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Industrial challenges

• Widespread use of supervised learning for computer experiments, where
expensive simulation outputs are approximated with a ML model from a DoE
dataset
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In practice

• Strategy adopted across multiple industries, using various ML models:
— Linear/logistic regression
— Random forests
— Gaussian processes
— Neural networks...

• Critical applications require confidence intervals around predictions,
with guaranteed coverage:

— Denote Ĉ(X) a confidence interval for a prediction at X, estimated from
training data

— The guarantee of marginal coverage at level α writes

P(YN+1 ∈ Ĉ(XN+1)) ≥ 1 − α

for the true unknown value of the output YN+1 at an unobserved point XN+1
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In practice

• Limitations of traditional approaches:
— Prediction bands are model-specific, with significant variation between models
— Guarantees only valid as n → +∞ or under strong assumptions that cannot be

verified
— No coverage guarantee for practical applications

• A recent promising candidate: conformal prediction
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Conformal Prediction

• Conformal Prediction (CP): a rigorous method to construct prediction
intervals with the following properties:

✓ Coverage guarantees
✓ Finite sample
✓ Distribution free
✓ Model agnostic

• Several variants:
— Full CP
— Split CP
— Resampling strategies, e.g. jackknife+, CV+

Let us illustrate split CP, which is based on two independent datasets Dn

(pre-training set) and Dm (calibration set)
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Conformal Prediction

• The prediction model m̂ is trained on Dn

• Dm is used to evaluate some prediction quality of m̂, here for example the
absolute residuals

• The quantile q̂α of these quality measures is computed
• The prediction interval Ĉ(X) = [m̂(X) ± q̂α] satisfies all the desired properties

under the assumption of data exchangeability

(a) Learn m̂ on Dn

(b) Compute |Yi − m̂(Xi)| on Dm (c) Ĉ(X) = [m̂(X) ± q̂α]
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Scores

• Such evaluation of the prediction quality is performed by a score function s

Absolute errors

s(Xi, Yi) |Yi − m̂(Xi)|

But you may have noticed that choosing the
absolute errors leads to prediction intervals

with constant width

(a) Learn m̂ on Dn (b) Compute |Yi − m̂(Xi)| on Dm (c) Ĉ(X) = [m̂(X) ± q̂α] 8 / 41
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Towards adaptivity

Absolute errors Quantile regression

Normalization

s(Xi, Yi) |Yi − m̂(Xi)| max(q̂l(Xi) − Yi, Yi − q̂u(Xi))

(Yi−m̂(Xi))2

f̂(Xi)

(a) Learn q̂l, q̂u on Dn (b) Compute max(q̂l(Xi) − Yi, Yi − q̂u(Xi))
on Dm

(c) Ĉ = [q̂l(X) − q̂α, q̂u(X) + q̂α]
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Towards adaptivity

Absolute errors Quantile regression1 Normalization2

s(Xi, Yi) |Yi − m̂(Xi)| max(q̂l(Xi) − Yi, Yi − q̂u(Xi)) (Yi−m̂(Xi))2

f̂(Xi)

• f̂ is any estimate of the errors of m̂ (e.g. other ML models trained on the
absolute residuals, resampling procedure, Bayesian approach such as GPs, ...)

• Key fact: this estimation is made without any consideration for coverage nor
adaptivity

We then propose to learn the score function in a way that targets both
adaptivity and coverage

1[Romano et al. 2019]
2[Lei et al. 2014; Johansson et al. 2014; Papadopoulos 2024; Jaber et al. 2024]
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Learning problem for a score function

• We consider a normalized score: (Y −m(X))2

f(X) , with f ≥ 0

• As for all learning problems, we must:

— Specify the criterion to minimize, to be discussed later
— Choose a search space for our functions, here we rely on kernel methods

◦ m lives in the Reproducible Kernel Hilbert Space (RKHS) Hm with kernel km

and lengthscales θm

◦ f is a kernel sum-of-squares function, in order to impose its positivity
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Kernel sum-of-squares (kSoS)

• Consider a RKHS Hf with a feature map ϕ : X → Hf , a kernel SoS function is
defined as

f(X) = ϕ(X)⊤Aϕ(X), with A ∈ S+(Hf )

• f can be written as
fA(X) =

∑
l≥0

λlul(X)ul(X)⊤

for functions ul ∈ Hf with λl the eigenvalues of the operator A, hence the
sum-of-squares name

Learning the score function amounts to simultaneously learning
m ∈ Hm, f ∈ SoS(Hf ) ⇔ m ∈ Hm, A ∈ S+(Hf )
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Learning problem for a score function

inf
m∈Hm, A∈S+(Hf )

a

n

n∑
i=1

(Yi − m(Xi))2 + b

n

n∑
i=1

fA(Xi) + λ1∥A∥⋆ + λ2∥A∥2
F (1)

s.t. fA(Xi) ≥ (Yi − m(Xi))2 , i ∈ [n] , (2)
∥m∥2

Hm ≤ s (3)

i) Faithful estimation of the mean function
ii) 100% coverage on the training sample - convex constraint (later adjusted

with split CP)
iii) Minimization of the interval mean width
iv) Control of the regularity of the bands

— lasso-type norm ∥A∥⋆

— ridge-type norm ∥A∥F
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Representer theorem

