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1. Introduction
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o Widespread use of supervised learning for computer experiments, where
expensive simulation outputs are approximated with a ML model from a DoE
dataset
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o Strategy adopted across multiple industries, using various ML models:
— Linear/logistic regression
— Random forests
— Gaussian processes
— Neural networks...

o Critical applications require confidence intervals around predictions,
with guaranteed coverage:

— Denote C(X) a confidence interval for a prediction at X, estimated from
training data
— The guarantee of marginal coverage at level o writes

IP(YN+1 € C(XN_H)) >1—«
for the true unknown value of the output Yx1 at an unobserved point X1
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In practice
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o Limitations of traditional approaches:

— Prediction bands are model-specific, with significant variation between models

— Guarantees only valid as n — +oco or under strong assumptions that cannot be
verified

— No coverage guarantee for practical applications

e A recent promising candidate: conformal prediction
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Conformal Prediction

o Conformal Prediction (CP): a rigorous method to construct prediction
intervals with the following properties:
v/ Coverage guarantees
v/ Finite sample
v/ Distribution free
v/ Model agnostic

e Several variants:

— Full CP
— Split CP
— Resampling strategies, e.g. jackknife+, CV+

Let us illustrate split CP, which is based on two independent datasets D,
(pre-training set) and D,,, (calibration set)
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Conformal Prediction

e The prediction model m is trained on D,

Tw  on 0w om0k om0k 0B 1w

(a) Learn m on D, 7/41
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Conformal Prediction

e The prediction model m is trained on D,

e D,, is used to evaluate some prediction quality of m, here for example the

absolute residuals

e The quantile ¢, of these quality measures is computed

T on 0w om ok om ok o

(a) Learn m on D,

(b) Compute |Y; —m(X;)| on D,,
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Conformal Prediction

e The prediction model m is trained on D,

e D,, is used to evaluate some prediction quality of m, here for example the
absolute residuals

e The quantile ¢, of these quality measures is computed

e The prediction interval C(X) = [(X) + ,] satisfies all the desired properties
under the assumption of data exchangeability
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Scores

e Such evaluation of the prediction quality is performed by a score function s

Absolute errors

s(X3, Y)Y —m(X)]

(a) Learn m on D, (b) Compute |V; —m(X;)| on D,, (c) 6(X) = [m(X) & ¢.]



Scores

e Such evaluation of the prediction quality is performed by a score function s

Absolute errors But you may have noticed that choosing the

N absolute errors leads to prediction intervals
s(Xi, Yi) Vi = m(X))] with constant width




Towards adaptivity

Quantile regression

(X5, Y7) max(qi(X;) — V5, Y; — qu(Xy))

~ ~

(a) Learn Gi,u on Dy (b) Compute max(@(X.) — Vi,V = gu(X.))  (¢) C = [@(X) — o, Gu(X) + 7]
on D,,
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Towards adaptivity

Normalization

S(Xi7 }/;)

(Yl 7/\;7\7'(-\1))2
F(X5)

(a) Learn ﬁ@f\on Dn (b) Compute 7()"'1;“&))2
Fx
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on D, (c) C = [m(X) £ /7. f(X)]



Towards adaptivity

ENSAI 2%
Absolute errors Quantile regression’ Normalization?
~ ~ . . Y . ,,_/\ X; 2
s(Xe,Ys) Vi =m(X5)] max(@(Xi) = Y5, Y — qu(X))) i) J{L\(S; )

. ]? is any estimate of the errors of m (e.g. other ML models trained on the
absolute residuals, resampling procedure, Bayesian approach such as GPs, ...)

o Key fact: this estimation is made without any consideration for coverage nor

adaptivity

We then propose to learn the score function in a way that targets both
adaptivity and coverage

'[Romano et al. 2019]
?[Lei et al. 2014; Johansson et al. 2014; Papadopoulos 2024; Jaber et al. 2024]
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Learning problem for a score function

e
0N

e We consider a normalized score: %, with f >0

e As for all learning problems, we must:

