Sensitivity to statistical estimation uncertainties and probabilistic model identification

ETICS 2022

Charles Surget1,2
charles.surget@onera.fr

Sylvain Dubreuil1, Jérôme Morio1, Cécile Mattrand2, Jean-Marc Bourinet2, Nicolas Gayton2.

7th of October 2022

1ONERA/DTIS, F-31055 Toulouse, France 2SIGMA Clermont, F-63000 Clermont-Ferrand, France
Table of contents

1 Context

2 Proposed approach

3 Sensitivity analysis

4 Illustration

5 Conclusion
Context - Uncertainty Quantification

Simulation code of a mechanical structure:

\[d \text{ parameters} \quad (E, \nu, L, \ldots) \quad \rightarrow \quad \text{An output quantity} \quad (\sigma, u, \ldots) \]
Context - Uncertainty Quantification

Simulation code of a mechanical structure:

\[d \text{ parameters} \quad (E, \nu, L, \ldots) \rightarrow \text{An output quantity} \quad (\sigma, u, \ldots) \]

In an uncertainty quantification context, those parameters are considered as an input continuous random vector:

\[X = (X_1, \ldots, X_d)^t \] with values on the domain \(\mathcal{X} \subseteq \mathbb{R}^d \) and defined by a given Probability Density Function (PDF) \(f_X \).
One could be interested in assessing the following expectation of a particular function τ of $Y = \phi(X)$ (e.g. a mean or a probability of failure):

$$E_{f_X}[\tau(\phi(X))] = \int_{\mathcal{X}} \tau(\phi(x)) f_X(x) \, dx.$$

(1.1)
Context - 1st uncertainty source

One could be interested in assessing the following expectation of a particular function \(\tau \) of \(Y = \phi(X) \) (e.g. a mean or a probability of failure):

\[
\mathbb{E}_{f_X}[\tau(\phi(X))] = \int_{\mathcal{X}} \tau(\phi(x)) f_X(x) \, dx.
\] (1.1)

Assuming \(\tau = \text{Id} \), the Monte Carlo (MC) estimator of this integral is given by:

\[
\hat{\mu}^{MC} = \frac{1}{N_X} \sum_{j=1}^{N_X} \phi(X^{(j)}),
\] (1.2)

with \(X^{(j)} \overset{i.i.d.}{\sim} f_X \) and \(N_X \) the size of the MC sample.
One could be interested in assessing the following expectation of a particular function \(\tau \) of \(Y = \phi(X) \) (e.g. a mean or a probability of failure):

\[
\mathbb{E}_{f_X}[\tau(\phi(X))] = \int_{\chi} \tau(\phi(x)) f_X(x) \, dx.
\] (1.1)

Assuming \(\tau = \text{Id} \), the Monte Carlo (MC) estimator of this integral is given by:

\[
\hat{\mu}^{MC} = \frac{1}{N_X} \sum_{j=1}^{N_X} \phi(X^{(j)}),
\] (1.2)

with \(X^{(j)} \sim f_X \) and \(N_X \) the size of the MC sample. A first uncertainty source is related to this sample, defined as \(\tilde{X} \) in the following process:

\[\tilde{X} = \{X^{(j)}, j = 1, \ldots, N_X\} \]
In a realistic context, the PDF f_X may be unknown [1]. Thus, the probabilistic model must be inferred from experimental tests:

$$\widetilde{D} = \{D^{(i)}, i = 1, \ldots, N_D\}$$

with $D^{(i)} \overset{i.i.d.}{\sim} f_X$ with N_D the size of the database \widetilde{D}. The estimation $\hat{f}_X|\widetilde{D}$ [2, 3] of the PDF f_X induces a second uncertainty source related to \widetilde{D}.

Context - Small-Data

\[\mathcal{D} = \{D^{(i)}, i = 1, \ldots, N_D\} \]

with \(D^{(i)} \overset{i.i.d.}{\sim} f_X\)

\[\hat{f}_{X|\mathcal{D}} \]

\[\mathcal{X} = \{X^{(j)}, j = 1, \ldots, N_X\} \]

with \(X^{(j)} \overset{i.i.d.}{\sim} \hat{f}_{X|\mathcal{D}}\)

\[\Sigma \]

\[\hat{\mu}^{MC} \]
The database is of limited size N_D: the small-data context is imposed by costly experimental tests.
The database is of limited size N_D: the small-data context is imposed by costly experimental tests.

