An Approach to Space Filling Designs in RKHS

Lorenzo Calzolari

IFPEN Inria-Grenoble

08/10/2025 ETICS 2025, Évian-les-Bains

Thesis Information

- Email: lorenzo.calzolari@ifpen.fr
- Thesis Started: 19/11/2024
- Thesis Title: Apprentissage actif pour des entrées fonctionnelles : application à l'optimisation et à l'estimation d'ensembles admissibles
- Supervivors:
 - Clémentine Prieur, Prof., Université Grenoble Alpes
 - Céline Hélbert, MdC, EC-Lyon
 - Delphine Sinoquet, PhD, Ingénieur de recherche, IFPEN
 - Miguel Munoz Zuniga, PhD, Ingénieur de recherche, IFPEN

PART 1: FUNCTIONAL SPACE FILLING DESIGNS

Morris Maximin Criterion

Space Filling Designs consist in choosing n input points $\mathcal{D}_n = \{x_1, ..., x_n\}$, that at cover as much as possible a domain \mathcal{X} .

1 Maximin: solve over \mathcal{D}_n

$$\mathcal{D}_{n}^{*} = \operatorname{argmax} \Phi_{Mm,n} \quad \Phi_{Mm,n}(\mathcal{D}_{n}) = \min_{x_{i}, x_{i'} \in \mathcal{D}_{n}} d(x_{i}, x_{i'});$$

Morris criterion: minimize

$$\Phi_{p,n}(\mathcal{D}_n) = \left(\sum_{i < i'} d(x_i, x_{i'})^{-p}\right)^{-\frac{1}{p}}$$

We wish to extend these techniques to RKHS.

(ロ) (個) (量) (量) (量) (型) (2000)

Lorenzo Calzolari ETICS 2025 4 / 24

Cloud Functions in a RKHS

Denote by \mathcal{H}_k RKHS generated by a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

• $\mathcal{H}_k = \overline{H}_k$, where

$$\forall f \in H_k \quad f = \vartheta_m^{\alpha} = \sum_{j=1}^m \alpha_j k_{x_j} \quad m \in \mathbb{N}$$

for some coefficients (**intensities**) α_j 's and point (**knots**) in \mathcal{X} ;

• With inner product

$$\langle \vartheta_m^{\boldsymbol{\alpha}}, \vartheta_{\tilde{m}}^{\boldsymbol{\beta}} \rangle_{\mathcal{H}_k} = \sum_{j=1}^m \sum_{j'=1}^m \alpha_j \beta_{j'} k(x_j, y_{j'}).$$

We refer to this formulation of the functions in \mathcal{H}_k as Cloud Functions.

<□> ←□> ←□> ←필> ←필> ←필> ←필> ← 필> →의

The Unitary Ball

- The whole RKHS is too big to cover;
- Therefore we will draw an experimental design of n functions over the unitary ball of the RKHS \mathcal{H}_k ;
- Every function in the pre-RKHS H_k is a cloud function, we will cover the following unitary ball consisting in functions of a fixed cloud cardinality $m \in \mathbb{N}$

$$\mathcal{B}_m = \{ f(\cdot) = \vartheta_m^{\boldsymbol{\alpha}}(\cdot) \text{ for a } m\text{-cloud}, \boldsymbol{\alpha} \in \mathbb{R}^m, \|f\|_{\mathcal{H}_k} \leq 1 \};$$

Cloud Functions Designs

Using the Cloud formulations we only need to find knots and the associated intensities for the functions in our experimental design

• Identify $f_i(\cdot) = \vartheta_m^{\alpha,i}(\cdot)$ for any i = 1, ..., n:

$$(x_{i,1},...,x_{i,m},\alpha_{i,1},...,\alpha_{i,m}) \leftrightarrow f_i := \vartheta_m^{\boldsymbol{\alpha},i} = \sum_{j=1}^m \alpha_{i,j} k_{x_{i,j}}$$

• Setting in \mathcal{B}_m :

$$\mathcal{D}_{n,m}^{func} = \{ f_1 = \vartheta_m^{\alpha,1}, ..., f_n = \vartheta_m^{\alpha,n} \}$$

$$\mathcal{D}_{n,m} = \{ (\alpha_{i,j}, x_{i,j}) | i = 1, ..., n; j = 1, ..., m \};$$

• Then $\mathcal{D}_{n,m}^{func}$ and $\mathcal{D}_{n,m}$ are equivalent.

