

SCALABLE AND ADAPTIVE PREDICTION BANDS WITH KERNEL SUM-OF-SQUARES

ETICS 2025

Louis Allain October 9, 2025

Thesis advisor : Sébastien Da Veiga Supervisor : Brian Staber

1. Introduction

2. Learning a score function

3. Experiments

4. Conclusion

5. References and appendix

Industrial challenges

• Widespread use of supervised learning for computer experiments, where expensive simulation outputs are approximated with a ML model from a DoE dataset

In practice

- Strategy adopted across multiple industries, using various ML models:
 - Linear/logistic regression
 - Random forests
 - Gaussian processes
 - Neural networks...
- Critical applications require **confidence intervals around predictions**, with guaranteed coverage:
 - Denote $\widehat{C}(X)$ a confidence interval for a prediction at X, estimated from training data
 - The guarantee of marginal coverage at level α writes

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1})) \ge 1 - \alpha$$

for the true unknown value of the output Y_{N+1} at an unobserved point X_{N+1}

In practice

- Limitations of traditional approaches:
 - Prediction bands are model-specific, with significant variation between models
 - Guarantees only valid as $n \to +\infty$ or under strong assumptions that cannot be verified
 - No coverage guarantee for practical applications
- A recent promising candidate: conformal prediction

ENSAL Conformal Prediction

- Conformal Prediction (CP): a rigorous method to construct prediction intervals with the following properties:
 - ✓ Coverage guarantees
 - ✓ Finite sample
 - ✓ Distribution free
 - ✓ Model agnostic
- Several variants:
 - Full CP
 - Split CP
 - Resampling strategies, e.g. jackknife+, CV+

Let us illustrate split CP, which is based on two independent datasets \mathcal{D}_n (pre-training set) and \mathcal{D}_m (calibration set)

Conformal Prediction

• The prediction model \widehat{m} is trained on \mathcal{D}_n

(a) Learn \widehat{m} on \mathcal{D}_n

Conformal Prediction

- The prediction model \widehat{m} is trained on \mathcal{D}_n
- \mathcal{D}_m is used to evaluate some prediction quality of \widehat{m} , here for example the absolute residuals
- The quantile \hat{q}_{α} of these quality measures is computed

(a) Learn \widehat{m} on \mathcal{D}_n

(b) Compute $|Y_i - \widehat{m}(X_i)|$ on \mathcal{D}_m

Conformal Prediction

- The prediction model \widehat{m} is trained on \mathcal{D}_n
- \mathcal{D}_m is used to evaluate some prediction quality of \hat{m} , here for example the absolute residuals
- The quantile \hat{q}_{α} of these quality measures is computed
- The prediction interval $C(X) = [\widehat{m}(X) \pm \widehat{q}_{\alpha}]$ satisfies all the desired properties under the assumption of data exchangeability

(a) Learn \widehat{m} on \mathcal{D}_n

(b) Compute $|Y_i - \widehat{m}(X_i)|$ on \mathcal{D}_m (c) $\widehat{C}(X) = [\widehat{m}(X) \pm \widehat{q}_0]$

Scores Scores

• Such evaluation of the prediction quality is performed by a **score function** s

	Absolute errors
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $

• Such evaluation of the prediction quality is performed by a **score function** s

Absolute errors		
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $	

But you may have noticed that choosing the absolute errors leads to prediction intervals with **constant width**

(c)
$$\widehat{C}(X) = [\widehat{m}(X) \pm \widehat{q}_{\alpha}]$$

Towards adaptivity

	Absolute errors	Quantile regression
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $	$\max(\widehat{q}_{\mathrm{l}}(X_i) - Y_i, Y_i - \widehat{q}_{\mathrm{u}}(X_i))$

(a) Learn
$$\widehat{q}_{l}, \widehat{q}_{u}$$
 on \mathcal{D}_{n}

(a) Learn \widehat{q}_{l} , \widehat{q}_{u} on \mathcal{D}_{n} (b) Compute $\max(\widehat{q}_{l}(X_{i}) - Y_{i}, Y_{i} - \widehat{q}_{u}(X_{i}))$ (c) $\widehat{C} = [\widehat{q}_{l}(X) - \widehat{q}_{\alpha}, \widehat{q}_{u}(X) + \widehat{q}_{\alpha}]$ on \mathcal{D}_m

(c)
$$\widehat{C} = [\widehat{q}_{l}(X) - \widehat{q}_{\alpha}, \widehat{q}_{u}(X) + \widehat{q}_{\alpha}]$$

Towards adaptivity

	Absolute errors	Quantile regression	Normalization
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $	$\max(\widehat{q}_{l}(X_{i}) - Y_{i}, Y_{i} - \widehat{q}_{u}(X_{i}))$	$rac{(Y_i - \widehat{m}(X_i))^2}{\widehat{f}(X_i)}$