— Specify the criterion to minimize, to be discussed later

— Choose a search space for our functions, here we rely on kernel methods

o m lives in the Reproducible Kernel Hilbert Space (RKHS) H™ with kernel &™
and lengthscales 0™

o fis a kernel sum-of-squares function, in order to impose its positivity
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exsai 2z Kernel sum-of-squares (kSoS)

« Consider a RKHS #/ with a feature map ¢: X — H7, a kernel SoS function is
defined as
F(X) = o(X)TAS(X), with A€ S (1)

e f can be written as

Fa(X) =" Nw(X)uw(X)T
10

for functions u; € HS with \; the eigenvalues of the operator A, hence the
sum-of-squares name

Learning the score function amounts to simultaneously learning

meH™, feSoSH) & meH™ AeS (M)
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Learning problem for a score function
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Learning problem for a score function

n

inf L3 - m(X3))? (1)
meH™, n:4

(2)

[ < s (3)

i) Faithful estimation of the mean function

14 /41



Learning problem for a score function

n

. a S, ‘ 2
mEHm,ljlléS_,_(Hf) n 2:21 (¥i = m(Xy) (1)

st fa(Xy) > (Vi — m(Xi))zv i € [n], (2)
Im[Fm < s (3)

i) Faithful estimation of the mean function
ii) 100% coverage on the training sample - convex constraint (later adjusted
with split CP)
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Learning problem for a score function

n

meHm,ijtlef&(Hf) n Z Yimm(Xo) + T ZfA o
s.t. fA( X;) > (Vi —m(X;))?, i € [n], (2)
Im3m < s (3)

i) Faithful estimation of the mean function
ii) 100% coverage on the training sample - convex constraint (later adjusted
with split CP)
iii) Minimization of the interval mean width

14 /41



Learning problem for a score function

meHm,ijtlef&(Hf) —Z Y —m(X:)® + — ZfA )+ A Al + Al Al (1)
s.t. fA( Xi) > (Y; —m(X;))?, i € [n], (2)
[l Fm < s (3)

i) Faithful estimation of the mean function
ii) 100% coverage on the training sample - convex constraint (later adjusted
with split CP)
iii) Minimization of the interval mean width
iv) Control of the regularity of the bands
— lasso-type norm |[|A||,
ridge-type norm || Al ¢
14 /41
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o We proved a representer theorem for this infinite dimensional problem
o It becomes a Semi-Definite Program (SDP) problem, solvable using
off-the-shelves solvers

(b) 6 =05 (c) 8 =09

Note: 6/ is the vector of lengthscales for kf, the kernel corresponding to H/
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Scalability

e The SDP problem is not scalable past 200 samples
e We proved that it admits a dual representation if Ao > 0, which is solvable
using accelerated gradient descent

. —— kSoS
S I - Test data

Training data

—1.00 —0.75  —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
z

Figure 5: Dual solver with 2000 samples
16 /41
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o Hyperparameters a, A1, A2 do not have a huge impact on the prediction bands

e« We fix ™ and s using a preliminary Gaussian Process model

e We focus on the two most important hyperparameters

— b: mean width

— 67 lengthscales associated to f, control complexity of f
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Hyperparameter tuning
b=1 b=100

0f =0.5

0f =1.74
Before
calibration
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0.0010 b= 1000

b = 10000

0.0014 — b=0
— =1

Z0.0012 — h—10

— b=100

0.0008
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0.0004
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o 0.0002

0.0000

of
For each b, we can find an optimal value for #/ that maximizes
adaptivity
19/41



Hyperparameter tuning

« Which adaptivity measure can we use to choose 647

o We propose the Hilbert-Schmidt Independence Criterion (HSIC), an
independence measure between random variables

o What is the link between independence of random variables and adaptivity?
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Hyperparameter tuning

o Perfectly adaptive bands guarantee local coverage

P(Yni1 € C(Xn41) | Xnp1=2) >1-a
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Hyperparameter tuning

o Perfectly adaptive bands guarantee local coverage

P(Yni1 € C(Xn41) | Xnp1=2) >1-a

s i '/
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Hyperparameter tuning
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o Perfectly adaptive bands guarantee local coverage

