

On The Calibration of a Two-phase Flow Model under Uncertain Inlet Conditions

ETICS, 25 September 2024

S. Janati Idrissi ^{1,2}, P.M. Congedo ¹, O.Le-Maître ¹, M.G. Rodio ²

¹CENTER OF APPLIED MATHEMATICS, ECOLE POLYTECHNIQUE, FRANCE ²CEA PARIS SACLAY (ISAS/DMS2S/SGLS/LCAN)

Introduction

- Calibration consists on inferring the best values of the parameters to fit the observed data.
- Simulations are subject to different types of uncertainties (parameter uncertainty, model error, experiment uncertainty, code uncertainty)
- Need to acknowledge different sources of uncertainty in the calibration process.

Presentation Outline

1 Motivating example

- 2 Bayesian Calibration with model error
- 3 Calibration of the TRITON Model
- 4 Conclusions and perspectives

Presentation Outline

1 Motivating example

2 Bayesian Calibration with model error

3 Calibration of the TRITON Model

4 Conclusions and perspectives

Experimental data

- Sun experiment ¹: Development of gaz-liquid bubbly flow for a vertical square duct.
- Measurements of the void fraction and the liquid velocity.

$\langle J_1 \rangle$ (m/s)	$\langle J_{\rm g} \rangle^*$ (m/s)	$\langle \alpha \rangle^*$ (-)	$\langle W \rangle^* \text{ (m/s)}$
1.00	0.089	0.075	1.19
	0.134	0.103	1.25
	0.179	0.134	1.35
	0.226	0.154	1.45
0.75	0.067	0.075	0.85
	0.090	0.108	0.92
	0.135	0.142	1.02
	0.180	0.153	1.09
0.50	0.045	0.069	0.61
	0.090	0.139	0.68
	0.137	0.172	0.75

Figure 1: Experimental setup from Sun experiment.

¹Sun et al. "Upward air–water bubbly flow characteristics in a vertical square duct" (2014).

Experimental data

- Sun experiment ¹: Development of gaz-liquid bubbly flow for a vertical square duct.
- Measurements of the void fraction and the liquid velocity.

$\langle J_{\rm l} \rangle$ (m/s)	$\langle J_{\rm g} \rangle^*$ (m/s)	$\langle \alpha \rangle^*$ (-)	$\langle W \rangle^*$ (m/s)
1.00	0.089	0.075	1.19
	0.134	0.103	1.25
	0.179	0.134	1.35
	0.226	0.154	1.45
0.75	0.067	0.075	0.85
	0.090	0.108	0.92
	0.135	0.142	1.02
	0.180	0.153	1.09
0.50	0.045	0.069	0.61
	0.090	0.139	0.68
	0.137	0.172	0.75

Figure 1: Experimental setup from Sun experiment.

¹Sun et al. "Upward air–water bubbly flow characteristics in a vertical square duct" (2014).

Mathematical model: (Two-phase RegIme TransitiON Model)²

- The TRITON model considers 3 fields: a continuous liquid field, a dispersed gaz field (group 1) and a continuous gaz field (group 2)
- Continuity and moment equations are solved for each field.
- The change in bubble diameters is described by the two-group interfacial area transport equations

$$\frac{\partial a_{i1}}{\partial t} + \nabla .(a_{i1}v_{i1}) = \frac{2}{3}\frac{a_{i1}}{\alpha_{g1}} \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] - \chi \left(\frac{D_{sc}}{D_{sm}} \right)^2 \frac{a_{i1}}{\alpha_{g1}} \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,1} \right] \frac{\partial a_{i2}}{\partial t} + \nabla .(a_{i2}v_{i2}) = \frac{2}{3}\frac{a_{i2}}{\alpha_{g2}} \left[\frac{\partial \alpha_{g2}}{\partial t} + \nabla .(\alpha_{g2}v_{g2}) \right] + \chi \left(\frac{D_{sc}}{D_{sm}} \right)^2 \frac{a_{i1}}{\alpha_{g1}} \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial a_{i2}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) = \frac{2}{3}\frac{a_{i2}}{\alpha_{g2}} \left[\frac{\partial \alpha_{g2}}{\partial t} + \nabla .(\alpha_{g2}v_{g2}) \right] + \chi \left(\frac{D_{sc}}{D_{sm}} \right)^2 \frac{a_{i1}}{\alpha_{g1}} \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] + \left[\sum_{j} \phi_{j,2} \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \left[\frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \right] \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{g1}) \frac{\partial \alpha_{g1}}{\partial t} + \nabla .(\alpha_{g1}v_{$$

