A reproducible comparative study of categorical kernels for Gaussian process regression, with new clustering-based nested kernels

Raphaël Carpintero Perez

Sébastien Da Veiga Josselin Garnier

10/10/2025 SAFRAN

Objectives

Objectives

Input 1: weaving

Input 2: type of material

Objectives

Input 1: weaving

Input 2: type of material

GP in mixed spaces

$$\mathcal{Z} = \prod_{i=1}^{m} [\mathcal{Z}_i] \longrightarrow$$

Unordered set, finite number of levels e.g. $Z_i = \{A, B, ..., E\}$

GP in mixed spaces

$$f: \mathbb{R}^n \times \mathcal{Z} \to \mathbb{R}$$
Continuous Categorical inputs inputs

$$\mathcal{Z} = \prod_{i=1}^{m} \overline{Z_i} \longrightarrow$$

 $Z = \prod_{i \in Z_i} \longrightarrow$ Unordered set, finite number of levels e.g. $Z_i = \{A, B, ..., E\}$

$$k_{mixed}((x,z),(x',z')) = k_{cont}(x,x') \times \prod_{i=1}^{m} k(z_i,z_i')$$
 for $(x,z),(x',z') \in \mathbb{R}^n \times \mathbb{Z}$

How to choose the categorical kernel k? \longrightarrow In the following, $\mathcal{Z} = \{1, \dots, C\}$

- 1- Review of existing approaches
 - a) Encoding
 - b) Covariance matrix parametrization
- 2- Experiments for datasets with known group structure
- 3- Automatic selection of groups
- 4- Experiments for datasets with no known group structure

One-hot encoding

C parameters

Level	Encoding
1	$E(1) = (1, 0, 0 \cdots, 0)$
2	$E(2) = (0, 1, 0 \cdots, 0)$
:	
С	$E(C) = (0,0,0\cdots,1)$

$$k(z,z') = \prod_{i=1}^{C} e^{-\frac{\left(E(z)_i - E(z')_i\right)^2}{2\theta_i^2}} = \delta_{z,z'} + e^{-\frac{1}{2}\left(\theta_z^{-2} + \theta_{z'}^{-2}\right)} (1 - \delta_{z,z'})$$

ARD RBF kernel between encodings

Latent Variables (LVGP)

[Zhang et al., 2020]

$$\phi$$
: $\{1, \dots, C\} \to \mathbb{R}^2$: learned function

$$k(z,z') = e^{-\|\phi(z)-\phi(z')\|_2^2}$$

2C - 3 parameters

ARD RBF kernel between learned representations in dimension 2

1- Review of existing approaches

- a) Encoding
- b) Covariance matrix parametrization
- 2- Experiments for datasets with known group structure
- 3- Automatic selection of groups
- 4- Experiments for datasets with no known group structure

Matrix parametrization

$$k: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$$

Matrix parametrization

$$k: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$$

T symmetric positive definite matrix

Cholesky decomposition

$$T = LL^T \qquad L = L(\theta)$$

Homoscedastic Hypersphere (Ho)

$$L = \begin{bmatrix} 1 & 0 & 0 \\ \cos(\theta_{21}) & \sin(\theta_{21}) & 0 \\ \cos(\theta_{31}) & \sin(\theta_{31})\cos(\theta_{32}) & \sin(\theta_{31})\sin(\theta_{32}) \end{bmatrix}$$

$$\frac{1}{2}C(C-1)$$
 parameters

$$\theta_{ij} \in \left(0, \frac{\pi}{2}\right) \to \text{Positive correlations}$$

 $\theta_{ij} \in (0, \pi) \to \text{Negative correlations}$

Heteroscedastic Hypersphere (He)

$$\frac{1}{2}C(C+1)$$
 parameters

$$L = \begin{bmatrix} \theta_{10} & 0 & 0 \\ \theta_{20}\cos(\theta_{21}) & \theta_{20}\sin(\theta_{21}) & 0 \\ \theta_{30}\cos(\theta_{31}) & \theta_{30}\sin(\theta_{31})\cos(\theta_{32}) & \theta_{30}\sin(\theta_{31})\sin(\theta_{32}) \end{bmatrix}$$

