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Definitions

Let F be the set of proper convex functions f : R → R such that:

▶ dom (f) ⊂ R+,

▶ f is right-continuous at 0,

▶ f(1) = 0,

▶ 1 ∈ int(dom (f)).

We define its convex conjugate f∗ ∈ F by:

f∗(t) = tf

(
1

t

)
for t ∈ R+

∗ . (1)
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Definitions

Let P = P(Ω,F) be the set of probability measures on a measurable space (Ω,F). We suppose F is
not reduced to the trivial σ-field {∅,Ω}.

Definition (f -divergence [1, 4])
For a function f ∈ F, we denote the f -divergence between P and Q as follows:

Df (P∥Q) =

∫
Ω

f

(
dP

dQ

)
dQ+ f∗(0)P

(
dP

dQ
= +∞

)
. (2)

Remark: This is not necessarily a distance.

Examples:

▶ Kullback Leibler divergence: fKL(t) = t log(t).

▶ Conjugate Kullback Leibler divergence: fKL⋆(t) = − log(t).

▶ Total variation distance: fTV(t) = |t− 1|.
▶ Squared Hellinger distance: fH(t) = (

√
t− 1)2.
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Definitions

Let (X,Y ) be a random vector, with X taking values in a measurable space (ΩX ,FX) and Y in
(ΩY ,FY ). Denote by P(X,Y ) their joint distribution, by PX and PY the marginals, and by PX ⊗ PY

the product distribution.

Definition (Csiszár Index [5])
For a function f ∈ F, we denote the Csiszár index between X and Y as follows:

Sf (X,Y ) = Df (PX ⊗ PY ∥P(X,Y )). (3)

Example: Mutual Information I(X,Y ) = DKL⋆(PX ⊗ PY ∥P(X,Y )).

We have the following properties for Csiszár index:

(i) Symmetry. Sf (X,Y ) = Sf (Y,X).

(ii) Bounds. 0 ≤ Sf (X,Y ) ≤ f(0) + f∗(0).

(iii) Independence. If X ⊥⊥ Y , then Sf (X,Y ) = 0.

(iv) Implication of independence. If f is strictly convex at 1, then Sf (X,Y ) = 0 =⇒ X ⊥⊥ Y .
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Variable Transformation in the Csiszár Index

Motivation: How does the Csiszár index change when applying a transformation to X or Y ?

Proposition
Let f ∈ F. For i = 1, 2, let Xi a random variable taking values in a measurable space (Ωi,Fi) and φi a
measurable function defined on (Ωi,Fi) and taking values in a measurable space (Ei, Ei). We have:

(i) Variable transformation reduces the Csiszár index.

Sf (φ1(X1), φ2(X2)) ≤ Sf (X1, X2). (4)

(ii) Marginal invariance. If dPX1 ⊗ dPX2/dP(X1,X2) is σ(φ1)⊗ σ(φ2)-measurable, then we have:

Sf (X1, X2) = Sf (φ1(X1), φ2(X2)). (5)

(iii) Invariance by injection. If, for i = 1, 2 the function φi is injective and bi-measurable, then we
have:

Sf (X1, X2) = Sf (φ1(X1), φ2(X2)). (6)
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Variable Transformation in the Csiszár Index

Example of invariance of the Csiszár index:

(i) Marginal invariance. Suppose that X and Y are real valued random variable and that (X,Y ) is
symmetric. Then, we have :

Sf (|X|, |Y |) = Sf (X,Y ). (7)

(ii) Invariance by bijection. Suppose that X and Y are real valued random variable and that the
distributions of X and of Y are absolutely continuous w.r.t. the Lebesgue measure on R with a
positive density. Then we have:

Sf (FX(X), FY (Y )) = Sf (X,Y ). (8)
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What is a Copula ?

A d-dimensional copula is a cumulative distribution function (cdf) C : [0, 1]d → [0, 1] with uniform
marginals.

Let Z = (Z1, . . . , Zd) be a real random vector with cdf FZ . We say that a d-dimensional copula C is a
copula for Z if for all z1, . . . , zd ∈ R:

FZ(z1, . . . , zd) = C(FZ1(z1), . . . , FZd(zd)). (9)

Key points:

▶ Copulas capture the dependence structure separately from the marginals.

▶ For any real random vector, there exists a copula for this random vector and this copula is unique
if all marginals are continuous. Sklar’s Theorem [3]

Examples: Clayton copula, Gumbel copula, Gaussian copula ...
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Csiszár index in Terms of the Copula
If the pair (X,Y ) is a continuous random vector then we have:

Sf (X,Y ) = Df (CX ⊗ CY ∥C(X,Y )). (10)

If the pair (X,Y ) is not continuous, then the copula is no longer unique and Equation (10) is no
longer valid in general. Let us consider X and Y as two dependent Bernoulli random variables. We
consider two possible copulas for the pair (X,Y ).
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(a) Df (CX ⊗ CY ∥C(X,Y )) = 1/15
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(b) Df (CX ⊗ CY ∥C(X,Y )) = (π2/8)− 1

Figure: Density Plots of Two Copulas for the Pair (X,Y ).
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Csiszár Index in Terms of the Copula
Definition (Checkerboard copulas [2])
Let Z = (Z1, . . . , Zd) be a real random vector. Denote by ∆(Zi) = {z ∈ R : P(Zi = z) > 0} the set of
atoms of Zi. The (unique) checkerboard copula Ccb

Z is the copula where each marginal Ui is defined as:

Ui = FZi(Zi−) + Ti

∑
x∈∆(Zi)

P(Zi = x)1{Zi=x}. (11)

Example: Let X and Y be two Bernoulli random variables with respective parameters p and q.

