Calage bayésien pour du pronostic hybride – Application à l'étude du colmatage des générateurs de vapeur

Edgar Jaber

Séminaire des Doctorants ETICS 2024 27/09/2024

Encadrants : E. Remy, V. Chabridon (EDF R&D) Co-directeurs : D. Lucor (LISN), M. Mougeot (Centre Borelli) Collaborateurs : M. Keller, B. Iooss, M. Baudin, Q. Feng (EDF R&D)

Sommaire

Colmatage des GV et motivations

Outils à disposition

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 · ♡ < ♡ 2/35

Sommaire

Colmatage des GV et motivations

Outils à disposition Modèle physique :THYC-Puffer-DEPOTHYC Modèle statistique : ESTICOL

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

・ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 C 3/35

Le générateur de vapeur (GV)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure – Schéma d'un générateur de vapeur (GV) typique (source : dessin propre).

Cas d'étude industriel

- ► Colmatage des plaques entretoises → phénomène complexe affectant les GVs du parc nucléaire français
- ► Apparaît sur de longues périodes d'exploitation → dû à la déposition progressive de produits de corrosion issus du circuit secondaire
- Augmente le risque de vibration des tubes et peut affecter la réponse du GV à des transitoires hypothétiques
- ► Taux de colmatage → mesuré par des *examens télévisuels* (ETV)
- \blacktriangleright ETV sont mesurés lors des arrêts de tranche \rightarrow peu de mesures à disposition en tant que « vérité terrain »

Figure – Exemple d'un ETV (C) EDF.

■ ▶ ▲ ■ ▶ ■ ♡ ۹ (~ 5/35

Cas d'étude industriel

- ▶ Réduire ponctuellement le colmatage → maintenances préventives par nettoyages chimiques (NC)
- Pour appuyer la planification des maintenances → travaux de R&D pour mieux comprendre, estimer et prédire le taux de colmatage τ_c
- Les différents outils issus de ces travaux sont aujourd'hui capitalisés dans la plateforme Jumeau Numérique GV (JNGV)
- Deux typologies d'outils :
 - Modèle de simulation numérique : THYC-Puffer-DEPOTHYC

 basé sur une modélisation physico-chimique multi-échelle
 [Prusek, 2012; Feng et al., 2023]
 - Modèle statistique : ESTICOL → basé sur des données opérationnelles de la centrale et les ETV [Pinciroli et al., 2021]
- But de la thèse : hybrider ces modèles pour un pronostic du colmatage plus robuste

Notions de pronostic

- ▶ Le taux de colmatage τ_c représente un indice de *dégradation*
- ► L'évènement d'intérêt pour la planification des maintenances est $\{\tau_c(t) > c\}$ (dépassement de seuil) \rightarrow seuil conservatif
- Quantité d'intérêt est la RUL (Remaining Useful Life) [Bregon and Daigle, 2019], défini pour un certain GV à partir du temps présent t_P

Objectif de la thèse

Figure – Schéma objectif de thèse (source : dessin propre)

Sommaire

Colmatage des GV et motivations

Outils à disposition Modèle physique :THYC-Puffer-DEPOTHYC Modèle statistique : ESTICOL

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

・ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 (35

Physique du colmatage

- ▶ Première brique : DEPOTHYC/COLMATHYC, développé par [Prusek, 2012] → système EDO-EDP mixte → permet de simuler la cinétique de colmatage à horizon de temps court
- ► Se base sur la validité physique des champs thermohydrauliques stationnaires → invalide sur des longues périodes d'exploitation
- ► Couplage multi-physique pour la simulation en temps long : THYC-Puffer-DEPOTHYC, développé par [Feng et al., 2023] → permet aussi de prendre en compte le conditionnement chimique (pH) du fluide grâce à un code de chimie (Puffer)
- Le modèle de colmatage correspond au système suivant (2 EDP de transport pour les fractions massiques + 1 EDO de croissance de matière pour la masse de magnétite) :

$$\begin{cases} \partial_t \Gamma_p + U \cdot \nabla \Gamma_p = f_p(\Phi_p, \Phi_s, \Gamma_p, \Gamma_s^{\max}) \\ \partial_t \Gamma_s + U \cdot \nabla \Gamma_s = f_s(\Phi_p, \Phi_s, \Gamma_s, \Gamma_s^{\max}) \\ dm_c/dt = \Phi_p + \Phi_s \\ \Gamma_s(0, .) = \Gamma_s(0), \ \Gamma_p(0, .) = \Gamma_p(0) \end{cases}$$
(2)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ℃ 10/35

