bootstrap)
fx\l). fx\n\
X, Xy The nested estimator (2.2) is now conditioned on
the initial database but the method allows to take
=} ) into account the uncertainty related to it.
e ANe (2.3)
[5] C H Yu. Resampling methods: concepts, applications, and justification.
\# :’ Practical Assessment, Research, and Evaluation, 2002.
[6] B Efron. The jackknife, the bootstrap and other resampling plans. SIAM,
pNRA-MC (2.2) 1982.
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Sensitivity analysis - ANOVA

Problem B

In order to improve efficiently the accuracy of the estimator, should the
investment of data be made in the database or the MC sample?
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Sensitivity analysis - ANOVA

Problem B

In order to improve efficiently the accuracy of the estimator, should the
investment of data be made in the database or the MC sample?

An ANalysis Of VAriance [7, 8] is performed:

I G G|

DT Ty EMe]
[ [ieix]] e
e

Interpretation of Sobol’ indices:

e S5 — proportion of variance due to the database,
e S5 — proportion of variance due to the MC sample.

[7] llya M Sobol'. Sensitivity analysis for non-linear mathematical models. Mathematical modelling and computational experiment, 1993.
[8] F Gamboa and others. Statistical inference for sobol pick-freeze monte carlo method. Statistics, 50(4):881-902, 2016.
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Sensitivity analysis - Interpretation

1.0

0.8

0.6

0.4

0.2

0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0

SI)

Figure 3.1: Interpretation of Sobol’ indices associated to the database and the Monte Carlo sample.
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Sensitivity analysis - Interpretation

1.0
Uncertainty dominance
related to simulation
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Sensitivity analysis - Interpretation

1.0
Uncertainty dominance
related to simulation
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Figure 3.1: Interpretation of Sobol’ indices associated to the database and the Monte Carlo sample.
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Sensitivity analysis - Independance of inputs

However, the dependance of X to D is an issue for the sensitivity analysis.
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Sensitivity analysis - Independance of inputs

However, the dependance of X to D is an issue for the sensitivity analysis.

— Isoprobabilistic transformation \
The transformation 7p [9, 10, 11] is performed here to work with an
independent sample U = {UY) j = 1,..., Nx }:

.| 10,1]¢ X
oo\ AT =X (3.2)

with U "X 14 [0, 1)°.

[9] M Rosenblatt. Remarks on a multivariate transformation. The annals of mathematical statistics, 1952.
[10] AE Brockwell. Universal residuals: A multivariate transformation. Statistics probability letters, 2007.

[11] R Lebrun and others. Do rosenblatt and nataf isoprobabilistic transformations really differ? Probabilistic Engineering Mechanics, 2009.
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Sensitivity analysis - Solution

Solution B
The investment of data is guided by the highest index:

® 55> Sz — Investment in the database (experimental tests),
e S5 < Sz — Investment in the MC sample (simulation).

uuuuuuuu
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lllustration - Cantilever Beam

Mean deflection of the free end of a cantilever beam:

Ay ¥ ¥

% =}2 24 Ih
A » Pl »
L i b

Figure 4.1: Representation of a cantilever beam where F is the transverse load applied on the free end of the beam of length L, Young’s
modulus E and cross-section bh.

Table 4.1: Probabilistic models associated to independent input variables for a cantilever
beam toy-case. [12]

Input variable  Distribution Mean Coefficient of variation
F LogNormal  556.8 [N] 0.08
3
¢(F L. E.b h) — 4FL L Normal 4290 [mm] 0.1
VT Ebh3 E LogNormal ~ 2.10° [MPa]  0.06
b Normal 62 [mm] 0.1
h Normal 98.7 [mm] 0.1

[12] L Baoyu and others. Reliability analysis based on a novel density estimation method for structures with correlations, 2017.
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lllustration - Results

- Ny =150
O Np=10
X Np=100
Np=190
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Figure 4.2: Evolution of Sobol indices for the cantilever beam toy-case at N 5 = [10, 100, 190] and (a) N x = 150 (b)
N 3 = 450. Estimation of n. = 20 indices for each combination.
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Conclusion

Framework
e The probabilistic model is unknown and is inferred from experimental tests,

* A small-data context is imposed by costly experimental tests and a costly black
box function.
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Conclusion

Framework
e The probabilistic model is unknown and is inferred from experimental tests,

* A small-data context is imposed by costly experimental tests and a costly black
box function.

Takes into account the database uncertainty in the variance of the estimator,

Answers the test-simulation trade-off by guiding the investment of data in the
driving source of uncertainty.
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Conclusion

Framework
e The probabilistic model is unknown and is inferred from experimental tests,

* A small-data context is imposed by costly experimental tests and a costly black
box function.

Takes into account the database uncertainty in the variance of the estimator,

Answers the test-simulation trade-off by guiding the investment of data in the
driving source of uncertainty.

Perspectives

o Reduction of the computational burden with importance sampling methods, [13]
* Quantification of the amount of data to invest while considering cost differences.

[13] A Owen, Y Zhou. Safe and effective importance sampling. Journal of the American Statistical Association, 2000.
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