Lorenzo Calzolari ETICS 2025 7 / 24

Morris Functional Criterion

Using the RKHS distance $d_{\mathcal{H}_k}$ we can define the Functional Morris Criterion as

$$\Phi^{func;p}(\mathcal{D}_{n,m}^{func}) = \left(\sum_{f_i, f_{i'}} d_{\mathcal{H}_k}(f_i, f_{i'})^{-p}\right)^{\frac{1}{p}}$$

Given the **equivalence** $\mathcal{D}_{n,m}^{func} \leftrightarrow \mathcal{D}_{n,m}$ we have

$$\Phi^{func;p}(\mathcal{D}_{n,m}^{func}) = \Phi_{p,n}(\mathcal{D}_{n,m}) = \left(\sum_{i < i'} d_{\mathcal{H}_k}(\vartheta_m^{\boldsymbol{\alpha},i}, \vartheta_m^{\boldsymbol{\alpha}',i'})^{-p}\right)^{\frac{1}{p}}$$

4 L P 4 B P 4 E P 4 E P 4 E P 9 K (*)

Optimization Procedure

We solve the constrained optimization problem

minimize_{$$x_{i,j},\alpha_{i,j}$$} $\Phi^{func;p}(\mathcal{D}^{func}_{n,m})$
subject to $\sum_{j,j'=1}^{m} \alpha_{i,j}\alpha_{i,j'}k(x_{i,j},x_{i,j'}) - 1 \leq 0$ $i = 1,...,n;$
 $x_{i,j} \in \mathcal{X}, \quad i = 1,...,n, \quad j = 1,...,m$

We will apply the **Interior Point Method** from the Python library Scipy.

Lorenzo Calzolari ETICS 2025 9 / 24

Dimensionality

- For the most used kernels (Gaussian, Matérn, Sobolev kernels) the corresponding RKHS has infinite dimensions;
- Common practice in literature consists in truncating the Fourier expansion of a function with respect to an orthonormal basis;
- By choosing n functions of cloud cardinality m we explore at each iteration a linear subspace of dimension nm;
- Nonetheless, any time we change a function in the design we consider a cloud of new points, hence a **different linear** subspace, so that we keep exploring the infinite dimensional space, and not a fixed linear subspace.

PART 2: VALIDATION AND NUMERICAL RESULTS

Validation Framework

We wish to test the performance of our method against a general Dimension Reduction method, which consists in choosing a finite orthonormal base $\{\psi_1, ..., \psi_M\}$ and then cover the reduced space $V_M = \text{Span}\{\psi_1, ..., \psi_M\}$.

- To choose these quantities we resort to the Nystrom method;
- Fixed the reduced dimension M, the choice of the orthonormal basis will not influence the optimal value of the Morris criterion on the reduced space.

The Reduced Problem

$$V_M = \operatorname{Span}\{\hat{\psi}_1, ..., \hat{\psi}_M\} \approx \mathbb{R}^M$$

Finding a Maximin optimal design over the unitary ball of V_M ($\mathbb{B}_{V_M}(1)$) is equivalent to finding a Maximin design over the unitary ball of \mathbb{R}^M ($\mathbb{B}_M(1)$).

$$\min_{\{z_1, \dots, z_n\} \in \mathbb{B}_M(1)} \Phi_{p,n} = \min_{\{f_1, \dots, f_n\} \in \mathbb{B}_{V_M}(1)} \Phi^{func}_{Mm,p}$$

- Let $\{z_1, ..., z_n\} \in \operatorname{argmin} \Phi_{p,M}$;
- ② Set $\mathcal{E}_n^{Q,M} = \{\hat{f}_1, ..., \hat{f}_n\}, \ \hat{f}_j = \sum_{i=1}^M z_{j,i} \hat{\psi}_i$
 - $\Phi^{func}_{Mm,p}(\mathcal{E}^{Q,M}_n) = \min_{\mathbb{B}_{V_M}(1)} \Phi^{func}_{Mm,p}.$

Mercer's Theorem

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be symmetric and summable. The following Fredholm Integral Operator is symmetric, self-adjoint and compact:

$$T_k \colon L^2 \to C(\mathcal{X})$$

 $\phi \mapsto \int_{\mathcal{X}} k(y, \cdot) \phi(y) \, dy.$

There exist $\{(\lambda_j, \varphi_j)|j=1,...,+\infty\}$ with $\lambda_1 \geq \lambda_2 \geq \geq 0$

$$T_k \varphi_j = \lambda_j \varphi_j \quad \langle \varphi_j, \varphi_{j'} \rangle_{L^2} = \delta_{j,j'} \quad \langle \sqrt{\lambda_j} \varphi_j, \sqrt{\lambda_{j'}} \varphi_{j'} \rangle_{\mathcal{H}_k} = \delta_{j,j'}$$

$$k(x,y) = \sum_{j=1}^{+\infty} \lambda_j \varphi_j(x) \varphi_j(y) \quad \forall x, y \in \mathcal{X},$$

the convergence of the above series being uniform for both entries of k.

Lorenzo Calzolari ETICS 2025 14 / 24

Nystrom Algorithm: Setting

The Nystrom method provides a way to approximate the eigencouples of the integral operator associated to a kernel starting from a sample of points $\mathcal{D}_Q = \{x_1, ..., x_Q\}$ chosen uniformly in \mathcal{X} .