The MC sample is of limited size N_X: the small-data context is imposed by the simulation time induced by the model complexity.
Context - Small-Data

- The **database** is of limited size N_D: the small-data context is imposed by costly experimental tests.

- The **MC sample** is of limited size N_X: the small-data context is imposed by the simulation time induced by the model complexity.

The Test-Simulation trade-off
The expectation (1.1) and its estimator are thus written as following for a given database $\tilde{D} = \tilde{d}$:

$$\mathbb{E}_{\tilde{D}=\tilde{d}} [\phi(X)] = \int_{\chi} \phi(x) \hat{f}_{X|\tilde{D}=\tilde{d}}(x) \, dx$$

$$\approx \frac{1}{N_X} \sum_{j=1}^{N_X} \phi(X^{(j)})$$

(1.3)

(1.4)

with $X^{(j)} \overset{i.i.d.}{\sim} \hat{f}_{X|\tilde{D}=\tilde{d}}$. The estimator (1.4) is now subject to the first uncertainty source conditioned on the database $\tilde{D} = \tilde{d}$.

The expectation (1.1) and its estimator are thus written as following for a given database $\tilde{D} = \tilde{d}$:
The expectation (1.1) and its estimator are thus written as following for a given database $\tilde{D} = \tilde{d}$:

$$
\mathbb{E}_{\hat{f}_{X|\tilde{D}=\tilde{d}}} [\phi(X)] = \int_{\mathcal{X}} \phi(x) \hat{f}_{X|\tilde{D}=\tilde{d}}(x) \, dx
$$

(1.3)

$$
\approx \frac{1}{N_X} \sum_{j=1}^{N_X} \phi(X^{(j)}) ,
$$

(1.4)

with $X^{(j)} \overset{i.i.d.}{\sim} \hat{f}_{X|\tilde{D}=\tilde{d}}$. The estimator (1.4) is now subject to the first uncertainty source conditioned on the database $\tilde{D} = \tilde{d}$.

However, the uncertainty related to the database is not considered in the following variance :

$$
\nabla \hat{f}_{X|\tilde{D}=\tilde{d}} \left[\hat{\mu}^{MC} \right] = \frac{1}{N_X} \nabla \hat{f}_{X|\tilde{D}=\tilde{d}} \left[\phi(X) \right].
$$

(1.5)
Context - Problems

\[\tilde{D} = \{D^{(i)}, i = 1, \ldots, N_D\} \]
with \(D^{(i)} \text{i.i.d.} \sim f_X \)

\[\hat{f}_{X|\tilde{D}} \]

\[\bar{X} = \{X^{(j)}, j = 1, \ldots, N_X\} \]
with \(X^{(j)} \text{i.i.d.} \sim \hat{f}_{X|\tilde{D}} \)

\[\Sigma \]

\[\hat{\mu}^{MC} \]
Context - Problems

Problem A
How to take into account the uncertainty of the database in the variance of the estimator?

\[\tilde{D} = \{D^{(i)}, i = 1, \ldots, N_D\} \]
with \(D^{(i)} \text{i.i.d.} \sim f_X \)

\[\hat{f}_{X|\tilde{D}} \]

\[\bar{X} = \{X^{(j)}, j = 1, \ldots, N_X\} \]
with \(X^{(j)} \text{i.i.d.} \sim \hat{f}_{X|\tilde{D}} \)

\[\Sigma \]

\[\hat{\mu}^{MC} \]
Context - Problems

\[\tilde{D} = \{ D^{(i)}, i = 1, \ldots, N_D \} \text{ with } D^{(i)} \overset{i.i.d.}{\sim} f_X \]

\[\hat{f}_{X|\tilde{D}} \]

\[\tilde{X} = \{ X^{(j)}, j = 1, \ldots, N_X \} \text{ with } X^{(j)} \overset{i.i.d.}{\sim} \hat{f}_{X|\tilde{D}} \]

\[\Sigma \]

\[\hat{\mu}^{MC} \]

Problem A
How to take into account the uncertainty of the database in the variance of the estimator?