Le code THYC-Puffer-DEPOTHYC (TPD)

Figure – Architecture de TPD. (=) (=) () () ()

Jeu de données de TPD

Par avis d'expert + travaux antérieurs [Lefebvre et al., 2023] : d = 7 variables d'entrée du module de dépôt g_{DEPO} entâchées d'incertitude (dont un paramètre de calage) → traitement probabiliste avec lois indépendantes données dans la table ci-dessous :

$$\boldsymbol{X}_{\mathsf{DEPO}} = (\boldsymbol{X}, \boldsymbol{\theta}) = (\alpha, \beta, \epsilon_{e}, \epsilon_{c}, d_{p}, \Gamma_{p}(0), \boldsymbol{a}_{v}) \sim \otimes_{i=1}^{d} \mathbb{P}_{X_{i}}$$
(3)

On dispose d'un *n*-échantillon en given-data de n = 1000 tirages Monte-Carlo (i.i.d.) tirés selon les lois données ci-dessous :

Variable	Signification	Distribution
α	Premier paramètre de corrélation empirique	$\mathcal{N}(101.6, 4.0)$
β	Second paramètre de corrélation empirique	$\mathcal{N}(0.0233, 0.0005)$
€e	Porosité des dépôts d'encrassement	$\mathcal{T}(0.2, 0.3, 0.5)$
€c	Porosité des dépôts colmatants	$\mathcal{T}(0.01, 0.05, 0.3)$
dp	Diamètre des particules de magnétite (m)	$\mathcal{T}(0.5, 5.0, 10.0) imes 10^{-6}$
$\Gamma_{\rho}(0)$	Donnée initiale de la fraction massique solide	$\mathcal{T}(1.0, 4.5, 8.0) imes 10^{-9}$
a _v	Paramètre de calage	$\mathcal{U}[0,15] imes10^{-4}$

Table – Variables incertaines, signification physique et distribution.

Métamodèle de Chaos Polynomial vectoriel de TPD

- Code TPD coûteux en temps de calcul → Métamodélisation par chaos polynomial vectoriel (PCE) sur la sortie [Soize and Ghanem, 2004] en approche <u>non-intrusive</u>. Ici g̃_{TPD} : X → ℝ^N
- Avantages du PCE : garanties d'approximation fonctionnelle, permet d'utiliser la connaissance des distributions d'entrée, analyse de sensibilité facilitée, permet de gérer la discontinuité, métamodèle déjà validé dans des travaux précédents [Jaber et al., 2024]
- Travaux en cours : métamodélisation à base de processus gaussiens

ESTICOL

► ESTICOL → modèle de régression utilisé pour estimer des taux de colmatage à un temps t < t_P sur des features opérationnelles "agrégées" en une seule covariable X⁽ⁱ⁾ ∈ ℝ (travaux basés sur [Pinciroli et al., 2021])

▶ D_{EST} = {(X⁽ⁱ⁾, Y⁽ⁱ⁾)}^P_{i=1} est le jeu de données construit avec Y_i un ETV au temps t_i et on résoud le problème de minimisation :

$$(\widehat{a}_{\mathsf{EST}}, \widehat{b}_{\mathsf{EST}}) = \arg\min_{a, b} \sum_{i=1}^{P} w_i |aX^{(i)} + b - Y^{(i)}|^2, \quad \forall i \ w_i \propto \exp(t_i^2)$$

Estimation à un temps t_j < t_P :

$$\widehat{\tau}_c(t_j) = Y^{(j)} = \widehat{a}_{\mathsf{EST}} X^{(j)} + \widehat{b}_{\mathsf{EST}}$$
(4)

< □ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q @ 14/35

Sommaire

Colmatage des GV et motivations

Outils à disposition Modèle physique :THYC-Puffer-DEPOTHYC Modèle statistique : ESTICOL

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

◆□▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 15/35</p>

Méthodologie proposée

Figure – Schéma de la méthodologie hybride proposée.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

av paramètre de calage du mécanisme de vena contracta

Figure – Mécanisme de vena contracta, source : [Prusek, 2012].

Toutes les particules transportées en zone de recirculation sont déposées, d'où :

 $\Phi_p \propto K_p \Gamma_p$

► La vitesse de déposition sur les parois K_p est donnée par : $K_p \propto a_v U^2 d_p^2 \rightarrow a_v$ à caler par rapport aux données terrain !