Exp Homoscedastic Hypersphere(EHH)

[Saves et al., 2023]

$$\frac{1}{2}C(C+1)$$
 parameters

L: homoscedastic hypersphere

$$\tau_{z,z'} = \log((LL^T)_{z,z'} - 1)$$

$$k(z, z') = \delta_{z,z'} + e^{-2\tau_{z,z'}} (1 - \delta_{z,z'})$$

Low rank Hypersphere (Ho_2)

C-1 parameters

[Kirchhoff et al., 2020]

Compound symmetry (CS)

[Katz., 2011]

$$k(z,z') = v\delta_{z,z'} + c(1-\delta_{z,z'})$$

$$v > 0$$
, $\frac{c}{v} \in \left(\frac{-1}{c-1}, 1\right)$

2 parameters

Summary of the methods

[Roustant et al., 2020]

Requires γ groups of levels:

$$\{1, \dots, C\} = \bigcup_{1 \le l \le \gamma} G_l \qquad (G_l \text{ of size } n_l)$$

$$T = \begin{bmatrix} W_1 & B_{12} & B_{13} \\ B_{21} & W_2 & B_{23} \\ B_{31} & B_{32} & W_3 \end{bmatrix}$$

Block covariance matrix

- Cov « Within group »
- Cov « Between groups »

$$\sum_{l=1}^{\gamma} \frac{n_l(n_l+1)}{2} + \frac{\gamma(\gamma+1)}{2}$$
 parameters

[Roustant et al., 2020]

Requires γ groups of levels:

$$\{1, \dots, C\} = \bigcup_{1 \le l \le \gamma} G_l \qquad (G_l \text{ of size } n_l)$$

$$T = \begin{bmatrix} W_1 & B_{12} & B_{13} \\ B_{21} & W_2 & B_{23} \\ B_{31} & B_{32} & W_3 \end{bmatrix}$$

Block covariance matrix

- Cov « Within group »
- Cov « Between groups »

[Roustant et al., 2020]

Requires γ groups of levels:

$$\{1, \dots, C\} = \bigcup_{1 \le l \le \gamma} G_l$$
 (G_l of size n_l)

$$T = \begin{bmatrix} W_1 & B_{12} & B_{13} \\ B_{21} & W_2 & B_{23} \\ B_{31} & B_{32} & W_3 \end{bmatrix}$$

Block covariance matrix

- Cov « Within group »
- Cov « Between groups »

parameters

[Roustant et al., 2020]

 $\gamma + 2$ parameters

Requires γ groups of levels:

$$\{1, \dots, C\} = \bigcup_{1 \le l \le \gamma} G_l$$
 (G_l of size n_l)

$$T = \begin{bmatrix} W_1 & B_{12} & B_{13} \\ B_{21} & W_2 & B_{23} \\ B_{31} & B_{32} & W_3 \end{bmatrix}$$

Block covariance matrix

- Cov « Within group »
- Cov « Between groups »

Summary of the methods

Summary of the methods

- 1- Review of existing approaches
 - a) Encoding
 - b) Covariance matrix parametrization
 - c) Kernels from the BO litterature
- 2- Experiments for datasets with known group structure
- 3- Automatic selection of groups
- 4- Experiments for datasets with no known group structure

Datasets with known group structure

	Name	Cont	Cat	Train	Test	Groups	Source
	f_1	1	1 (13)	39/78/117/156/195	1001	True	Roustant et al. (2020)
	f_2	1	1 (10)	30/60/90/120/150	1000	True	Roustant et al. (2020)
Ε	Beam bending	2	1 (12)	36/72/108/144/180	1000	True	Roustant et al. (2020)