(a) Learn \widehat{m} , \widehat{f} on \mathcal{D}_n

(b) Compute
$$\frac{(Y_i - \widehat{m}(X_i))^2}{\widehat{f}(X_i)}$$
 on \mathcal{D}_m (c) $\widehat{C} = [\widehat{m}(X) \pm \sqrt{\widehat{q}_{\alpha}\widehat{f}(X)}]$

	Absolute errors	Quantile regression ¹	Normalization ²
$s(X_i, Y_i)$	$ Y_i - \widehat{m}(X_i) $	$\max(\widehat{q}_{\mathrm{l}}(X_i) - Y_i, Y_i - \widehat{q}_{\mathrm{u}}(X_i))$	$rac{(Y_i - \widehat{m}(X_i))^2}{\widehat{f}(X_i)}$

- \hat{f} is any estimate of the errors of \hat{m} (e.g. other ML models trained on the absolute residuals, resampling procedure, Bayesian approach such as GPs, ...)
- Key fact: this estimation is made without any consideration for coverage nor adaptivity

We then propose to *learn* the score function in a way that targets both adaptivity and coverage

¹[Romano et al. 2019]

²[Lei et al. 2014; Johansson et al. 2014; Papadopoulos 2024; Jaber et al. 2024]

Table of Contents

- 1. Introduction
- 2. Learning a score function
- 3. Experiments
- 4. Conclusion
- 5. References and appendix

- We consider a normalized score: $\frac{(Y-m(X))^2}{f(X)}$, with $f \geq 0$
- As for all learning problems, we must:
 - Specify the criterion to minimize, to be discussed later
 - Choose a search space for our functions, here we rely on **kernel methods**
 - o m lives in the Reproducible Kernel Hilbert Space (RKHS) \mathcal{H}^m with kernel k^m and lengthscales θ^m
 - \circ f is a kernel sum-of-squares function, in order to impose its positivity

Kernel sum-of-squares (kSoS)

• Consider a RKHS \mathcal{H}^f with a feature map $\phi \colon \mathcal{X} \to \mathcal{H}^f$, a kernel SoS function is defined as

$$f(X) = \phi(X)^{\top} \mathcal{A}\phi(X), \text{ with } \mathcal{A} \in \mathcal{S}_{+}(\mathcal{H}^{f})$$

• f can be written as

$$f_{\mathcal{A}}(X) = \sum_{l>0} \lambda_l u_l(X) u_l(X)^{\top}$$

for functions $u_l \in \mathcal{H}^f$ with λ_l the eigenvalues of the operator \mathcal{A} , hence the sum-of-squares name

Learning the score function amounts to simultaneously learning

$$m \in \mathcal{H}^m, f \in \mathcal{S} \circ \mathcal{S}(\mathcal{H}^f) \quad \Leftrightarrow \quad m \in \mathcal{H}^m, \ \mathcal{A} \in \mathcal{S}_+(\mathcal{H}^f)$$

$$\inf_{m \in \mathcal{H}^{m}, \ \mathcal{A} \in \mathcal{S}_{+}(\mathcal{H}^{f})} \quad \frac{a}{n} \sum_{i=1}^{n} (Y_{i} - m(X_{i}))^{2} + \frac{b}{n} \sum_{i=1}^{n} f_{\mathcal{A}}(X_{i}) + \lambda_{1} \|\mathcal{A}\|_{*} + \lambda_{2} \|\mathcal{A}\|_{F}^{2} \quad \text{(1)}$$
s.t.
$$f_{\mathcal{A}}(X_{i}) \geq (Y_{i} - m(X_{i}))^{2}, \ i \in [n], \quad (2)$$

$$\|m\|_{\mathcal{H}^{m}}^{2} \leq s \quad (3)$$

$$\inf_{m \in \mathcal{H}^{m}, \ A \in \mathcal{S}_{+}(\mathcal{H}^{f})} \quad \frac{a}{n} \sum_{i=1}^{n} (Y_{i} - m(X_{i}))^{2} + \frac{b}{n} \sum_{i=1}^{n} f_{A}(X_{i}) + \lambda_{1} \|A\|_{*} + \lambda_{2} \|A\|_{F}^{2} \quad (1)$$
s.t.
$$f_{A}(X_{i}) \geq (Y_{i} - m(X_{i}))^{2}, \ i \in [n], \quad (2)$$

$$\|m\|_{\mathcal{H}^{m}}^{2} < s \quad (3)$$

i) Faithful estimation of the mean function

$$\inf_{m \in \mathcal{H}^m, \ \mathcal{A} \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|\mathcal{A}\|_* + \lambda_2 \|\mathcal{A}\|_F^2$$
 (1)