Motivations méthodologie

- ▶ Travaux antérieurs d'analyse de sensibilité [Jaber et al., 2024], $a_v \rightarrow$ grande influence sur τ_c sur tout le temps de simulation
- Grande dispersion des trajectoires de colmatage autour de la date courante $t_P \rightarrow$ pose problème pour l'estimation d'une RUL
- Pratique actuelle → méthodologie de calage déterministe COLMAREX [Prusek, 2012], vise à caler un a_v par GV pour toute la durée de fonctionnement du GV
- ▶ REX opérationnel → cinétique de τ_c modifiée après un nettoyage chimique → aspect non pris en compte par un a_v identique sur tout l'historique de fonctionnement + non prise en compte des incertitudes
- Question : que pourrait apporter le calage bayésien dans ce cas ?

Schéma général de la méthodologie de calage bayésien

Figure – Principe général du calage bayésien.

Littérature abondante de travaux en calage et inversion bayésienne à l'aide de métamodèle de PCE : [Marzouk et al., 2007; Marzouk and Najm, 2009; Yan and Zhou, 2019; Wagner et al., 2020]...

Calage bayésien du paramètre a_v

- On recale trois distributions de a_v sur chacune des 3 périodes → avant nettoyage curatif (CC), entre nettoyage curatif et nettoyage préventif (CC-PC) et après le nettoyage préventif (PC) → choix justifié par la modification de la cinétique observée après un NC
- ► Utilise le métamodèle de PCE g̃_{TPD} → procédure basée sur m = n + 1 calages où n est le nombre de NC réalisés sur un GV (dans notre exemple m = 3)
- Données terrain entre le k-ème et k + 1-ème NC :

$$\{\mathbf{y}_{k}^{*} = (y_{k,1}^{*}, \dots, y_{k,n_{k}}^{*})\} \subset \{\mathbf{y}_{1}^{*}, \dots, \mathbf{y}_{m}^{*}\}$$
(5)

 $\mathcal{J}_{*,k}$ sont les indices de pas de temps respectif, $n_{*,k}:=|\mathcal{J}_{*,k}|$ avec $*=\{\mathsf{ETV},\mathsf{EST}\}$

 x₀ correspond à la valeur nominale des paramètres incertains X. Le paramètre de calage a^k_v est noté θ_k

Calage bayésien du paramètre a_v

Sans discrépance de modèle on suppose [Carmassi et al., 2019] pour k = 1,..., m, avec * = {ETV, EST} :

$$\boldsymbol{y}_{k}^{*} = \boldsymbol{\mathcal{G}}_{k}^{*}(\boldsymbol{\theta}_{k}) + \boldsymbol{\eta}_{k}^{*}, \quad \boldsymbol{\eta}_{k}^{*} \sim \mathcal{N}(\boldsymbol{0}, \sigma_{*}^{2}\boldsymbol{I}_{\boldsymbol{n}_{*,k}})$$
(6)

où $\mathcal{G}_{k}^{*}(.)$ est la projection des sorties du métamodèle $\tilde{g}_{\text{TPD}}(\mathbf{x}_{0},.)$ sur les pas de temps de la *-ème donnée entre le k et k + 1-ème nettoyage

- Choix des priors pour tout k :
 - $\bullet \ \theta_k \sim \mathcal{U}[0, 15] \times 10^{-4}$
 - prior de Jeffreys pour $v := 1/\sigma_*^2$, p(v) = 1/v
 - θ_k et η sont indépendants \rightarrow résidus donnent une vraisemblance gaussienne
- Si toutes les données terrain ont même écart-type alors on peut montrer que [Keller et al., 2022] :

$$p(\theta_k | \boldsymbol{y}_k^*) \propto \| \boldsymbol{y}_k^* - \boldsymbol{\mathcal{G}}_k^*(\theta_k) \|^{-n_{*,k}}$$
(7)

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 21/35

Calage bayésien du paramètre a_v

On peut généraliser cette loi a posteriori pour q groupes de données terrain (y^{exp,1},..., y^{exp,q}) de variances différents (dans notre cas q = 2 car ETV et ESTICOL n'ont pas même variance) pour k = 1,..., m :

 $p(\theta_k | \boldsymbol{y}_k^{\mathsf{ETV}}, \boldsymbol{y}_k^{\mathsf{EST}}) \propto \| \boldsymbol{y}_k^{\mathsf{ETV}} - \boldsymbol{\mathcal{G}}_k^{\mathsf{ETV}}(\theta_k) \|^{-n_{\mathsf{ETV},k}} \times \| \boldsymbol{y}_k^{\mathsf{EST}} - \boldsymbol{\mathcal{G}}_k^{\mathsf{EST}}(\theta_k) \|^{-n_{\mathsf{EST},k}}$