• We proved a representer theorem for this infinite dimensional problem
• It becomes a Semi-Definite Program (SDP) problem, solvable using

off-the-shelves solvers

(a) θf = 0.1 (b) θf = 0.5 (c) θf = 0.9

Note: θf is the vector of lengthscales for kf , the kernel corresponding to Hf
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Scalability

• The SDP problem is not scalable past 200 samples
• We proved that it admits a dual representation if λ2 > 0, which is solvable

using accelerated gradient descent

Figure 5: Dual solver with 2000 samples
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Hyperparameter tuning

• Hyperparameters a, λ1, λ2 do not have a huge impact on the prediction bands
• We fix θm and s using a preliminary Gaussian Process model

• We focus on the two most important hyperparameters

— b: mean width

— θf : lengthscales associated to f , control complexity of f
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Hyperparameter tuning
b = 1 b = 100

θf = 0.5

θf = 1.74

Before
calibration
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Hyperparameter tuning

For each b, we can find an optimal value for θf that maximizes
adaptivity
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Hyperparameter tuning

• Which adaptivity measure can we use to choose θf ?

• We propose the Hilbert-Schmidt Independence Criterion (HSIC), an
independence measure between random variables

• What is the link between independence of random variables and adaptivity?

20 / 41



Hyperparameter tuning

• Perfectly adaptive bands guarantee local coverage
P(YN+1 ∈ Ĉ(XN+1) | XN+1 = x) ≥ 1 − α
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Hyperparameter tuning

• Without hypothesis on the data, satisfying this local coverage leads to
infinitely wide prediction bands [Vovk 2012; Barber et al. 2021]

• We can relax the local coverage by considering X in a small neighbourhood
ωX , such that ∀x ∈ X , P(x ∈ ωX) ≥ δ:

pDN
:= P(YN+1 ∈ Ĉ(XN+1)|XN+1 ∈ ωX) ≥ 1 − α

• Deutschmann et al. 2024 proved a lower bound for pDN
, which involves

MI(X, Sθf (X, Y )), but MI is not robust numerically
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Hyperparameter tuning

• Using information theory results and recent inequalities result between the
TV distance and the MMD, we proved a new bound

pDN
≥ 1 − α − 1

δ

√
1 − α1

1 − α2HSIC(rDn(XN+1, YN+1), f̂θf (XN+1))

• HSIC is much more robust than MI
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Hyperparameter tuning

Figure 6: HSIC(rDn
(X, Y ), f̂θf (X))

Maximizing this HSIC, i.e. the dependence between the residuals and
the interval widths, allows to target better local coverage
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Analytical cases

(a) θf = 0.1 (b) θf
HSIC = 0.5 (c) θf = 0.9

(d) θf = 0.5 (e) θf
HSIC = 1.74 (f) θf = 10

(g) θf = 0.4 (h) θf
HSIC = 0.9 (i) θf = 3 28 / 41



Mean width metric

• A common measure for adaptive
prediction bands in the literature is
mean width, which should be
minimized

• kSoS leads to better or as good
mean width as competitors

• However, mean width does not
always tell the full story
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Mean width metric

(a) Homoscedastic GP
MW= 1.712

(b) kSoS with Opt. HSIC
MW= 1.759
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Local coverage metric

• The best measure of adaptivity is
local coverage

• The target for local coverage is a
Dirac at 1 − α = 0.9

• kSoS leads to better concentrated
local coverage in general
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Real world datasets - Comparison between mean
widths

Dataset CQR Het GP Hom GP kSoS kSoS
Best mean width Opt. HSIC

Concrete 0.586 ± 0.032 0.508 ± 0.052 0.543 ± 0.044 0.556 ± 0.044 0.568 ± 0.06
Bike 1.114 ± 0.062 1.000 ± 0.079 0.809 ± 0.024 0.804 ± 0.032 0.803 ± 0032
Bio 1.879 ± 0.046 2.21 ± 0.100 2.194 ± 0.119 2.03 ± 0.07 −
Diabetes 188.62 ± 9.33 191.24 ± 11.95 190.58 ± 11.19 185.83 ± 14.47 187.6 ± 16.18
MPG 9.89 ± 0.82 9.70 ± 1.06 9.71 ± 0.73 9.15 ± 0.8 9.36 ± 0.82
Housing 1.816 ± 0.045 1.585 ± 0.099 1.453 ± 0.099 1.468 ± 0.094 1.586 ± 0.104

• Mean width for six real-world datasets, kSoS with HSIC-optimized θf achieves
best mean width on almost every datasets against competitors

• Again, mean width does not tell the full story
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Real world datasets - Comparison with worst-set
coverage

(a) Housing dataset (b) Concrete dataset

• Worst set coverage is a substitute for local coverage for real datasets3

• kSoS achieves better or equal worst-set coverage than competitors
with better mean width

3Thurin et al. 2025
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Contributions

• Learning setting for a score function in the context of split CP
• Representer theorem to make the problem tractable
• Solvable in practice with the primal (small n) using SDP or the dual (big n)

using AGD
• Brand new adaptivity measure based on HSIC, that allows to automatically

choose hyperparameters of the model

• Paper accepted at NeurIPS 2025, preprint available on arXiv, final
version in the proceedings

arxiv.org/abs/2505.21039
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Q&R
Thank you for listening!

Your feedback will be highly appreciated!
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Bound on conditional coverage

(a) HSIC (b) MI
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