The copula Ccb
(X,Y ) has the following marginals:

U = FX(X−) + T
∑

x∈{0,1}

P(X = x)1{X=x},

V = FY (Y−) + T ′
∑

y∈{0,1}

P(Y = y)1{Y =y},

where T, T ′ ∼ Uniform(0, 1) are independent.

1

1− p

1

T P(X = 0)

T P(X = 1)

x

FX(x)

Figure: Cdf of the random variable X.

Remark: For a continuous random vector Z, the checkerboard copula equals its unique copula.
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Csiszár index in Terms of the Copula

Theorem (Checkerboard copula minimises the f -divergence)
Let (X,Y ) be a random vector, and f ∈ F.
(i) For any copula C(X,Y ) with marginals CX and CY :

Sf (X,Y ) ≤ Df (CX ⊗ CY ∥C(X,Y )). (12)

(ii) For the checkerboard copulas:

Sf (X,Y ) = Df (C
cb
X ⊗ Ccb

Y ∥Ccb
(X,Y )) = minDf (CX ⊗ CY ∥C(X,Y )), (13)

where the minimum is over all copulas of (X,Y ).

Remark: The checkerboard copula is not necessarily the only copula that achieves this minimum.
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Gaussian Case

Motivation: A priori, the Csiszár index does not provide the same ranking as variance-based indices.
Let Y = X1 +X2 with X1 ⊥⊥ X2, X1 ∼ N (0, 1.82) and X2 ∼ Logistic(0, 1). We then have:

SfKL⋆(X1, Y ) ≥ SfKL⋆(X2, Y ) whereas corr(X1, Y ) ≤ corr(X2, Y ).

Are there cases where the Csiszár index behaves like variance-based indices ?

Theorem
Let (X,Y ) be a Gaussian vector and consider the correlation matrix C = Σ

−1/2
X Cov(X,Y )Σ

−1/2
Y with

ΣX and ΣY the covariance matrices of X and Y . Let λ ∈ [0, 1]d be the vector of the positive
eigenvalues of C⊤C (and of CC⊤) with d ≥ 0 the rank of C. Then Sf (X,Y ) can be viewed as a
function of λ, which is non-decreasing in each λi.
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Gaussian Case

Corollary
Consider a Gaussian vector (X,X ′, Y ), of dimension dX × dX′ × dY with covariance matrix ΣX for X,
ΣX′ for X ′ and ΣY for Y . We have these three properties:

(i) If dY = dX = dX′ = 1, then we have:

∀f ∈ F, Sf (X,Y ) ≤ Sf (X
′, Y ) ⇐⇒ corr(X,Y )2 ≤ corr(X ′, Y )2.

(ii) If dY = 1, then we have:

∀f ∈ F, Sf (X,Y ) ≤ Sf (X
′, Y ) ⇐⇒ ∥Σ−1/2

X Cov(X,Y )∥22 ≤ ∥Σ−1/2

X′ Cov(X ′, Y )∥22.

(iii) If dY = 1 and both ΣX and ΣX′ are diagonal, then we have:

∀f ∈ F, Sf (X,Y ) ≤ Sf (X
′, Y ) ⇐⇒

dX∑
i=1

corr(Xi, Y )2 ≤
dX′∑
i=1

corr(X ′
i, Y )2.

In the Gaussian vector setting, the ranking of the variables reduces to the ranking of their correlations.
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The Additive Independent Model

Theorem (Comparison of the Csiszár index in the additive independent model)
Let X,X ′, U and W be independent random variables such that X

L
= X ′. Denote Z = X ′ + U and

consider the additive model:
Y = X + Z +W. (14)

Then for all f ∈ F, we have:
Sf (X,Y ) ≤ Sf (Z, Y ). (15)

Example: Consider two independent centred Gaussian variables X and Z with respective variances σ2
1

and σ2
2 , and assume σ2

1 ≤ σ2
2 . Then Z can be rewritten as the sum of two independent Gaussians:

Z = X ′ + U with X ′ ∼ N (0, σ2
1), U ∼ N (0, σ2

2 − σ2
1),

and X ′ ⊥⊥ U . It follows that the ranking of the variables is determined by the order of their variances,
and consequently by their correlations.
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Conclusion

Our contributions:

▶ We introduce new transformations that preserve the Csiszár index.

▶ We establish a connection between the Csiszár index and the associated copula, including cases
where the copula is not unique.

▶ We analyze the Csiszár index for Gaussian vectors and describe its main properties.

▶ We compare the Csiszár index in the additive independent model.

Thank you for your attention! Any questions?
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