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Introduction

■ Calibration consists on inferring the best values of the parameters to fit the observed data.
■ Simulations are subject to different types of uncertainties (parameter uncertainty, model error,

experiment uncertainty, code uncertainty)
■ Need to acknowledge different sources of uncertainty in the calibration process.
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Motivating example
Experimental data

Figure 1: Experimental setup from Sun
experiment.

■ Sun experiment 1 : Development of
gaz-liquid bubbly flow for a vertical square
duct.

■ Measurements of the void fraction and the
liquid velocity.

1Sun et al. “Upward air–water bubbly flow characteristics in a vertical square duct” (2014).
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Motivating example
Mathematical model: (Two-phase RegIme TransitiON Model)2

■ The TRITON model considers 3 fields: a continuous liquid field, a dispersed gaz field (group 1)
and a continuous gaz field (group 2)

■ Continuity and moment equations are solved for each field.
■ The change in bubble diameters is described by the two-group interfacial area transport

equations
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2Kuidjo et al. “Comparison of bubbles interaction mechanisms of two-group Interfacial Area
Transport Equation model”. International Journal of Multiphase Flow(2023).
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Motivating example
Simulation with Neptune CFD

■ 3D simulation of the quarter section of the domain with a mesh of 3256000 cells
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Motivating example

Simulation with Neptune CFD
The void fraction is underestimated!

Figure 2: Comparison of the simulation results with experimental data along the diagonal line for
the void fraction of the gaz.
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Motivating example

The computer code needs several
parameters to be run:

■ Control variables X : Variables that define
the physical system independently from the
environment

■ Calibration parameters θ : unknown
parameters that depend only on the model

■ Unknown inlet conditions λ

Problem: How to infer the values of the calibration parameters when
the inlet conditions are uncertain?
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Bayesian Calibration with model error
Model predictions after calibration

Some parameter values fit the data
well

Best values are not consistent
with the observations

Need to consider model error in the calibration.
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Bayesian calibration with model error

Statistical Assumptions

yobs(x) = f (x , θ) + δ(x , θ) + ε

■ Model discrepancy depends on model parameters 3. It is modeled as a Gaussian process
δ(x)|GP(µ(.), kψ(., .)), the covariance function depends on some hyperparameters ψ

■ Measurement error is distributed as N (0, σ2
ε)

■ Model error and measurement error are supposed independent.
■ Prior distributions of the parameters and the hyperparameters are independent.

3Leoni et al. “Bayesian Calibratiion With Adaptive Model Discrepancy”. International Journal for
Uncertainty Quantification (2024)
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Bayesian calibration with model error

■ The problem is solved by a modular approach.
■ The hyperparameters ϕ = (ψ, σε) are first estimated by solving the following optimisation

problem
ϕ̂FMP = argmax(p(ϕ|y , θ)) = argmaxϕ(x)(p(y |ϕ, θ)

■ The posterior density of the parameters is estimated by

p(θ, ϕ|yobs) ∝ p(θ)p(yobs|θ, ϕ = ϕ̂FMP)

■ We use Metropolis Hastings algorithm to sample from the posterior distribution.
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Bayesian calibration with model error
The case of expensive computer codes

■ The code is replaced by a statistical approximation that is cheaper to evaluate.

A priori
fcode ∼ GP(m(.),K (., .))

■ m(.) is the mean function
■ k(., .) is the covariance function
■ We consider a set of training inputs X = (x1, x2, .., xn) with their corresponding code outputs

Y = (y1 = fcode(x1), fcode(x2), .., fcode(xn))

■ Let X∗ = (x∗,1, x∗,2, .., x∗,n) be the test set where we want to make the predictions and Y∗ their
corresponding outputs.

■ We can predict Y∗ by

Y∗|Y ,X∗,X ∼ N (µ∗ − K∗K−1(Y − µ(X )),K∗∗ − K T
∗ K−1K∗)
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Calibration of the TRITON Model

First approach: Fix the inlet conditions to a specific value and then calibrate
model parameters

■ Fixed value for the liquid velocity based on expert knowledge
■ Infer the posterior distribution of the void fraction based on a Bayesian analysis and then fix the

inlet value to the MAP
■ Infer model parameters θ

Second approach: Learn the inlet conditions jointly with model parameters
■ Consider the vector of parameters Θ = (θ, λ) for the calibration.
■ The relationship between the observations, code output and model error is

yobs(x) = f (x ,Θ) + δ(x ,Θ) + ε
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Calibration of the TRITON model
The inlet conditions