Presentation of the methods/kernels

Category	Name	Description
	Но	Homoscedastic, only positive correlations
Hypersphere	Ho_NC	Homoscedastic, allowing negative correlations
	Не	Heteroscedastic, only positive correlations
	He_NC	Heteroscedastic, allowing negative correlations
	Ho_2	Homoscedastic, only positive correlations (rank 2)
	Ho_3	Homoscedastic, only positive correlations (rank 3)
	EHH	Exponential Homoscedastic Hypersphere
LVGP	LVGP	Latent dimension 2
CS	CS	Compound symmetry
One-hot	One_hot	One hot encoding
No cat	No cat	Only continuous variables

Presentation of the methods/kernels

Category	Name	Description
	Nested_CS_He	Between = CS, Within = He
Nested	Nested_He_He	Between = He, Within = He
	Nested_Ho_CS	Between = Ho, Within = CS
	Nested_CS_CS	Between = CS, Within = CS

Individual results

- 1- Review of existing approaches
 - a) Encoding
 - b) Covariance matrix parametrization
 - c) Kernels from the BO litterature
- 2- Experiments for datasets with known group structure
- 3- Automatic selection of groups
- 4- Experiments for datasets with no known group structure

Selection of groups when they are not known

Objective: Use Nested kernels.

<u>Issue:</u> no known groups

[Roustant et al., 2020]

Requires to train another GP model before to get the groups

Target encodings

Train inputs $(x^{(i)}, z^{(i)})$ and outputs $y^{(i)}$

$$v_c = \frac{1}{|i:z^{(i)} = c|} \sum_{i:z^{(i)} = c} \delta_{y^{(i)}}$$

Target encoding of the level a

Choose
$$d(z, z') = \mathcal{D}(v_z, v_{z'})$$

Divergence between empirical measures

Target encodings

In practice, since v_c is of small size (<10), we can use:

Train inputs $(x^{(i)}, z^{(i)})$ and outputs $y^{(i)}$

$$\mu_c$$
 mean and σ_c SD of ν_c

$$\nu_c = \frac{1}{|i:z^{(i)} = c|} \sum_{i:z^{(i)} = c} \delta_{y^{(i)}}$$
Target encoding of the level c

$$\mathcal{D}(z, z') = \|(\mu_z, \sigma_z) - (\mu_{z'}, \sigma_{z'})\|_2$$

Choose
$$d(z, z') = \mathcal{D}(v_z, v_{z'})$$

Divergence between empirical measures

New selection of groups when they are not known

Objective: Use Nested kernels. <u>Issue:</u> no known groups

✓ Only one GP training is required

Impact of the group selection strategy: scores

- 1- Review of existing approaches
 - a) Encoding
 - b) Covariance matrix parametrization
 - c) Kernels from the BO litterature
- 2- Experiments for datasets with known group structure
- 3- Automatic selection of groups
- 4- Experiments for datasets with no known group structure

Datasets with no known group structure

Name	Cont	Cat	Train	Test	Groups	Source
Borehole	6	2 (3-4)	36/72/108/144/180	1008	False	Zhang et al. (2020)
Borehole2	6	1 (12)	36/72/108/144/180	1008	False	Zhang et al. (2020)
OTL	4	2 (4-6)	72/144/216	1008	False	Zhang et al. (2020)
OTL2	4	1 (24)	72/144/216	1008	False	Zhang et al. (2020)
Piston	5	2 (5-3)	45/90/135	1005	False	Zhang et al. (2020)
Piston2	5	1 (15)	45/90/135	1005	False	Zhang et al. (2020)
Goldstein	2	1 (9)	27/54/81/108/135	999	False	Pelamatti et al. (2021)

Presentation of the methods/kernels

Category	Name	Description
	Но	Homoscedastic, only positive correlations
Hypersphere	Ho_NC	Homoscedastic, allowing negative correlations
	Не	Heteroscedastic, only positive correlations
	He_NC	Heteroscedastic, allowing negative correlations
	Ho_2	Homoscedastic, only positive correlations (rank 2)
	Ho_3	Homoscedastic, only positive correlations (rank 3)
	EHH	Exponential Homoscedastic Hypersphere
LVGP	LVGP	Latent dimension 2
CS	CS	Compound symmetry
One-hot	One_hot	One hot encoding
No cat	No cat	Only continuous variables