s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, i \in [n],$$
 (2)

$$||m||_{\mathcal{H}^m}^2 \le s \tag{3}$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)

$$\inf_{m \in \mathcal{H}^m, \ \mathcal{A} \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|\mathcal{A}\|_* + \lambda_2 \|\mathcal{A}\|_F^2$$
 (1)

s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, i \in [n],$$
 (2)

$$||m||_{\mathcal{H}^m}^2 \le s \tag{3}$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)
- iii) Minimization of the interval mean width

$$\inf_{m \in \mathcal{H}^m, \ \mathcal{A} \in \mathcal{S}_+(\mathcal{H}^f)} \quad \frac{a}{n} \sum_{i=1}^n (Y_i - m(X_i))^2 + \frac{b}{n} \sum_{i=1}^n f_{\mathcal{A}}(X_i) + \lambda_1 \|\mathcal{A}\|_{\star} + \lambda_2 \|\mathcal{A}\|_F^2$$
 (1)

s.t.
$$f_{\mathcal{A}}(X_i) \ge (Y_i - m(X_i))^2, i \in [n],$$
 (2)

$$||m||_{\mathcal{H}^m}^2 \le s \tag{3}$$

- i) Faithful estimation of the mean function
- ii) 100% coverage on the training sample **convex** constraint (later adjusted with split CP)
- iii) Minimization of the interval mean width
- iv) Control of the regularity of the bands
 - lasso-type norm $\|A\|_{\star}$
 - ridge-type norm $\|A\|_F$

Representer theorem

- We proved a representer theorem for this infinite dimensional problem
- It becomes a Semi-Definite Program (SDP) problem, solvable using off-the-shelves solvers

Note: θ^f is the vector of lengthscales for k^f , the kernel corresponding to \mathcal{H}^f

Scalability

- The SDP problem is not scalable past 200 samples
- We proved that it admits a dual representation if $\lambda_2 > 0$, which is solvable using accelerated gradient descent

Figure 5: Dual solver with 2000 samples

- Hyperparameters a, λ_1, λ_2 do not have a huge impact on the prediction bands
- We fix θ^m and s using a preliminary Gaussian Process model
- We focus on the two most important hyperparameters
 - **b**: mean width
 - θ^f : lengthscales associated to f, control complexity of f

18 / 41

For each b, we can find an optimal value for θ^f that maximizes adaptivity

- Which adaptivity measure can we use to choose θ^f ?
- We propose the Hilbert-Schmidt Independence Criterion (HSIC), an independence measure between random variables
- What is the link between independence of random variables and adaptivity?

• Perfectly adaptive bands guarantee local coverage

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) \mid X_{N+1} = x) \ge 1 - \alpha$$

• Perfectly adaptive bands guarantee local coverage

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) \mid X_{N+1} = x) \ge 1 - \alpha$$

• Perfectly adaptive bands guarantee local coverage

$$\mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) \mid X_{N+1} = x) \ge 1 - \alpha$$

- Without hypothesis on the data, satisfying this local coverage leads to infinitely wide prediction bands [Vovk 2012; Barber et al. 2021]
- We can relax the local coverage by considering X in a small neighbourhood ω_X , such that $\forall x \in \mathcal{X}, \ \mathbb{P}(x \in \omega_X) \geq \delta$:

$$p_{\mathcal{D}_N} := \mathbb{P}(Y_{N+1} \in \widehat{C}(X_{N+1}) | X_{N+1} \in \omega_X) \ge 1 - \alpha$$

• Deutschmann et al. 2024 proved a lower bound for $p_{\mathcal{D}_N}$, which involves $\mathrm{MI}(X, S_{\theta^f}(X, Y))$, but MI is not robust numerically

• Using information theory results and recent inequalities result between the TV distance and the MMD, we proved a new bound

$$p_{\mathcal{D}_N} \ge 1 - \alpha - \frac{1}{\delta} \sqrt{1 - \frac{\alpha_1}{1 - \alpha_2 \text{HSIC}(r_{\mathcal{D}_n}(X_{N+1}, Y_{N+1}), \widehat{f}_{\theta^f}(X_{N+1}))}}$$

• HSIC is much more robust than MI

Figure 6: $HSIC(r_{\mathcal{D}_n}(X,Y), \widehat{f}_{\theta f}(X))$

Maximizing this HSIC, i.e. the dependence between the residuals and the interval widths, allows to target better local coverage $$_{26/41}$$

Table of Contents

- 1. Introduction
- 2. Learning a score function
- 3. Experiments
- 4. Conclusion
- 5. References and appendix