Figure 3: The joint distribution of the injected liquid velocity and the void fraction. The red
dot correpond to the values injected for the first approach.
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Calibration of the TRITON Model
Comparison of the Posterior distributions of model parameters
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Calibration of the TRITON Model

Predictions of the void fraction along the diagonal line: first approach (left),
second approach (right)
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Conclusions and perspectives

■ Calibration results depend strongly on the way we handle the inlet conditions
■ It is important to consider the uncertainties in the control variables for the calibration
■ Further investigations of the choice of model error kernel are needed.
■ Incorporating the uncertainty on the inlet conditions with a hierarchical Bayesian formalism

where the associated error is modeled using a latent variable.
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Thank you for your attention!
Any questions?

Contact information: sanae.janati-idrissi@polytechnique.edu



References I

[1] Maria J Bayarri et al. “A Framework for Validation of Computer Models”. en. In:
Technometrics 49.2 (May 2007), pp. 138–154. DOI: 10.1198/004017007000000092.

[2] Clément Bazin. “Numerical and experimental studies of two-phase flows interacting with a
bundle of tubes”. In: ().

[3] Dave Higdon et al. “Combining Field Data and Computer Simulations for Calibration and
Prediction”. en. In: SIAM Journal on Scientific Computing 26.2 (Jan. 2004), pp. 448–466.
DOI: 10.1137/S1064827503426693.

[4] Marc C. Kennedy and Anthony O’Hagan. “Bayesian calibration of computer models”. en. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63.3 (2001),
pp. 425–464. DOI: 10.1111/1467-9868.00294.

23

https://doi.org/10.1198/004017007000000092
https://doi.org/10.1137/S1064827503426693
https://doi.org/10.1111/1467-9868.00294


References II
[5] E.V. Kuidjo Kuidjo et al. “Comparison of bubbles interaction mechanisms of two-group

Interfacial Area Transport Equation model”. en. In: International Journal of Multiphase Flow
163 (June 2023), p. 104399. DOI: 10.1016/j.ijmultiphaseflow.2023.104399.

[6] Nicolas Leoni et al. “BAYESIAN CALIBRATION WITH ADAPTIVE MODEL DISCREPANCY”.
en. In: International Journal for Uncertainty Quantification 14.1 (2024), pp. 19–41. DOI:
10.1615/Int.J.UncertaintyQuantification.2023046331.

[7] Jinglai Li and Youssef M. Marzouk. “Adaptive construction of surrogates for the Bayesian
solution of inverse problems”. In: SIAM Journal on Scientific Computing 36.3 (Jan. 2014),
A1163–A1186. DOI: 10.1137/130938189.

[8] Didier Lucor and Olivier P. Le Maître. “Cardiovascular Modeling With Adapted Parametric
Inference”. en. In: ESAIM: Proceedings and Surveys 62 (2018). Ed. by Muhammad Dauhoo
et al., pp. 91–107. DOI: 10.1051/proc/201862091.

24

https://doi.org/10.1016/j.ijmultiphaseflow.2023.104399
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2023046331
https://doi.org/10.1137/130938189
https://doi.org/10.1051/proc/201862091


References III
[9] Guillaume Perrin and Cédric Durantin. “Taking into account input uncertainties in the

Bayesian calibration of time-consuming simulators”. en. In: Journal de la Société Française
de Statistique 160 (2019).

[10] Matthew Plumlee. “Bayesian Calibration of Inexact Computer Models”. en. In: Journal of the
American Statistical Association 112.519 (July 2017), pp. 1274–1285. DOI:
10.1080/01621459.2016.1211016.

[11] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. en. Adaptive computation and machine learning. Cambridge, Mass: MIT Press,
2006.

[12] Haomin Sun et al. “Upward air–water bubbly flow characteristics in a vertical square duct”.
en. In: Journal of Nuclear Science and Technology 51.3 (Mar. 2014), pp. 267–281. DOI:
10.1080/00223131.2014.863718.

25

https://doi.org/10.1080/01621459.2016.1211016
https://doi.org/10.1080/00223131.2014.863718

	Motivating example
	Bayesian Calibration with model error
	Calibration of the TRITON Model
	Conclusions and perspectives
	References