For Bubbly flow,

$$\sum_{j} \phi_{j} = \phi_{RC}^{1}(C_{RC}^{(1)}, C_{RC1}) + \phi_{WE}^{1}(C_{WE}^{(1)}) + \phi_{TI}^{1}(C_{TI}^{(1)}, We_{cr1})$$

²Kuidjo et al. "Comparison of bubbles interaction mechanisms of two-group Interfacial Area Transport Equation model". International Journal of Multiphase Flow(2023).

Simulation with Neptune CFD

• 3D simulation of the quarter section of the domain with a mesh of 3256000 cells

Simulation with Neptune CFD

The void fraction is underestimated!

Figure 2: Comparison of the simulation results with experimental data along the diagonal line for the void fraction of the gaz.

The computer code needs several parameters to be run:

- Control variables X: Variables that define the physical system independently from the environment
- Calibration parameters θ : unknown parameters that depend only on the model
- Unknown inlet conditions λ

The computer code needs several parameters to be run:

- Control variables X: Variables that define the physical system independently from the environment
- Calibration parameters θ : unknown parameters that depend only on the model
- Unknown inlet conditions λ

Problem: How to infer the values of the calibration parameters when the inlet conditions are uncertain?

Presentation Outline

1 Motivating example

2 Bayesian Calibration with model error

- 3 Calibration of the TRITON Mode
- 4 Conclusions and perspectives

10

Bayesian Calibration with model error

Model predictions after calibration

Some parameter values fit the data well

Best values are not consistent with the observations

Bayesian calibration with model error

Statistical Assumptions

$$\mathbf{y}_{obs}(\mathbf{x}) = f(\mathbf{x}, \theta) + \delta(\mathbf{x}, \theta) + \varepsilon$$

- Model discrepancy depends on model parameters ³. It is modeled as a Gaussian process $\delta(x)|GP(\mu(.), k_{\psi}(., .))$, the covariance function depends on some hyperparameters ψ
- Measurement error is distributed as N(0, σ²_ε)
- Model error and measurement error are supposed independent.
- Prior distributions of the parameters and the hyperparameters are independent.

³Leoni et al. "Bayesian Calibratiion With Adaptive Model Discrepancy". International Journal for Uncertainty Quantification (2024)

Bayesian calibration with model error

- The problem is solved by a modular approach.
- The hyperparameters φ = (ψ, σ_ε) are first estimated by solving the following optimisation problem

 $\hat{\phi}_{FMP} = argmax(p(\phi|y, \theta)) = argmax\phi(x)(p(y|\phi, \theta))$

The posterior density of the parameters is estimated by

$$p(heta, \phi | y_{obs}) \propto p(heta) p(y_{obs} | heta, \phi = \hat{\phi}_{FMP})$$

• We use Metropolis Hastings algorithm to sample from the posterior distribution.

Bayesian calibration with model error

The case of expensive computer codes

The code is replaced by a statistical approximation that is cheaper to evaluate.

A priori

 $\textit{f_{code}} \sim \textit{GP}(\textit{m}(.),\textit{K}(.,.))$

- m(.) is the mean function
- k(.,.) is the covariance function
- We consider a set of training inputs $X = (x_1, x_2, ..., x_n)$ with their corresponding code outputs $Y = (y_1 = f_{code}(x_1), f_{code}(x_2), ..., f_{code}(x_n))$
- Let X_{*} = (x_{*,1}, x_{*,2}, ..., x_{*,n}) be the test set where we want to make the predictions and Y_{*} their corresponding outputs.
- We can predict Y_{*} by

$$Y_*|Y, X_*, X \sim \mathcal{N}(\mu_* - K_*K^{-1}(Y - \mu(X)), K_{**} - K_*^TK^{-1}K_*)$$

Presentation Outline

1 Motivating example

2 Bayesian Calibration with model error

3 Calibration of the TRITON Model

4 Conclusions and perspectives

Calibration of the TRITON Model

First approach: Fix the inlet conditions to a specific value and then calibrate model parameters