Problem B
In order to improve efficiently the accuracy of the estimator, should the investment of data be made in the database or the MC sample?
Table of contents

1. Context
2. Proposed approach
3. Sensitivity analysis
4. Illustration
5. Conclusion
Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance of the estimator?
Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance of the estimator?

The following expectation takes into account the variation of the database:

$$\mathbb{E}_{f(x,\hat{D})} [\phi(X)] = \int_{x^\mathcal{D}} \int_{x} \phi(x) f(x,\hat{D})(x,\tilde{d}) \, dx \, d\tilde{d}. \quad \text{(2.1)}$$
Proposed approach - Double integral expectation

Problem A

How to take into account the uncertainty of the database in the variance of the estimator?

The following expectation takes into account the variation of the database:

\[
\mathbb{E}_{f(x,D)} [\phi (X)] = \int_{\mathcal{X}^{ND}} \int_{\mathcal{X}} \phi (x) f(x,D) (x, \tilde{d}) dx \, d\tilde{d}.
\] (2.1)

An estimator of this integral [4] is the following:

\[
\hat{\mu}_{NRA-MC} = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{N_X} \sum_{j=1}^{N_X} \phi \left(X_{(j)}^{(k)} \right) = \frac{1}{N} \sum_{k=1}^{N} \hat{\mu}_{MC}^{k},
\] (2.2)

with \(X_{(j)}^{(k)} \) i.i.d. \(\sim f_X|D_k \) and \(N \) the number of databases of size \(N_D \).

Proposed approach - Empirical variance

The process is repeated in order to estimate the variance with respect to the database.

Empirical variance:

\[
\hat{\mu}_{(X,D)}^{MC} = \frac{1}{N-1} \sum_{k=1}^{N} \left(\hat{\mu}_{MC}^{k} - \hat{\mu}_{NRA-MC} \right)^2
\]

(2.3)
Proposed approach - Small-data context

In a small-data context, only a database \(\tilde{D} \) of limited size \(N_D \) is available.

Resampling method

Allows to generate \(N \) databases from the initial one. [5, 6] (e.g. Bootstrap)

Solution A

The nested estimator (2.2) is now conditioned on the initial database but the method allows to take into account the uncertainty related to it.

\[
\hat{\mu}^{NRA-MC} = \hat{\mu}^{MC} - \hat{\mu}^{MC-NRA}
\]

\[(2.2) \]

\[
\hat{\mu}^{MC} = \sum \hat{f}_{X|\tilde{D}_i} \tilde{X}_i
\]

\[(2.3) \]

Table of contents

1. Context
2. Proposed approach
3. Sensitivity analysis
4. Illustration
5. Conclusion
Problem B

In order to improve efficiently the accuracy of the estimator, should the investment of data be made in the database or the MC sample?

\[S_f = \frac{\text{VAR}(\hat{\mu}_{\text{MC}}|e)}{\text{VAR}(\hat{\mu}_{\text{MC}})} \]

\[S_f = \frac{\text{VAR}(\hat{\mu}_{\text{MC}}|f)}{\text{VAR}(\hat{\mu}_{\text{MC}})} \]

Interpretation of Sobol' indices:

- \(S_f \rightarrow \) proportion of variance due to the database
- \(S_f \rightarrow \) proportion of variance due to the MC sample

Problem B

In order to improve efficiently the accuracy of the estimator, should the investment of data be made in the database or the MC sample?

An ANalysis Of VAriance [7, 8] is performed:

\[S_D = \frac{\nabla \left[E \left[\hat{\mu}^{MC} | \tilde{D} \right] \right]}{\nabla \left[\hat{\mu}^{MC} \right]} \]

\[S_X = \frac{\nabla \left[E \left[\hat{\mu}^{MC} | \tilde{X} \right] \right]}{\nabla \left[\hat{\mu}^{MC} \right]} \] \hspace{1cm} \text{(3.1)}

Interpretation of Sobol' indices:

- \(S_D \to \) proportion of variance due to the database,
- \(S_X \to \) proportion of variance due to the MC sample.

