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PART 1: FUNCTIONAL SPACE FILLING DESIGNS
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Morris Maximin Criterion

Space Filling Designs consist in choosing n input points Dn =
{x1, ..., xn}, that at cover as much as possible a domain X .

1 Maximin: solve over Dn

D∗
n = argmaxΦMm,n ΦMm,n(Dn) = min

xi,xi′∈Dn

d(xi, xi′);

2 Morris criterion: minimize

Φp,n(Dn) =

(∑
i<i′

d(xi, xi′)
−p

)− 1
p

We wish to extend these techniques to RKHS.
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Cloud Functions in a RKHS

Denote by Hk RKHS generated by a kernel k : X × X → R.
Hk = Hk, where

∀f ∈ Hk f = ϑαm =

m∑
j=1

αjkxj m ∈ N

for some coefficients (intensities) αj ’s and point (knots) in X ;

With inner product

⟨ϑαm, ϑ
β
m̃⟩Hk

=

m∑
j=1

m̃∑
j′=1

αjβj′k(xj , yj′).

We refer to this formulation of the functions in Hk as Cloud
Functions.
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The Unitary Ball

The whole RKHS is too big to cover;

Therefore we will draw an experimental design of n functions
over the unitary ball of the RKHS Hk;

Every function in the pre-RKHS Hk is a cloud function,
we will cover the following unitary ball consisting in functions
of a fixed cloud cardinality m ∈ N

Bm = {f(·) = ϑαm(·) for a m-cloud,α ∈ Rm, ∥f∥Hk
≤ 1};
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Cloud Functions Designs

Using the Cloud formulations we only need to find knots
and the associated intensities for the functions in our ex-
perimental design

Identify fi(·) = ϑα,i
m (·) for any i = 1, ..., n:

(xi,1, ..., xi,m, αi,1, ..., αi,m) ↔ fi := ϑα,i
m =

m∑
j=1

αi,jkxi,j

Setting in Bm:

Dfunc
n,m = {f1 = ϑα,1

m , ..., fn = ϑα,n
m }

Dn,m = {(αi,j , xi,j)|i = 1, ..., n; j = 1, ...,m};

Then Dfunc
n,m and Dn,m are equivalent.
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Morris Functional Criterion

Using the RKHS distance dHk
we can define the Functional

Morris Criterion as

Φfunc;p(Dfunc
n,m ) =

(∑
fi,fi′

dHk
(fi, fi′)

−p

) 1
p

Given the equivalence Dfunc
n,m ↔ Dn,m we have

Φfunc;p(Dfunc
n,m ) = Φp,n(Dn,m) =

(∑
i<i′

dHk
(ϑα,i

m , ϑα
′,i′

m )−p

) 1
p
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Optimization Procedure

We solve the constrained optimization problem

minimizexi,j ,αi,j Φfunc;p(Dfunc
n,m )

subject to

m∑
j,j′=1

αi,jαi,j′k(xi,j , xi,j′)− 1 ≤ 0 i = 1, ..., n;

xi,j ∈ X , i = 1, . . . , n, j = 1, . . . ,m

We will apply the Interior Point Method from the Python
library Scipy.
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Dimensionality

For the most used kernels (Gaussian, Matérn, Sobolev kernels) the
corresponding RKHS has infinite dimensions;

Common practice in literature consists in truncating the
Fourier expansion of a function with respect to an
orthonormal basis;

By choosing n functions of cloud cardinality m we explore at each
iteration a linear subspace of dimension nm;

Nonetheless, any time we change a function in the design we
consider a cloud of new points, hence a different linear
subspace, so that we keep exploring the infinite
dimensional space, and not a fixed linear subspace.
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PART 2: VALIDATION AND NUMERICAL RESULTS
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Validation Framework

We wish to test the performance of our method against a general
Dimension Reduction method, which consists in choosing
a finite orthonormal base {ψ1, ..., ψM} and then cover the re-
duced space VM = Span{ψ1, ..., ψM}.

To choose these quantities we resort to the Nystrom method;

Fixed the reduced dimension M , the choice of the
orthonormal basis will not influence the optimal value of
the Morris criterion on the reduced space.
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The Reduced Problem

VM = Span
{
ψ̂1, ..., ψ̂M} ≈ RM

Finding a Maximin optimal design over the unitary ball
of VM (BVM

(1)) is equivalent to finding a Maximin design
over the unitary ball of RM (BM (1)).

min
{z1,...,zn}∈BM (1)

Φp,n = min
{f1,...,fn}∈BVM

(1)
Φfunc
Mm,p

1 Let {z1, ..., zn} ∈ argminΦp,M ;

2 Set EQ,M
n = {f̂1, ..., f̂n}, f̂j =

∑M
i=1 zj,iψ̂i

3 Φfunc
Mm,p(E

Q,M
n ) = min

BVM
(1)

Φfunc
Mm,p.
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Mercer’s Theorem

Let k : X × X → R be symmetric and summable. The following
Fredholm Integral Operator is symmetric, self-adjoint and
compact:

Tk : L
2 → C(X )

ϕ 7→
∫
X
k(y, ·)ϕ(y) dy.