- Fixed value for the liquid velocity based on expert knowledge
- Infer the posterior distribution of the void fraction based on a Bayesian analysis and then fix the inlet value to the MAP
- Infer model parameters θ

Second approach: Learn the inlet conditions jointly with model parameters

- Consider the vector of parameters $\Theta = (\theta, \lambda)$ for the calibration.
- The relationship between the observations, code output and model error is

$$y_{obs}(x) = f(x, \Theta) + \delta(x, \Theta) + \varepsilon$$

Calibration of the TRITON model

The inlet conditions

Figure 3: The joint distribution of the injected liquid velocity and the void fraction. The red dot correpond to the values injected for the first approach.

Calibration of the TRITON Model

Comparison of the Posterior distributions of model parameters

Calibration of the TRITON Model

Predictions of the void fraction along the diagonal line: first approach (left), second approach (right)

Presentation Outline

1 Motivating example

- 2 Bayesian Calibration with model error
- 3 Calibration of the TRITON Model
- 4 Conclusions and perspectives

Conclusions and perspectives

- Calibration results depend strongly on the way we handle the inlet conditions
- It is important to consider the uncertainties in the control variables for the calibration
- Further investigations of the choice of model error kernel are needed.
- Incorporating the uncertainty on the inlet conditions with a hierarchical Bayesian formalism where the associated error is modeled using a latent variable.

Thank you for your attention! Any questions?

Contact information: sanae.janati-idrissi@polytechnique.edu

References I

- Maria J Bayarri et al. "A Framework for Validation of Computer Models". en. In: *Technometrics* 49.2 (May 2007), pp. 138–154. DOI: 10.1198/00401700700000092.
- [2] Clément Bazin. "Numerical and experimental studies of two-phase flows interacting with a bundle of tubes". In: ().
- [3] Dave Higdon et al. "Combining Field Data and Computer Simulations for Calibration and Prediction". en. In: SIAM Journal on Scientific Computing 26.2 (Jan. 2004), pp. 448–466. DOI: 10.1137/S1064827503426693.
- Marc C. Kennedy and Anthony O'Hagan. "Bayesian calibration of computer models". en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 63.3 (2001), pp. 425–464. DOI: 10.1111/1467-9868.00294.

References II

- [5] E.V. Kuidjo Kuidjo et al. "Comparison of bubbles interaction mechanisms of two-group Interfacial Area Transport Equation model". en. In: International Journal of Multiphase Flow 163 (June 2023), p. 104399. DOI: 10.1016/j.ijmultiphaseflow.2023.104399.
- [6] Nicolas Leoni et al. "BAYESIAN CALIBRATION WITH ADAPTIVE MODEL DISCREPANCY". en. In: International Journal for Uncertainty Quantification 14.1 (2024), pp. 19–41. DOI: 10.1615/Int.J.UncertaintyQuantification.2023046331.
- [7] Jinglai Li and Youssef M. Marzouk. "Adaptive construction of surrogates for the Bayesian solution of inverse problems". In: *SIAM Journal on Scientific Computing* 36.3 (Jan. 2014), A1163–A1186. DOI: 10.1137/130938189.
- [8] Didier Lucor and Olivier P. Le Maître. "Cardiovascular Modeling With Adapted Parametric Inference". en. In: ESAIM: Proceedings and Surveys 62 (2018). Ed. by Muhammad Dauhoo et al., pp. 91–107. DOI: 10.1051/proc/201862091.

References III

- [9] Guillaume Perrin and Cédric Durantin. "Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators". en. In: *Journal de la Société Française de Statistique* 160 (2019).
- [10] Matthew Plumlee. "Bayesian Calibration of Inexact Computer Models". en. In: Journal of the American Statistical Association 112.519 (July 2017), pp. 1274–1285. DOI: 10.1080/01621459.2016.1211016.
- [11] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. en. Adaptive computation and machine learning. Cambridge, Mass: MIT Press, 2006.
- Haomin Sun et al. "Upward air-water bubbly flow characteristics in a vertical square duct".
 en. In: Journal of Nuclear Science and Technology 51.3 (Mar. 2014), pp. 267–281. DOI: 10.1080/00223131.2014.863718.