- Le poids associé au *-ème type de donnée est lié au nombre de données disponibles n_{ETV,k}, n_{EST,k}
- ▶ Algorithme MCMC de type Random-Walk Metropolis-Hastings dans OpenTURNS [Rubinstein and Kroese, 2011; Baudin et al., 2017] → échantillonnage dans des distributions $p(\theta_k | y_k^{\text{ETV}}, y_k^{\text{EST}})$ + test de convergence de Gelman-Rubin pour les chaînes de Markov (voir annexe)

Résultats numériques pour le calage de la chaîne TPD

On trouve bien des modes différents en fonction des différentes cinétiques après NC.

Repropagation des incertitudes dans le PCE

PCE-TPD with calibrated a_v and original PCE-TPD

Figure – Simulations du métamodèle PCE avec a_v recalé

- ► Diminution de la dispersion du faisceau de trajectoires → dispersion nettement réduite dans la dernière période → peu de données mais période *utile* pour la prévision future
- ► Les incertitudes en prévision du PCE-TPD pour t > t_P sont ainsi réduites

Sommaire

Colmatage des GV et motivations

Outils à disposition Modèle physique :THYC-Puffer-DEPOTHYC Modèle statistique : ESTICOL

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

Conclusion et perspectives

- ► Le colmatage des GV est un phénomène complexe et de dynanmique très lente → utilisation d'outils de modélisation physique et statistique ont pour objectif d'appuyer la planification future des maintenances
- Poursuite des travaux sur le calage avec un point de vue réduction d'incertitudes pour le pronostic
- Deux axes principaux de travail sur le calage bayésien :
 - Soit prendre en compte les incertitudes des paramètres d'entrée;
 - Soit recaler toutes les variables influentes (\mathbf{X}, θ) .

<u>De plus</u> : développer un métamodèle de GP et inclure un biais de métamodèle comme dans [Kennedy and O'Hagan, 2001]; <u>Plus loin</u> : exploration de pistes d'hybridation à travers l'utilisation de données de capteurs.

Travaux en cours : prise en compte des incertitudes dans X

- En toute rigueur, la densité a posteriori simulée est p(θ_m|Y = y^{exp}, X = x₀), avec x₀ correspondant à la valeur nominale des entrées de TPD hors le paramètre de calage
- L'hypothèse du plan d'expérience [Jaber et al., 2024] supposait l'indépendance des variables d'entrée (X, θ) ~ p(X) × p(θ), toutefois cette indépendance ne se propage pas sur les lois conditionnelles :

$$p(heta|Y, oldsymbol{X}) = rac{p((heta|Y), oldsymbol{X})}{p(oldsymbol{X})}
eq rac{p(heta|Y) imes p(oldsymbol{X})}{p(oldsymbol{X})}$$

Une approche possible : intégration de la loi a posteriori [Perrin and Durantin, 2019] :

$$p(\theta|Y) = E_{\boldsymbol{X}}[p(\theta|Y, \boldsymbol{X})] = \int_{\mathcal{X}} p(\theta|Y, \boldsymbol{X} = \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$
(8)

► Objectif de travaux en cours → de rendre encore plus robuste le pronostic par une meilleure prise en compte des incertitudes

Sommaire

Colmatage des GV et motivations

Outils à disposition Modèle physique :THYC-Puffer-DEPOTHYC Modèle statistique : ESTICOL

Pronostic hybride par calage Bayésien

Conclusion et perspectives

Annexes

(ロト (聞) (注) (注) 注 の (C 28/35)

Graphes d'autocorrélation

Figure – Graphes d'autocorrélation des trois chaînes de Markov sur les trois temps de simulation.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - のへで

Statistiques de Gelman-Rubin

- On initialise J chaînes de Markov de manière indépendante (dans notre cas J = 3). Après la phase de burn-in, on a des échantillons θ₁⁽ⁱ⁾, ..., θ_L⁽ⁱ⁾ pour i = 1, ..., J avec L le nombre d'itérations de la chaîne
- Calcule de la moyenne sur la chaîne, entre la chaîne

$$\overline{\theta}_i = \frac{1}{L} \sum_{k=1}^{L} \theta_k^{(i)}, \ \overline{\theta}_* = \frac{1}{J} \sum_{i=1}^{J} \overline{\theta}_i$$