There exist {(λj , φj)|j = 1, ...,+∞} with λ1 ≥ λ2 ≥ .... ≥ 0

Tkφj = λjφj ⟨φj , φj′⟩L2 = δj,j′ ⟨
√
λjφj ,

√
λj′φj′⟩Hk

= δj,j′

k(x, y) =

+∞∑
j=1

λjφj(x)φj(y) ∀x, y ∈ X ,

the convergence of the above series being uniform for both entries
of k.
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Nystrom Algorithm: Setting

The Nystrom method provides a way to approximate the
eigencouples of the integral operator associated to a ker-
nel starting from a sample of points DQ = {x1, ..., xQ} cho-
sen uniformly in X .

Define the empirical operator and the Gram matrix

(T̂Q
k f)(·) =

1

Q

Q∑
q=1

k(xq, ·)f(xq) (GQ)q,q′ = k(xq, xq′).

Denote

GQvQq = λQq v
Q
q q-th eigencouple of GQ;

T̂Q
k φ̂q = λ̂qφ̂q q-th eigencouple of T̂Q

k .
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Nystrom Algorithm

The eigencouples of the empirical operator T̂Q
k can be found as

φ̂j(x) =
√
Q

λQ
j

∑Q
q=1 v

Q
j,qk(xq, x) j = 1, ..., Q, x ∈ X

λ̂q =
λQ
q

Q

ψ̂j(x) =
√
λ̂qφ̂j(x) =

1√
λQ
q

∑Q
q=1 v

Q
j,qk(xq, x)

Moreover, if j ̸= j′ then ⟨ψ̂j , ψ̂j′⟩Hk
= δj,j′ .

We choose M ≤ Q as the smallest integer ensuring that

ΓQ,M =

∑M
q=1 λ̂Q,q∑Q
q′=1 λ̂Q,q′

≥ 0.95.
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Testing Procedure

We will test the cloud functions method over Hk([0, 1]) using the
Gaussian kernel

k(x, y) = exp

(
−(x− y)2

2σ2

)
x, y ∈ [0, 1];

We tested the lengthscale parameter σ = 0.01, 0.1 and a multistart
procedure of 30 starts;

We randomly chose the starting configuration in Bm by uniformly
choosing intensities and knots in [0, 1];

Cloud Approach: For n = 3, 5, 7, 10 and m = 1, 3, 5, 10, 20 we
find optimal cloud functions designs;

Nystrom based Dimension Reduction: n as above;

We randomly draw Q = 250 uniformly over [0, 1].

Lorenzo Calzolari ETICS 2025 17 / 24



Dimensions Reduction for Gaussian Kernels

Figure: Comparison the the Functional Morris Criterion among the cloud size
approach and the Reduced Space Design for σ = 0.1.

In this case, the reduced dimension has been calculated to be
M = 7;

We have highlighted

in yellow the values for the reduced dimension;
in green the values in the cloud approach which are approximately
the same value in Nystrom (with an error of 5× 10−5);
for n = 10, 20 we have highlighted in blues the best computed
values.
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Figure: Panel with the cloud-functions generated for σ = 0.01, n = 5, m = 20
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Figure: Panel with the cloud-functions generated for σ = 0.1, n = 5, m = 20
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Conclusions

The cloud based algorithm we have proposed does not fix a
finite basis for the search of Maximin samples;

We have shown that in terms of the functional Morris criterion,
the cloud resulting designs either have similar performances
(n = 3, 5, 7) or better performances than the dimension reduction
ones (n = 10, 20);

Working with Gaussian kernels:

σ small: very thin bell-shapes generate more irregular functions;
σ big: very large bell-shapes generate more regular curves;

If we increase the cloud cardinality m the optimal Morris value
stagnates.
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Future Perspectives

Short Term Perspectives:
1 Deepen geometrical analysis (ongoing work);
2 Extend numerical tests;
3 Submit a paper hopefully by the end of the year;

Long Term Perspectives:
1 Use as initial design for functional (input) metamodelling and

optimization;
2 Application to real test cases.
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Covariance Covered by Nystrom Method

To cover 95% of the covariance for the Gaussian kernel we get

σ = 0.1: M = 7;

σ = 0.01: M = 63.

Figure: Reduced dimension M covering 95% of the covariance in for the above
kernels as Q→ +∞.
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