Krigeage adaptatif de modèles numériques séquentiels pour l'étude de la fiabilité de systèmes sollicités en fatigue

Doctorant : Thomas Constant (fin de deuxième année de thèse)

Encadrement KNDS France: Laëtitia Fouché

Encadrement universitaire : Cécile Mattrand Nicolas Gayton

Contexte et problématique

Cas d'application industriel: étude de la durabilité en fatigue des soudures de la cabine du CAESAR

Sollicitations sur le modèle global

Transfert des sollicitations dans les sous-structures

Endommagement *d* dans les zones à risque identifiées sur la sous-structure étudiée

Cas d'application industriel: étude de la durabilité en fatigue des soudures de la cabine du CAESAR

Cas d'application industriel: étude de la durabilité en fatigue des soudures de la cabine du CAESAR

$$\mathbf{X}_{A} \longrightarrow \begin{array}{c} m_{A} \\ m_{A} \\ m_{B} \\ \mathbf{X}_{B} \end{array} \xrightarrow{g(\mathbf{X}_{A}, \mathbf{X}_{B}) = d_{seuil} - m_{B}(m_{A}(\mathbf{X}_{A}), \mathbf{X}_{B})}$$

$$\mathbf{X}_{B} \\ \mathbf{Y}_{B} \\ \mathbf{Y}_$$

$$\mathbf{X}_{A} \longrightarrow \begin{array}{c} m_{A} \\ m_{A} \\ m_{B} \\ \mathbf{X}_{B} \end{array} \xrightarrow{g(\mathbf{X}_{A}, \mathbf{X}_{B}) = d_{seuil} - m_{B}(m_{A}(\mathbf{X}_{A}), \mathbf{X}_{B})}$$

$$\mathbf{X}_{B} \\ \mathbf{Y}_{B} \\ \mathbf{Y}_$$

Verrous :

- 1. Contexte « boite noire »
- 2. Chaîne très coûteuse (c $\approx 30h$)
- 3. Sortie intermédiaire $m_A(\mathbf{X}_A)$ complexe

Verrous :

- 1. Contexte « boite noire »
- Chaîne très coûteuse ($c \approx 30h$) 2.
- Sortie intermédiaire $m_A(\mathbf{X}_A)$ complexe 3.

- 2. Séparation des variables d'entrées
- 3. Composition $m_B \circ m_A$

Verrous :

- 1. Contexte « boite noire »
- 2. Chaîne très coûteuse (c $\approx 30h$)
- 3. Sortie intermédiaire $m_A(\mathbf{X}_A)$ complexe

Approche : Métamodèle de Krigeage \hat{g} avec enrichissement adaptatif de g puis application d'une méthode de Monte-Carlo sur \hat{g} (AK-MCS)

Méthode

Génération d'une population de Monte-Carlo S

 x_A

Complète : $g(\mathbf{x}_A, \mathbf{x}_B) = g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B) + g_{AB}(\mathbf{x}_A, \mathbf{x}_B), \ \mathbf{x} = (\mathbf{x}_A, \mathbf{x}_B) \in \mathbb{R}^{n_A + n_B}$

Complète : $g(\mathbf{x}_A, \mathbf{x}_B) = g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B) + g_{AB}(\mathbf{x}_A, \mathbf{x}_B), \ \mathbf{x} = (\mathbf{x}_A, \mathbf{x}_B) \in \mathbb{R}^{n_A + n_B}$

Troncature des effets croisés : $g(\mathbf{x}_A, \mathbf{x}_B) \cong g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B)$

Complète : $g(\mathbf{x}_A, \mathbf{x}_B) = g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B) + g_{AB}(\mathbf{x}_A, \mathbf{x}_B), \ \mathbf{x} = (\mathbf{x}_A, \mathbf{x}_B) \in \mathbb{R}^{n_A + n_B}$

Troncature des effets croisés : $g(\mathbf{x}_A, \mathbf{x}_B) \cong g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B)$

Projection sur deux hyperplans passant par **un point d'ancrage** $\bar{\mathbf{x}} = (\bar{\mathbf{x}}_A, \bar{\mathbf{x}}_B)$:

Complète : $g(\mathbf{x}_A, \mathbf{x}_B) = g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B) + g_{AB}(\mathbf{x}_A, \mathbf{x}_B), \ \mathbf{x} = (\mathbf{x}_A, \mathbf{x}_B) \in \mathbb{R}^{n_A + n_B}$

Troncature des effets croisés : $g(\mathbf{x}_A, \mathbf{x}_B) \cong g_0 + g_A(\mathbf{x}_A) + g_B(\mathbf{x}_B)$

Projection sur deux hyperplans passant par **un point d'ancrage** $\bar{\mathbf{x}} = (\bar{\mathbf{x}}_A, \bar{\mathbf{x}}_B)$:

$$g_{0} = g(\bar{\mathbf{x}}_{A}, \bar{\mathbf{x}}_{B}) = d_{seuil} - m_{B}(m_{A}(\bar{\mathbf{x}}_{A}), \bar{\mathbf{x}}_{B})$$

$$g_{A}(\mathbf{x}_{A}) = g(\bar{\mathbf{x}}_{A}, \bar{\mathbf{x}}_{B}) - g_{0} = d_{seuil} - m_{B}(m_{A}(\mathbf{x}_{A}), \bar{\mathbf{x}}_{B}) - g_{0}$$

$$g_{B}(\mathbf{x}_{B}) = g(\bar{\mathbf{x}}_{A}, \mathbf{x}_{B}) - g_{0} = d_{seuil} - m_{B}(m_{A}(\bar{\mathbf{x}}_{A}), \mathbf{x}_{B}) - g_{0}$$
point « A-projeté » point « B-projeté »