Presentation of the methods/kernels

Category	Name	Description
	Nested_CS_He_LV	Between = CS, Within = He
Nested	Nested_He_He_LV	Between = He, Within = He
(auto LV)	Nested_Ho_CS_LV	Between = Ho, Within = CS
	Nested_CS_CS_LV	Between = CS, Within = CS
	Nested_CS_He_MSD	Between = CS, Within = He
Nested	Nested_He_He_MSD	Between = He, Within = He
(auto MSD)	Nested_Ho_CS_MSD	Between = Ho, Within = CS
	Nested_CS_CS_MSD	Between = CS, Within = CS

Individual results

« long »

Max iter	3000
Max func. evaluations	3000 × (#params + cst)
Tolerance	10 ⁻¹⁰

« long »

Max iter	3000
Max func. evaluations	$3000 \times (\text{\#params} + \text{cst})$
Tolerance	10 ⁻¹⁰

« short » Default in

scipy

Max iter	Ø
Max func. evaluations	15000
Tolerance	10^{-9}

« short »
Default in scipy

Max iter	Ø
Max func. evaluations	15000
Tolerance	10 ⁻⁹

Conclusion

Contributions

- Reproducible comparative study available at : https://gitlab.com/drti/cat_gp/
 - 23 kernels including: Hypersphere, Nested, LVGP, CS models
 - 42 datasets with varying sizes, continuous and categorical variables with different numbers of levels
 - Datasets with/without known groups
- New global evaluation metrics: performance profiles
- New clustering-based nested kernels using target encodings

Take home messages

- Optimization has an important impact, especially on hypersphere models
- Nested kernels outperform other kernels when groups are known
- Even when groups are unknown, they are among the best methods with the automatic group selection strategies

Acknowledgments

This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

References

Categorical kernels

- [LVGP] Zhang, Y., Tao, S., Chen, W., & Apley, D. W. (2020). A latent variable approach to Gaussian process modeling with qualitative and quantitative factors.
- [Ho/He] Zhou, Q., Qian, P. Z., & Zhou, S. (2011). A simple approach to emulation for computer models with qualitative and quantitative factors.
- [Ho_2/Ho_3] Kirchhoff, D., & Kuhnt, S. (2020). Gaussian process models with low-rank correlation matrices for both continuous and categorical inputs.
- [EHH] Saves, P., Diouane, Y., Bartoli, N., Lefebvre, T., & Morlier, J. (2023). A mixed-categorical correlation kernel for Gaussian process.
- [CS] Katz, M. H. (2011). Multivariable analysis: a practical guide for clinicians and public health researchers.
- [Nested] Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J., & Wynn, H. (2020). Group kernels for Gaussian process metamodels with categorical inputs.

References

Kernels from the BO literature

- Oh, C., Tomczak, J., Gavves, E., & Welling, M. (2019). Combinatorial bayesian optimization using the graph cartesian product. Advances in Neural Information Processing Systems, 32.
- Ru, B., Alvi, A., Nguyen, V., Osborne, M. A., & Roberts, S. (2020). Bayesian optimisation over multiple continuous and categorical inputs.
- Deshwal, A., Belakaria, S., & Doppa, J. R. (2021). Bayesian optimization over hybrid spaces.
- Deshwal, A., Ament, S., Balandat, M., Bakshy, E., Doppa, J. R., & Eriksson, D. (2023).
 Bayesian optimization over high-dimensional combinatorial spaces via dictionary-based embeddings.
- Grosnit, A., Malherbe, C., Tutunov, R., Wan, X., Wang, J., & Ammar, H. B. (2022). Boils: Bayesian optimisation for logic synthesis.
- Dreczkowski, K., Grosnit, A., & Bou Ammar, H. (2023). Framework and benchmarks for combinatorial and mixed-variable bayesian optimization.

Gaussian process regression

POWERED BY TRUST

