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Uncertainty quantification

Numerical simulations : avoid the cost of experiments, limit risks

1. Model definition Y = ϕ(X)
ϕ numerical code, supposed to be deterministic, costly, black-box
X = (X1, . . . ,Xd) input vector, Rd -valued ; Y the output, R-valued

2. Quantification of uncertainties’ sources
X : d-dimensional random vector, known law PX, with density fX
Assumptions : dependent inputs, d ≥ 10, PX supposed Gaussian

3. Uncertainties propagation : assess the output variability
Given PX, we study the r.v. g(Y )

4. Sensitivity analysis (SA) : prioritise sources of uncertainty
How the uncertainty of g(Y ) can be attributed to input variable Xi
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Variance-based global sensitivity analysis

What are the most influential inputs Xi on the variability of g(Y ) = Y ?

For independent inputs, the decomposition of variance (ANOVA) :

V(Y ) = V(ϕ(X)) =
∑

u⊂{1,..,d}\{∅}

V(E[ϕ(X)|Xu] + Qv⊊u)

leads to the closed Sobol’ indices Scu for group u ⊂ {1, . . . , d} :

Scu =
V(E[ϕ(X)|Xu])

V(ϕ(X))

Convenient to interpret, but costly to estimate and require independence

Dependent inputs : ANOVA not unique, loosing its interpretation’s power

How to deal with dependent inputs ?
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Global Sensitivity analysis : Shapley effects

Among several available methods : Shapley effects
• From game theory (Shapley, 1953)
• Provide a fairly allocation of gains between players

The Shapley effect Shi associated with the player/input i is defined by

Shi =
1

d

∑
u⊂{1,...,d}\{i}

(
d − 1

|u|

)−1(
c(u ∪ {i})− c(u)

)

c a cost function measuring contribution

c(u ∪ {i})− c(u) : contribution of i to the group u

Adaptation to sensitivity analysis (Owen, 2014) : c(u) = Scu
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Reliability analysis

For safety and certification purposes : need to understand failure scenarios

Failure : rare event, abnormal state, catastrophic event (important loss)

Aim : assess the risk → estimate the failure probability

Failure event is {Y > t}, and the failure probability is

pt = P(Y > t) = E[1]t,∞[(Y )] = E[1Ft (X)] =

∫
Ft

fX(x)dx

• t ∈ R the failure threshold

• Ft = {x ∈ Rd : ϕ(x) > t} the failure domain
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Failure probability and failing samples

To obtain a good estimation of pt with a moderate number of calls to ϕ :

• Monte Carlo (not adapted to very small pt)

• Importance Sampling

• Subset Sampling

• Control variates

Recover Nf failing samples :

(X(n)) satisfying ϕ(X(n)) > t, denoted (X̃(n))

Objective

Without additional call to ϕ : perform a sensitivity analysis for 1Ft (X)
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Reliability-oriented Sensitivity analysis (ROSA)

Sensitivity analysis is performed on 1Ft (X) instead of ϕ(X)

We can define T-Scu, the target closed Sobol index of u, by

T-Scu =
V(E[1Ft (X)|Xu])

V(1Ft (X))

Leading to T-Shi , the target Shapley effect of Xi (Il Idrissi et al., 2021)

T-Shi =
1

d

∑
u⊂{1,...,d}\{i}

(
d − 1

|u|

)−1

(T-Scu∪{i} − T-Scu)
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Estimation of T-Shi

Existing literature for the estimation of T-Shi

Il Idrissi et al. (2021)

• Estimate T-Scu by crude double Monte-Carlo
• Require too many calls to ϕ when pt ≪ 1
(because 1Ft (X

(n)) = 0 for many samples (X(n)))

Demange-Chryst et al. (2023)

• Estimate T-Scu by importance sampling (better precision)
• Allow estimation of T-Shi with the same samples used to estimate pt
• Limited to dimension d < 10
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Contribution

Our contribution :

Extend estimation scheme of target Shapley effects
for larger dimensions

Overall methodolody to estimate T-Shi

1. Estimate pt and obtain failing samples (X̃(n))

2. Rewrite T-Scu with conditional density fXu |Ft
of Xu

3. Estimate fXu |Ft
with Normalizing Flows (suited for large dimensions)

4. Estimate T-Scu by Monte-Carlo

5. Estimate T-Shi with a another writing using permutations
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Rewrite T-Scu

Alternative writing of target closed Sobol index (Perrin et Defaux, 2019)

T-Scu =
pt

1− pt
VXu

[
fXu |Ft

(Xu)

fXu(Xu)

]

=
pt

1− pt

(
EXu |Ft

[
fXu |Ft

(Xu)

fXu(Xu)

]
− 1

)

fXu marginal density of Xu

fXu |Ft
marginal density of Xu conditionally to the failure ϕ(X) > t
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Estimation of T-Scu

pt already estimated by p̂t in reliability analysis

fX is Gaussian =⇒ we can obtain fXu

fXu |Ft
must be estimated, but !