P(Yni1 € C(Xn41) | Xnp1=2) >1-a
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Hyperparameter tuning

o Without hypothesis on the data, satisfying this local coverage leads to
infinitely wide prediction bands [Vovk 2012; Barber et al. 2021]

o We can relax the local coverage by considering X in a small neighbourhood
wx, such that Vo € X, P(x € wy) > ¢:

PDy = P(YN-i-l € G(XN+1)’XN+1 € wx) >1—«

e Deutschmann et al. 2024 proved a lower bound for pp,,, which involves
MI(X, Sys(X,Y)), but MI is not robust numerically

24 /41
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o Using information theory results and recent inequalities result between the
TV distance and the MMD, we proved a new bound

o
ppy > 1—a——,/1— =
" 5\/ 1 — aoHSIC(rp, (Xn+41, YN+41), for (Xn41))

o« HSIC is much more robust than MI

25/ 41



Hyperparameter tuning
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Figure 6: HSIC(rp (X,Y), for (X))

Maximizing this HSIC, i.e. the dependence between the residuals and
the interval widths, allows to target better local coverage 26 /41
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Mean width metric

.6
Mean Width

i

Mean Width

Mean Width
Drac ?

kSoS Hom. GP Het. GP CQR with RF

A common measure for adaptive
prediction bands in the literature is
mean width, which should be
minimized

kSoS leads to better or as good
mean width as competitors

However, mean width does not
always tell the full story
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(a) Homoscedastic GP (b) kSoS with Opt. HSIC
MW =1.712 MW = 1.759
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Local coverage metric
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6] B CQR with RF
B Homoscedastic GP
5] W Heteroscedsstic GP
— a=09

7{ . kSoS

B CQR vwith RF

61 WEE Homoscedastic GP
W Heteroscedastic GP

e The best measure of adaptivity is
local coverage

& o The target for local coverage is a
. Dirac at 1 — a = 0.9
' e kSoS leads to better concentrated

= Conn e local coverage in general
R Homoscedastic GP
$1 M Heteroscodastic GP

a=09

Density

by & 31/41



Real world datasets - Comparison between mean
widths

Dataset CQR Het GP Hom GP kSoS kSoS
Best mean width ~ Opt. HSIC

Concrete | 0.586+0.032 0.508 £0.052  0.543 £ 0.044 0.556 £ 0.044 0.568 = 0.06

Bike 1.114 £0.062  1.000 £0.079  0.809 £ 0.024 0.804 +0.032 0.803 + 0032
Bio 1.879+0.046  2.21 £0.100 2.194+£0.119 2.03 £0.07 —
Diabetes | 188.62+9.33 191.24 +£11.95 190.58 +11.19 185.83 +14.47 187.6 +16.18
MPG 9.89 4+ 0.82 9.70 = 1.06 9.71+£0.73 9.15+£0.8 9.36 = 0.82

Housing | 1.816 £0.045 1.585+0.099 1.453 £ 0.099 1.468 +0.094 1.586 £+ 0.104

o Mean width for six real-world datasets, kSoS with HSIC-optimized 6/ achieves
best mean width on almost every datasets against competitors

¢ Again, mean width does not tell the full story
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coverage
kSoS - Opt. HSIC el kSoS - Opt. HSIC —————
——

hetgp hetgp —_—

gp|  ——

kSoS - Best Mean Width ——— kSoS - Best Mean Width —
—_—
ap

car - cqr —r—
0.84 0.86 0.88 0.90 0.92 0.84 0.86 0.88 0.90 0.92 0.94
Worst set coverage Worst set coverage
(a) Housing dataset (b) Concrete dataset

« Worst set coverage is a substitute for local coverage for real datasets®

¢ kSoS achieves better or equal worst-set coverage than competitors
with better mean width
3Thurin et al. 2025
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e Learning setting for a score function in the context of split CP

o Representer theorem to make the problem tractable

» Solvable in practice with the primal (small n) using SDP or the dual (big n)
using AGD

e Brand new adaptivity measure based on HSIC, that allows to automatically
choose hyperparameters of the model

o Paper accepted at NeurIPS 2025, preprint available on arXiv, final
version in the proceedings

arxiv.org/abs/2505.21039 35 /41
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