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Objectives

Input 1: weaving Input 2: type of material

Gaussian 

Process

regression

Quantity of 

Interest
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f ∶  ℝ𝑛 × 𝒵 → ℝ 

GP in mixed spaces

Continuous 
inputs

Categorical 
inputs

𝒵 = ෑ

𝑖=1

𝑚

𝒵𝑖 Unordered set, finite number of levels

e.g. 𝒵𝑖 = {𝐴, 𝐵, … , 𝐸}
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f ∶  ℝ𝑛 × 𝒵 → ℝ 

GP in mixed spaces

Continuous 
inputs

Categorical 
inputs

𝒵 = ෑ

𝑖=1

𝑚

𝒵𝑖

𝑘𝑚𝑖𝑥𝑒𝑑 𝑥, 𝑧 , 𝑥′, 𝑧′  = 𝑘𝑐𝑜𝑛𝑡 𝑥, 𝑥′ ×  ෑ

𝑖=1

𝑚

𝑘(𝑧𝑖 , 𝑧𝑖
′) for 𝑥, 𝑧 , 𝑥′, 𝑧′ ∈ ℝ𝑛 × 𝒵

Unordered set, finite number of levels

How to choose the categorical kernel 𝑘? In the following, 𝒵 = 1, ⋯ , 𝐶

e.g. 𝒵𝑖 = {𝐴, 𝐵, … , 𝐸}



1- Review of existing approaches
    a) Encoding 

    b) Covariance matrix parametrization

2- Experiments for datasets with known 

group structure

3- Automatic selection of groups

4- Experiments for datasets with no 

known group structure
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One-hot encoding

ARD RBF kernel 

between encodings 

1

Level

2

⋮

𝐶

Encoding

𝐸 1 = (1, 0, 0 ⋯ , 0)

𝐸 2 = (0, 1, 0 ⋯ , 0)

𝐸 𝐶 = (0, 0, 0 ⋯ , 1)

𝑘 𝑧, 𝑧′ = ෑ

𝑖=1

𝐶

𝑒
−

𝐸 𝑧 𝑖−𝐸 𝑧′
𝑖

2

2 𝜃𝑖
2

= 𝛿𝑧,𝑧′ + 𝑒
−

1
2

𝜃𝑧
−2+𝜃

𝑧′
−2

(1 − 𝛿𝑧,𝑧′)

𝐶 parameters
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Latent Variables (LVGP)

ARD RBF kernel between learned 

representations in dimension 2

𝜙: 1, ⋯ , 𝐶 → ℝ2 : learned function

𝑘 𝑧, 𝑧′ = 𝑒− 𝜙 𝑧 −𝜙 𝑧′
2

2

2𝐶 − 3 parameters

1 2

3

4

5

[Zhang et al., 2020]



1- Review of existing approaches
    a) Encoding 

    b) Covariance matrix parametrization

2- Experiments for datasets with known 

group structure

3- Automatic selection of groups

4- Experiments for datasets with no 

known group structure
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Matrix parametrization

𝑘 ∶ 𝒵 × 𝒵 → ℝ

𝑇 =

𝐶

𝐶

∼
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Matrix parametrization

𝑘 ∶ 𝒵 × 𝒵 → ℝ

𝑇 =

𝐶

𝐶

∼

𝑇 symmetric positive definite matrix

Cholesky decomposition

 𝑇 = 𝐿𝐿𝑇  𝐿 = 𝐿(𝜃)
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Homoscedastic Hypersphere (Ho)

𝐿 =

1 0 0
cos(𝜃21) sin(𝜃21) 0
cos(𝜃31) sin(𝜃31) cos(𝜃32) sin(𝜃31) sin(𝜃32)

1

2 3

𝑥1

𝑥2

𝑥3

𝜃𝑖𝑗 ∈ 0,
𝜋

2
 → Positive correlations

𝜃𝑖𝑗 ∈ 0, 𝜋  → Negative correlations

1

2
𝐶 𝐶 − 1  parameters

[Zhou et al., 2011]
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𝐿 =

𝜃10 0 0
𝜃20cos(𝜃21) 𝜃20sin(𝜃21) 0
𝜃30cos(𝜃31) 𝜃30sin(𝜃31) cos(𝜃32) 𝜃30 sin(𝜃31) sin(𝜃32)