Calcule de la variance des moyennes des chaînes et la moyenne des variances au sein d'une chaîne :

$$B = \frac{L}{J-1} \sum_{i=1}^{J} (\bar{\theta}_{*} - \bar{\theta}_{i})^{2}, \quad W = \frac{1}{J} \sum_{i=1}^{J} \left(\frac{1}{L-1} \sum_{k=1}^{L} (\theta_{k}^{(i)} - \bar{\theta}_{i})^{2} \right)$$

Enfin le test de Gelman-Rubin [Gelman and Rubin, 1992] se calcule selon :

$$R = \frac{(1 - 1/L)W + (1/L)B}{W} \to 1, \ L \to \infty$$

Tests de GR et acceptation

Paramètres MCMC : J = 3, marche aléatoire uniforme, initialisation aléatoire, taille des pas de la marche aléatoire 10⁻³

	CC	CC-PC	PC
Taux d'acceptation moyen	0.195	0.273	0.272
Test de Gelman-Rubin	1.00	1.00	1.00

Table – Taux d'acceptation moyen et test de Gelman-Rubin.

References I

- Baudin, M., Dutfoy, A., looss, B., and Popelin, A. (2017). Open TURNS : An industrial software for uncertainty quantification in simulation. In Ghanem, R., Higdon, D., and Owhadi, H., editors, *Springer Handbook on Uncertainty Quantification*, pages 2001–2038. Springer.
- Bregon, A. and Daigle, M. J. (2019). *Fundamentals of Prognostics*, pages 409–432. Springer International Publishing.
- Carmassi, M., Barbillon, P., and Chiodetti, M. (2019). Bayesian calibration of a numerical code for prediction. *Journal de la société Française de statistique*, 160(1).
- Feng, Q., Nebes, J., Bachet, M., Pujet, S., You, D., and Deri, E. (2023). Tube support plates blockage of PWR steam generators : thermalhydraulics and chemical modeling.
- Gelman, A. and Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. *Statistical Science*, 7(4) :457 472.

References II

- Jaber, E., Chabridon, V., Remy, E., Baudin, M., Lucor, D., Mougeot, M., and looss, B. (2024). Sensitivity analyses of a multi-physics long-term clogging model for steam generators. *International Journal for Uncertainty Quantification*.
- Keller, M., Damblin, G., Pasanisi, A., Schumann, M., Barbillon, P., Ruggeri, F., and Parent, E. (2022). Validation of a computer code for the energy consumption of a building, with application to optimal electric bill pricing. *Econometrics*, 10(4).
- Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer models. *Journal of the Royal Statistical Society : Series B* (Statistical Methodology), 63(3) :425–464.
- Lefebvre, L., Segond, M., Spaggiari, R., Le Gratiet, L., Deri, E., Iooss, B., and Damblin, G. (2023). Improving the Predictivity of a Steam Generator Clogging Numerical Model by Global Sensitivity Analysis and Bayesian Calibration Techniques. *Nuclear Science and Engineering*, 197(8) :2136–2149.

References III

- Marzouk, Y. M. and Najm, H. N. (2009). Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. *Journal of Computational Physics*, 228(6) :1862–1902.
- Marzouk, Y. M., Najm, H. N., and Rahn, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. *Journal of Computational Physics*, 224(2) :560–586.
- Perrin, G. and Durantin, C. (2019). Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators. *Journal de la Société Française de Statistique*, 160(2).
- Pinciroli, L., Baraldi, P., Shokry, A., Zio, E., Seraoui, R., and Mai, C. (2021). A semi-supervised method for the characterization of degradation of nuclear power plants steam generators. *Progress in Nuclear Energy*, 131 :103580.
- Prusek, T. (2012). Modélisation et simulation numérique du colmatage à l'échelle du sous-canal dans les générateurs de vapeur. Thèse de l'Université Aix-Marseille.

- Rubinstein, R. and Kroese, D. (2011). *Simulation and the Monte Carlo Method*. Wiley Series in Probability and Statistics. Wiley.
- Soize, C. and Ghanem, R. (2004). Physical systems with random uncertainties : Chaos representations with arbitrary probability measures. SIAM Journal On Scientific Computing, 26(2) :395–410.
- Wagner, P.-R., Fahrni, R., Klippel, M., Frangi, A., and Sudret, B. (2020). Bayesian calibration and sensitivity analysis of heat transfer models for fire insulation panels. *Engineering Structures*, 205 :110063.
- Yan, L. and Zhou, T. (2019). Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. *Journal of Computational Physics*, 381 :110–128.