Mean width metric

- A common measure for adaptive prediction bands in the literature is mean width, which should be minimized
- kSoS leads to better or as good mean width as competitors
- However, mean width does not always tell the full story

Mean width metric

-0.5 -1.0-1.5-1 (b) kSoS with Opt. HSIC MW = 1.759

Local coverage metric

- The best measure of adaptivity is local coverage
- The target for local coverage is a Dirac at $1 \alpha = 0.9$
- kSoS leads to better concentrated local coverage in general

Real world datasets - Comparison between mean widths

Dataset	CQR	Het GP	Hom GP	kSoS	kSoS
				Best mean width	Opt. HSIC
Concrete	0.586 ± 0.032	0.508 ± 0.052	0.543 ± 0.044	0.556 ± 0.044	0.568 ± 0.06
Bike	1.114 ± 0.062	1.000 ± 0.079	0.809 ± 0.024	0.804 ± 0.032	0.803 ± 0032
Bio	1.879 ± 0.046	2.21 ± 0.100	2.194 ± 0.119	2.03 ± 0.07	_
Diabetes	188.62 ± 9.33	191.24 ± 11.95	190.58 ± 11.19	185.83 ± 14.47	187.6 ± 16.18
MPG	9.89 ± 0.82	9.70 ± 1.06	9.71 ± 0.73	9.15 ± 0.8	9.36 ± 0.82
Housing	1.816 ± 0.045	1.585 ± 0.099	1.453 ± 0.099	1.468 ± 0.094	1.586 ± 0.104

- Mean width for six real-world datasets, kSoS with HSIC-optimized θ^f achieves best mean width on almost every datasets against competitors
- Again, mean width does not tell the full story

Real world datasets - Comparison with worst-set coverage

- Worst set coverage is a substitute for local coverage for real datasets³
- kSoS achieves better or equal worst-set coverage than competitors with better mean width

³Thurin et al. 2025

Table of Contents

- 1. Introduction
- 2. Learning a score function
- 3. Experiments
- 4. Conclusion
- 5. References and appendix

- Learning setting for a score function in the context of split CP
- Representer theorem to make the problem tractable
- Solvable in practice with the primal (small n) using SDP or the dual (big n) using AGD
- Brand new adaptivity measure based on HSIC, that allows to automatically choose hyperparameters of the model
- Paper accepted at NeurIPS 2025, preprint available on arXiv, final version in the proceedings

Q&R Thank you for listening!

Thank you for listening!
Your feedback will be highly appreciated!

Table of Contents

- 1. Introduction
- 2. Learning a score function
- 3. Experiments
- 4. Conclusion
- 5. References and appendix

References

- Barber, Rina Foygel et al. (2021). "The limits of distribution-free conditional predictive inference". In: <u>Information and Inference</u>: A <u>Journal of the IMA</u>. DOI: 10.1093/imaiai/iaaa017.
- Deutschmann, Nicolas et al. (2024). "Adaptive Conformal Regression with Split-Jackknife+ Scores". In: <u>Transactions on Machine Learning Research</u>. URL: https://openreview.net/forum?id=1fbTGC3BUD.
- Jaber, Edgar et al. (2024).

 Conformal Approach To Gaussian Process Surrogate Evaluation With Coverage Guar arXiv: 2401.07733 [stat.ML]. URL: https://arxiv.org/abs/2401.07733.
- Johansson, U. et al. (2014). "Regression conformal prediction with random forests". In: Machine Learning. URL: https://api.semanticscholar.org/CorpusID:14015369.

References

- Lei, Jing et al. (2014). "Distribution-free Prediction Bands for Non-parametric Regression". In:

 Journal of the Royal Statistical Society Series B: Statistical Methodology. DOI: 10.1111/rssb.12021.
- Papadopoulos, Harris (2024). "Guaranteed Coverage Prediction Intervals With Gaussian Process Regression". In:

 <u>IEEE Transactions on Pattern Analysis and Machine Intelligence.</u> DOI:

 10.1109/tpami.2024.3418214.
- Romano, Yaniv et al. (2019). "Conformalized Quantile Regression". In:

 Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.

 Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_
 files/paper/2019/file/5103c3584b063c431bd1268e9b5e76fb-Paper.pdf.

References

- Thurin, Gauthier et al. (2025). "Optimal transport-based conformal prediction". In: <u>Forty-second International Conference on Machine Learning</u>. URL: https://openreview.net/forum?id=kEAyffH3tn.
- Vovk, Vladimir (2012). "Conditional Validity of Inductive Conformal Predictors". In: Proceedings of the Asian Conference on Machine Learning. Proceedings of Machine Learning Research. PMLR. URL: https://proceedings.mlr.press/v25/vovk12.html.

Bound on conditional coverage