Define the *empirical operator* and the Gram matrix

$$(\hat{T}_k^Q f)(\cdot) = \frac{1}{Q} \sum_{q=1}^Q k(x_q, \cdot) f(x_q) \quad (G^Q)_{q,q'} = k(x_q, x_{q'}).$$

Denote

- $G^Q v_q^Q = \lambda_q^Q v_q^Q$ q-th eigencouple of G^Q ;
- $\bullet \ \hat{T}_k^Q \hat{\varphi}_q = \hat{\lambda}_q \hat{\varphi}_q \ q\text{-th eigencouple of } \hat{T}_k^Q.$

Lorenzo Calzolari ETICS 2025 15 / 24

Nystrom Algorithm

The eigencouples of the empirical operator \hat{T}_k^Q can be found as

$$\begin{cases} \hat{\varphi}_j(x) = \frac{\sqrt{Q}}{\lambda_j^Q} \sum_{q=1}^Q v_{j,q}^Q k(x_q, x) & j = 1, ..., Q, x \in \mathcal{X} \\ \hat{\lambda}_q = \frac{\lambda_q^Q}{Q} \\ \hat{\psi}_j(x) = \sqrt{\hat{\lambda}_q} \hat{\varphi}_j(x) = \frac{1}{\sqrt{\lambda_q^Q}} \sum_{q=1}^Q v_{j,q}^Q k(x_q, x) \end{cases}$$

Moreover, if $j \neq j'$ then $\langle \hat{\psi}_j, \hat{\psi}_{j'} \rangle_{\mathcal{H}_k} = \delta_{j,j'}$.

We choose $M \leq Q$ as the smallest integer ensuring that

$$\Gamma^{Q,M} = \frac{\sum_{q=1}^{M} \hat{\lambda}_{Q,q}}{\sum_{q'=1}^{Q} \hat{\lambda}_{Q,q'}} \ge 0.95.$$

Lorenzo Calzolari ETICS 2025 16/24

Testing Procedure

• We will test the cloud functions method over $\mathcal{H}_k([0,1])$ using the Gaussian kernel

$$k(x,y)=exp\bigg(-\frac{(x-y)^2}{2\sigma^2}\bigg)\quad x,y\in[0,1];$$

- We tested the lengthscale parameter $\sigma = 0.01, 0.1$ and a multistart procedure of 30 starts;
- We randomly chose the starting configuration in \mathcal{B}_m by uniformly choosing intensities and knots in [0,1];
- Cloud Approach: For n = 3, 5, 7, 10 and m = 1, 3, 5, 10, 20 we find optimal cloud functions designs;
- Nystrom based Dimension Reduction: n as above;
- We randomly draw Q = 250 uniformly over [0, 1].

(□) (♂) (₹) ₹ √) (₹)

Dimensions Reduction for Gaussian Kernels

Sigma=0.1 Comparative tab: Nystrom vs Cloud Functions						
index	Nystrom	1-clouds	3-clouds	5-clouds	10-clouds	20-clouds
3 functions	0.59017	0.70791	0.59018	0.59017	0.59017	0.59017
5 functions	0.66226	0.73324	0.66226	0.66226	0.66234	0.66227
7 functions	0.69575	0.74689	0.69576	0.69576	0.69576	0.69575
10 functions	0.75384	0.78774	0.75205	0.72637	0.72389	0.72389
20 functions	0.85159	1.09429	0.81302	0.79112	0.78451	0.78317

Figure: Comparison the Functional Morris Criterion among the cloud size approach and the Reduced Space Design for $\sigma = 0.1$.

- In this case, the reduced dimension has been calculated to be M=7;
- We have highlighted
 - in yellow the values for the reduced dimension;
 - in green the values in the cloud approach which are approximately the same value in Nystrom (with an error of 5×10^{-5});
 - for n = 10, 20 we have highlighted in blues the best computed values.

Figure: Panel with the cloud-functions generated for $\sigma=0.01,\,n=5,\,m=20$

Figure: Panel with the cloud-functions generated for $\sigma = 0.1$, n = 5, m = 20

Conclusions

- The cloud based algorithm we have proposed does not fix a finite basis for the search of Maximin samples;
- We have shown that in terms of the functional Morris criterion, the cloud resulting designs either have similar performances (n = 3, 5, 7) or better performances than the dimension reduction ones (n = 10, 20);
- Working with Gaussian kernels:
 - σ small: very thin bell-shapes generate more irregular functions;
 - σ big: very large bell-shapes generate more regular curves;
- ullet If we increase the cloud cardinality m the optimal Morris value stagnates.

Future Perspectives

• Short Term Perspectives:

- Deepen geometrical analysis (ongoing work);
- 2 Extend numerical tests;
- Submit a paper hopefully by the end of the year;

• Long Term Perspectives:

- Use as initial design for functional (input) metamodelling and optimization;
- 2 Application to real test cases.

THANK YOU FOR YOUR ATTENTION

Covariance Covered by Nystrom Method

To cover 95% of the covariance for the Gaussian kernel we get

- $\sigma = 0.1$: M = 7;
- $\sigma = 0.01$: M = 63.

Figure: Reduced dimension M covering 95% of the covariance in for the above kernels as $Q \to +\infty$.

Lorenzo Calzolari ETICS 2025 24 / 24