1

2
3

𝑥1

𝑥2

𝑥3

Heteroscedastic Hypersphere (He) 1

2
𝐶 𝐶 + 1  parameters

[Zhou et al., 2011]



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

15

Exp Homoscedastic Hypersphere(EHH)

𝑘 𝑧, 𝑧′ = 𝛿𝑧,𝑧′ + 𝑒
−2𝜏

𝑧,𝑧′ (1 − 𝛿𝑧,𝑧′)

𝜏𝑧,𝑧′ =  log( 𝐿𝐿𝑇
𝑧,𝑧′ − 1 )

𝐿 : homoscedastic hypersphere

1

2
𝐶 𝐶 + 1  parameters

[Saves et al., 2023]
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𝐿 =

1 0
sin(𝜃21) cos(𝜃21)

0 0
0 0

sin(𝜃31) cos(𝜃31)
sin(𝜃41) cos(𝜃41)

0 0
0 0

Low rank Hypersphere (Ho_2)

1

2

𝑥1

𝑥2
3

4

Rank 2

𝐶 − 1 parameters
[Kirchhoff et al., 2020]
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Compound symmetry (CS)

𝑘 𝑧, 𝑧′ = 𝑣𝛿𝑧,𝑧′ + 𝑐(1 − 𝛿𝑧,𝑧′)

𝑣 > 0 ,   
𝑐

𝑣
∈

−1

𝐶−1
, 1

2 parameters
[Katz., 2011]
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Summary of the methods

# params

CS One hot

LVGP

Ho_2 , Ho_3

Ho, He

EHH

𝒪(1) 𝒪(𝐶) 𝒪(𝐶2)
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Nested Kernels

Requires 𝛾 groups of levels:

parameters

Group 2

Group 1

Group 3
𝑇 =

𝑊1 𝐵12 𝐵13

𝐵21 𝑊2 𝐵23

𝐵31 𝐵32 𝑊3

Block covariance matrix

- Cov « Within group »

- Cov « Between groups » 

Nested_He_He

Between Within

෍

𝑙=1

𝛾
𝑛𝑙(𝑛𝑙 + 1)

2
+

𝛾(𝛾 + 1)

2

1, ⋯ , 𝐶 =  ራ

1≤𝑙≤𝛾

𝐺𝑙 (𝐺𝑙 of size 𝑛𝑙)

[Roustant et al., 2020]
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Nested Kernels

Requires 𝛾 groups of levels:

parameters

Group 2

Group 1

Group 3
𝑇 =

𝑊1 𝐵12 𝐵13

𝐵21 𝑊2 𝐵23

𝐵31 𝐵32 𝑊3

Block covariance matrix

- Cov « Within group »

- Cov « Between groups » 

Nested_CS_He

Between Within

෍

𝑙=1

𝛾
𝑛𝑙(𝑛𝑙 + 1)

2
+ 2

1, ⋯ , 𝐶 =  ራ

1≤𝑙≤𝛾

𝐺𝑙 (𝐺𝑙 of size 𝑛𝑙)

[Roustant et al., 2020]
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Nested Kernels

Requires 𝛾 groups of levels:

parameters

Group 2

Group 1

Group 3
𝑇 =

𝑊1 𝐵12 𝐵13

𝐵21 𝑊2 𝐵23

𝐵31 𝐵32 𝑊3

Block covariance matrix

- Cov « Within group »

- Cov « Between groups » 

Nested_Ho_CS

Between Within

𝛾 +
𝛾(𝛾 + 1)

2

1, ⋯ , 𝐶 =  ራ

1≤𝑙≤𝛾

𝐺𝑙 (𝐺𝑙 of size 𝑛𝑙)

[Roustant et al., 2020]
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Nested Kernels

Requires 𝛾 groups of levels:

parameters

Group 2

Group 1

Group 3
𝑇 =

𝑊1 𝐵12 𝐵13

𝐵21 𝑊2 𝐵23

𝐵31 𝐵32 𝑊3

Block covariance matrix

- Cov « Within group »

- Cov « Between groups » 

Nested_CS_CS

Between Within

𝛾 + 2

1, ⋯ , 𝐶 =  ራ

1≤𝑙≤𝛾

𝐺𝑙 (𝐺𝑙 of size 𝑛𝑙)