Figure 3.1: Interpretation of Sobol' indices associated to the database and the Monte Carlo sample.
Sensitivity analysis - Interpretation

Figure 3.1: Interpretation of Sobol' indices associated to the database and the Monte Carlo sample.
Figure 3.1: Interpretation of Sobol' indices associated to the database and the Monte Carlo sample.
Figure 3.1: Interpretation of Sobol’ indices associated to the database and the Monte Carlo sample.
Sensitivity analysis - Interpretation

Figure 3.1: Interpretation of Sobol' indices associated to the database and the Monte Carlo sample.
Figure 3.1: Interpretation of Sobol' indices associated to the database and the Monte Carlo sample.
Sensitivity analysis - Independance of inputs

However, the dependance of \tilde{X} to \tilde{D} is an issue for the sensitivity analysis.

\[T_D: [0, 1]^d \rightarrow X_U \rightarrow X, \quad (3.2) \]

Sensitivity analysis - Independence of inputs

However, the dependance of \(\tilde{X} \) to \(\tilde{D} \) is an issue for the sensitivity analysis.

Isoprobabilistic transformation

The transformation \(\mathcal{T}_D [9, 10, 11] \) is performed here to work with an independent sample \(\tilde{U} = \{ U^{(j)}, j = 1, \ldots, N_X \} \):

\[
\mathcal{T}_D : \begin{array}{ccc}
[0, 1]^d & \longrightarrow & \mathcal{X} \\
U & \mapsto & X
\end{array},
\]

(3.2)

with \(U^{(j)} \overset{i.i.d.}\sim \mathcal{U} [0, 1]^d \).

Solution B

The investment of data is guided by the highest index:

- $S_D > S_U \rightarrow$ Investment in the database (experimental tests),
- $S_D < S_U \rightarrow$ Investment in the MC sample (simulation).
Table of contents

1. Context
2. Proposed approach
3. Sensitivity analysis
4. Illustration
5. Conclusion
Mean deflection of the free end of a cantilever beam:

$$\phi (F, L, E, b, h) = \frac{4FL^3}{Ebh^3}$$

Figure 4.1: Representation of a cantilever beam where F is the transverse load applied on the free end of the beam of length L, Young’s modulus E and cross-section bh.

Table 4.1: Probabilistic models associated to independent input variables for a cantilever beam toy-case. [12]

<table>
<thead>
<tr>
<th>Input variable</th>
<th>Distribution</th>
<th>Mean</th>
<th>Coefficient of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>LogNormal</td>
<td>556.8 [N]</td>
<td>0.08</td>
</tr>
<tr>
<td>L</td>
<td>Normal</td>
<td>4290 [mm]</td>
<td>0.1</td>
</tr>
<tr>
<td>E</td>
<td>LogNormal</td>
<td>2.10^5 [MPa]</td>
<td>0.06</td>
</tr>
<tr>
<td>b</td>
<td>Normal</td>
<td>62 [mm]</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>Normal</td>
<td>98.7 [mm]</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Illustration - Results

Figure 4.2: Evolution of Sobol' indices for the cantilever beam toy-case at $N_D = [10, 100, 190]$ and (a) $N_X = 150$ (b) $N_X = 450$. Estimation of $n = 20$ indices for each combination.
Table of contents

1. Context
2. Proposed approach
3. Sensitivity analysis
4. Illustration
5. Conclusion
Conclusion

Framework

- The probabilistic model is **unknown** and is inferred from experimental tests,
- A **small-data context** is imposed by costly experimental tests and a costly black box function.
Conclusion

Framework

- The probabilistic model is **unknown** and is inferred from **experimental tests**,
- A **small-data context** is imposed by costly **experimental tests** and a costly **black box function**.

Current method

A) Takes into account the **database** uncertainty in the variance of the estimator,
B) Answers the **test-simulation** trade-off by guiding the investment of data in the driving source of uncertainty.
Conclusion

Framework

- The probabilistic model is **unknown** and is inferred from experimental tests,
- A **small-data context** is imposed by costly experimental tests and a costly black box function.

Current method

A) Takes into account the **database** uncertainty in the variance of the estimator,
B) Answers the **test-simulation** trade-off by guiding the investment of data in the driving source of uncertainty.

Perspectives

- Reduction of the computational burden with importance sampling methods, [13]
- Quantification of the amount of data to invest while considering cost differences.

Analyse de sensibilité fiabiliste avec prise en compte d’incertitudes sur le modèle probabiliste-Application aux systèmes aérospatiaux.

Resampling methods: concepts, applications, and justification.

The jackknife, the bootstrap and other resampling plans.
SIAM, 1982.