→ may be large dimensional (1 ≤ #(u) ≤ d)

→ classical methods (KDE) suffer from the curse of dimensionality

→ classical parametric methods lack flexibility

→ resulting estimate must be tractable to compute EXu |Ft
[·]

Proposed solution : Normalizing Flows
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Estimate fXu|Ft
with Normalizing Flows

Normalizing Flows (NF) : Papamakarios et al. (2021)

• From the field of generative modelling

• Flexible, suited for complex high-dimensional density estimation

• Provide explicit and tractable density (unlike GAN, VAE, etc.)

Principle

1. From a density fZ easy to evaluate (Gaussian), same dimension as fXu |Ft

2. Build a C 1-diffeomorphism Tθ, parametrized by θ, providing the density

fθ(x) = fTθ(Z)(x) = fZ
(
T−1
θ (x)

) ∣∣ det JT−1
θ

(x)
∣∣

3. NF learns θ by minimizing the KL divergence DKL(fXu |Ft
∥fθ)

4. Learned with (X̃(n))Nf
n=1, θ̂ provides the estimated density f̂Xu |Ft

= fTθ̂(Z)
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Estimation of T-Scu with Monte Carlo

With p̂t , f̂Xu |Ft
and fXu =⇒ estimation of EXu |Ft

[·] and T-Scu

With f̂Xu |Ft
and fXu we estimate Eu = EXu |Ft

[
fXu |Ft (Xu)

fXu (Xu)

]
by Monte Carlo :

Êu =
1

Nf

Nf∑
n=1

f̂Xu |Ft

(
X̃

(n)
u

)
fXu

(
X̃

(n)
u

)
Then, Êu and p̂t provide the estimate T̂-Scu of T-Scu :

T̂-Scu =
p̂t

1− p̂t

[
Êu − 1

]
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Estimation of T-Shi with permutations

Subset aggregation

• compute T̂-Scu for every u ⊂ {1, . . . , d}, nb of indices is O(2d)

Permutation aggregation (Castro et al. 2009) :

T-Shi =
1

d!

∑
σ∈Sd

(T-ScPi (σ)∪{i} − T-ScPi (σ)
)

• S(d) : set of permutations of {1, . . . , d}
• Pi (σ) : set of indices before i in permutation σ

Example : d = 3, compute T-Sh1 for the variable X1

(2, 1, 3) → T-Sc
{2} − T-Sc

∅ ; T-Sc
{2,1} − T-Sc

{2} ; T-Sc
{2,1,3} − T-Sc

{2,1}
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Estimation of T-Shi

1. Uniformly sample M permutations (σ(m))Mm=1 from S(d)

2. Build the estimate

T̂-Shi =
1

M

M∑
m=1

(T̂-ScPi (σ)∪{i} − T̂-ScPi (σ)
)

Advantages

• Number of indices T-Scu can be reduced to M(d − 1) (Song, 2016)

• Allow trade-off between precision and computational cost (Maleki, 2013)

• Allow to obtain confidence interval or exact bounds (Maleki, 2013)

But ! Induce additional variability, unlike the subset method
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Numerical results

Gaussian Linear case

• X ∼ N (µ,Σ), µ ∈ Rd , Σ ∈ Md(R) and non-diagonal, d = 7

• For β ∈ Rd\{0}, define Y = β⊤X, t = 5.5, p̂t obtained with MC

• We have formula to obtain the true Shapley effects

• Repeat estimation scheme 5 times to obtain uncertainty
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Numerical results

Gaussian Linear case

• X ∼ N (µ,Σ), µ ∈ Rd , Σ ∈ Md(R) and non-diagonal, d = 15

• For β ∈ Rd\{0}, define Y = β⊤X, t = 8.5, p̂t obtained with MC

• Repeat estimation scheme 10 times to obtain uncertainty
• 10 perm. (140 Sobol’) and 30 perm. (420 Sobol’) instead of 215
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Conclusion

Contribution

Numerical code with a unique sample of correlated inputs, d ≥ 10

Estimate Target Shapley effects with Normalizing Flows

Good results for d = 15

Improve estimation of target Shapley effects

Measure uncertainty from the NF and from estimations of T-Scu

Extend to applications with larger dimensions

→ Gaussian linear case with d ≥ 20

→ Fire-spread model (d = 10), existing estimation is not good enough

Compare with existing target indices

The Future : Optimal UQ, Copula learning with Normalizing Flows ?
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