[Roustant et al., 2020]
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Summary of the methods

# params

CS One hot

LVGP

Ho_2 , Ho_3

Ho, He

EHH

𝒪(1) 𝒪(𝐶) 𝒪(𝐶2)
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Summary of the methods

# params

CS One hot

LVGP

Ho_2 , Ho_3

Ho, He

EHH

𝒪(1) 𝒪(𝐶) 𝒪(𝐶2)

Nested_CS_CS

Nested_Ho_CS

Nested_CS_He

Nested_He_He

𝒪(𝛾) 𝒪(𝛾2) 𝒪(Σ 𝑛𝑙
2) 𝒪(Σ 𝑛𝑙

2 + 𝛾2)



1- Review of existing approaches
    a) Encoding 

    b) Covariance matrix parametrization

    c) Kernels from the BO litterature

2- Experiments for datasets with known 

group structure

3- Automatic selection of groups

4- Experiments for datasets with no 

known group structure
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Datasets with known group structure
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Presentation of the methods/kernels

Category Name Description

Ho Homoscedastic, only positive correlations

Hypersphere Ho_NC Homoscedastic, allowing negative correlations

He Heteroscedastic, only positive correlations

He_NC Heteroscedastic, allowing negative correlations

Ho_2 Homoscedastic, only positive correlations  (rank 2)

Ho_3 Homoscedastic, only positive correlations  (rank 3)

EHH Exponential Homoscedastic Hypersphere

LVGP LVGP Latent dimension 2

CS CS Compound symmetry

One-hot One_hot One hot encoding

No cat No cat Only continuous variables
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Presentation of the methods/kernels

Category Name Description

Nested_CS_He Between = CS, Within = He

Nested Nested_He_He Between = He, Within = He

Nested_Ho_CS Between = Ho, Within = CS

Nested_CS_CS Between = CS, Within = CS
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Individual results
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Performance profiles (known groups)
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Performance profiles (known groups)

AUC



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

32

Performance profiles (known groups)
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Performance profiles (known groups)



1- Review of existing approaches
    a) Encoding 

    b) Covariance matrix parametrization

    c) Kernels from the BO litterature

2- Experiments for datasets with known 

group structure

3- Automatic selection of groups

4- Experiments for datasets with no 

known group structure
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Selection of groups when they are not known 

Objective: Use Nested kernels.            Issue: no known groups

 Requires to train another GP model before to get the groups

[Roustant et al., 2020]

1- Train a GP#1 2- Get 𝑻𝒑𝒓𝒐𝒙 from GP#1

𝑑 𝑧, 𝑧′ = 𝑇𝑧,𝑧
𝑝𝑟𝑜𝑥

+ 𝑇
𝑧′,𝑧′
𝑝𝑟𝑜𝑥

− 2𝑇
𝑧,𝑧′
𝑝𝑟𝑜𝑥

 
1/2

3- Clustering

Kernel = LVGP Hierarchical, from 𝑑

4- Train a GP#2

Kernel = Nested
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Target encodings

𝜈𝑐 =
1

|𝑖: 𝑧 𝑖 = 𝑐|
෍

𝑖:𝑧(𝑖)=𝑐

𝛿𝑦(𝑖)

Train inputs 𝑥 𝑖 , 𝑧 𝑖  and outputs 𝑦(𝑖)

Target encoding of the level 𝑐

Choose 𝑑 𝑧, 𝑧′ = 𝒟(𝜈𝑧, 𝜈𝑧′)

Divergence between 

empirical measures
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Target encodings

𝜈𝑐 =
1

|𝑖: 𝑧 𝑖 = 𝑐|
෍

𝑖:𝑧(𝑖)=𝑐

𝛿𝑦(𝑖)

Train inputs 𝑥 𝑖 , 𝑧 𝑖  and outputs 𝑦(𝑖)

Target encoding of the level 𝑐

Choose 𝑑 𝑧, 𝑧′ = 𝒟(𝜈𝑧, 𝜈𝑧′)

Divergence between 

empirical measures

In practice, since 𝜈𝑐 is of small size 

(<10), we can use:

𝜇𝑐 mean and 𝜎𝑐 SD of 𝜈𝑐

𝒟 𝑧, 𝑧′ = 𝜇𝑧, 𝜎𝑧 − (𝜇𝑧′ , 𝜎𝑧′) 2
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New selection of groups when they are not known 

Objective: Use Nested kernels.            Issue: no known groups

1- Target encodings 2- MSD distance matrix 3- Clustering

Hierarchical, from 𝑑

4- Train a GP

Kernel = Nested𝑑 𝑧, 𝑧′ = 𝒟(𝜈𝑧 , 𝜈𝑧′)

✓ Only one GP training is required
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Impact of the group selection strategy: scores



1- Review of existing approaches
    a) Encoding 

    b) Covariance matrix parametrization

    c) Kernels from the BO litterature

2- Experiments for datasets with known 

group structure

3- Automatic selection of groups

4- Experiments for datasets with no 

known group structure
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Datasets with no known group structure
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Presentation of the methods/kernels

Category Name Description

Ho Homoscedastic, only positive correlations

Hypersphere Ho_NC Homoscedastic, allowing negative correlations

He Heteroscedastic, only positive correlations

He_NC Heteroscedastic, allowing negative correlations

Ho_2 Homoscedastic, only positive correlations  (rank 2)

Ho_3 Homoscedastic, only positive correlations  (rank 3)

EHH Exponential Homoscedastic Hypersphere

LVGP LVGP Latent dimension 2

CS CS Compound symmetry

One-hot One_hot One hot encoding

No cat No cat Only continuous variables
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Presentation of the methods/kernels

Category Name Description

Nested_CS_He_LV Between = CS, Within = He

Nested Nested_He_He_LV Between = He, Within = He

(auto LV) Nested_Ho_CS_LV Between = Ho, Within = CS

Nested_CS_CS_LV Between = CS, Within = CS

Nested_CS_He_MSD Between = CS, Within = He

Nested Nested_He_He_MSD Between = He, Within = He

(auto MSD) Nested_Ho_CS_MSD Between = Ho, Within = CS

Nested_CS_CS_MSD Between = CS, Within = CS
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Individual results
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Performance profiles (no known groups)

Max iter 3000

Max func. 

evaluations

3000 ×
(#params + cst)

Tolerance 10−10

« long »
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Performance profiles (no known groups)

Max iter 3000

Max func. 

evaluations

3000 ×
(#params + cst)

Tolerance 10−10

Max iter Ø

Max func. 

evaluations

15000

Tolerance 10−9

« long » « short »

Default in 

scipy
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Performance profiles (no known groups)

Max iter 3000

Max func. 

evaluations

3000 ×
(#params + cst)

Tolerance 10−10

Max iter Ø

Max func. 

evaluations

15000

Tolerance 10−9

« long » « short »

Default in 

scipy
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Performance profiles (no known groups)

Max iter 3000

Max func. 

evaluations

3000 ×
(#params + cst)

Tolerance 10−10

Max iter Ø

Max func. 

evaluations

15000

Tolerance 10−9

« long » « short »

Default in 

scipy
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AUCS of perf. profiles: time vs RRMSE (all datasets)

RRMSE

ti
m

e
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AUCS of perf. profiles: time vs RRMSE (all datasets)

RRMSE

ti
m

e
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AUCS of perf. profiles: time vs RRMSE (all datasets)

RRMSE

ti
m

e



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

52

AUCS of perf. profiles: time vs RRMSE (all datasets)

RRMSE

ti
m

e
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AUCS of perf. profiles: time vs RRMSE (all datasets)

RRMSE

ti
m

e
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Conclusion

Take home messages

▪ Optimization has an important impact, especially on hypersphere models

▪ Nested kernels outperform other kernels when groups are known

▪ Even when groups are unknown, they are among the best methods with the automatic 
group selection strategies

▪ Reproducible comparative study available at : https://gitlab.com/drti/cat_gp/

▪ 23 kernels including: Hypersphere, Nested, LVGP, CS models

▪ 42 datasets with varying sizes, continuous and categorical variables with different numbers of levels

▪ Datasets with/without known groups

▪ New global evaluation metrics: performance profiles

▪ New clustering-based nested kernels using target encodings

Contributions

https://gitlab.com/drti/cat_gp
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