Illustration en 2D de la projection de points de l'espace sur deux hyperplans (axes) passant par un point d'ancrage

Illustration en 2D de la projection de point de l'espace sur deux hyperplans (axes) passant par un point d'ancrage

Procédure Active Kriging for Sequential Model (AK-SM)

23

Cas d'études et résultats

Validation de AK-SM sur le cas analytique « Fatigue Fluage »

• Fonction de performance issue de l'article « Reliability analysis of creep-fatigue failure » (Mao & Mahadevan, International Journal of Fatigue, 2000)

$$g(N_c, N_f, n_c, n_f, \theta_1, \theta_2) = 2 - \exp\left(\frac{\theta_1 n_c}{N_c}\right) + \frac{(\exp(\theta_1) - 2)(\exp\left(-\frac{\theta_1 n_c}{N_c}\right) - 1)}{\exp(-\theta_2) - 1} - \frac{n_f}{N_f}$$

$$c_{A} = 1000$$

$$c_{B} = 1$$

$$X_{A} = \begin{bmatrix} n_{c}, N_{c} \end{bmatrix}^{T}$$

$$y = m_{A}(n_{c}, N_{c}) = \frac{n_{c}}{N_{c}}$$

$$m_{B}(y, N_{f}, n_{f}, \theta_{1}, \theta_{2}) = 2 - \exp(\theta_{1}y) + \frac{(\exp(\theta_{1}) - 2)(\exp(-\theta_{1}y) - 1)}{\exp(-\theta_{2}) - 1} - \frac{n_{f}}{N_{f}}$$

$$X_{B} = \begin{bmatrix} n_{f}, N_{f}, \theta_{1}, \theta_{2} \end{bmatrix}^{T}$$

Axes d'enrichissement de la méthode dans les cas dit « X_A-dominant » et « X_B-dominant »

Boxplots comparatifs des performances en coût des procédures AK-MCS et AK-SM dans le cas où $c_A = 1000c_B$

Tableau comparatif des **résultats médians** sur « Fatigue Fluage » pour les méthodes MCS, AK-MCS et AK-SM

Configuration	méthodes	p _f	δ_{p_f} en %	Nombre de points mal classés sur 10 ⁵	Nombre d'appels à <i>m_A</i>	Nombre d'appels à la fonction performance
X _A dominant	MCS	$2.97.10^{-3}$	5.79		10 ⁵	10 ⁵
	AK-MCS	2.92.10 ⁻³	5.84	5	125	125
	AK-SM	2.92.10 ⁻³	5.84	6	76	129
X_B dominant	MCS	2.8.10 ⁻³	5.96		10 ⁵	10 ⁵
	AK-MCS	2.8.10 ⁻³	5.96	1	72	72
	AK-SM	2.879.10 ⁻³	5.88	3	27	97

Mise en œuvre de AK-SM sur un cas éléments-finis simplifié mais représentatif du cas industriel : cas intermédiaire « Modal Bracket »

Cas 1. Avec population de Monte-Carlo de référence

Cas 1. Avec population de Monte-Carlo de référence

KNDS

Cas 1. Avec population de Monte-Carlo de référence

	Method	p _f	δ_{p_f} (%)	Number of misclassified points	Number of m_A calls	Number of performance calls	Computing time
Modal-Bracket first case	MCS	1,01.10 ⁻²	9.99		10 ⁴	10 ⁴	pprox 7d 3h
	AK-MCS-U	1,01.10 ⁻²	9.99	0	50 + (10)	50 + (10)	1 h 03 min
	AK-SM-U	1,01.10 ⁻²	9.99	0	3 + (10)	64 + (10)	13 min 26s
	AK-SM-ESC	1,01.10 ⁻²	9.99	0	1 + (10)	23 + (10)	10 min 06s

Cas 2. Sans population de Monte-Carlo de référence $N = 10^6$: comparaison à AK-MCS seulement

	Random Variable	Distribution	Mean	Standard Deviation
	c_{ampx}	Normal	1	0.1
	C _{ampry}	Normal	1	0.1
	C _{amprz}	Normal	1	0.1
Case 2 (without reference)	S _f	Log-normal	1601	350
	e_f	Log-normal	0.976	0.126
	<i>Rp</i> 02	Log-normal	253	5
	k_t	Normal	3	0.09

Cas 2. Sans population de Monte-Carlo de référence (comparaison à AK-MCS seulement)

	Method	p _f	δ_{p_f} (%)	Number of m_A calls	Number of performance calls	Computing time
Modal Bracket second case	MCS					1 y 11 m (estimated)
	AK-MCS-U	3,139. 10 ⁻³	1.78	<mark>91</mark> + (20)	91 + (20)	1 h 55 min
	AK-SM-U	3,028. 10 ⁻³	1.81	27 + (20)	137 + (20)	1 h 02 min
	AK-SM-ESC	3,104. 10 ⁻³	1.79	4 + (20)	20 + (20)	26 min

CONCLUSION

Présentation de l'approche AK-SM pour **l'évaluation de la fiabilité** prenant activement en compte **les propriétés du code** (de la fonction de performance) en séparant les effets avec une **décomposition fonctionnelle**.

Possibilité d'appliquer cette démarche avec une autre fonction d'apprentissage, méthode de simulation, ou critère d'arrêt

Un gain significatif en termes de coût a été constaté, pour une performance de classification quasiment équivalente à AK-MCS.

Perspective

Mise en œuvre de l'approche sur le cas industriel « Etude fiabiliste de la durabilité du CAESAR[®] ».

