Comparer des distributions

Un florilège de présentations ETICS, et problématiques actuelles

10ème édition d'ETICS

Outline

• Some divergences and distances between probability distributions

How they are used in our community, and in ETICS talks

Recent developments and selected topics

(Some) Divergences and distances between probability distributions

Let P and Q denote two probability measures defined on the same measurable space $(\mathcal{X}, \mathcal{F})$, with respective densities p and q with respect to a common dominating measure (typically the Lebesgue measure)

Let P and Q denote two probability measures defined on the same measurable space $(\mathcal{X}, \mathcal{F})$, with respective densities p and q with respect to a common dominating measure (typically the Lebesgue measure)

The total variation distance measures the largest possible difference in probabilities assigned by P and Q to the same event:

$$d_{\text{TV}}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|.$$

When P and Q admit densities p and q, this can be equivalently expressed as

$$d_{\text{TV}}(P, Q) = \frac{1}{2} \int_{\mathcal{X}} |p(x) - q(x)| dx.$$

A large class of divergences, known as f-divergences, are defined for a convex function $f:(0,+\infty)\to\mathbb{R}$ such that f(1)=0:

$$D_f(P || Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx.$$

Different choices of f yield well-known divergences. For example:

• Kullback-Leibler divergence (KL divergence):

$$\mathrm{KL}(P || Q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx.$$

• Reverse KL divergence:

$$\mathrm{KL}(Q || P) = \int_{\mathcal{X}} q(x) \log \frac{q(x)}{p(x)} dx.$$

• Total variation as an f-divergence:

$$d_{\text{TV}}(P, Q) = \frac{1}{2} D_f(P || Q) \text{ with } f(t) = |t - 1|.$$

Mutual information between two random variables X and Y measures the divergence between the joint distribution $P_{X,Y}$ and the product of the marginals $P_X P_Y$:

$$I(X;Y) = \mathrm{KL}(P_{X,Y} || P_X P_Y) = \int_{\mathcal{X} \times \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dx dy.$$

It quantifies the amount of information shared between X and Y.

Unlike f-divergences, which compare probability densities pointwise, the $Wasserstein\ distance$ (or $optimal\ transport\ distance$) takes the geometry of the space \mathcal{X} into account. For $p \geq 1$, the p-Wasserstein distance between P and Q is defined as

$$W_p(P,Q) = \left(\inf_{\pi \in \Pi(P,Q)} \int_{\mathcal{X} \times \mathcal{X}} \|x - y\|^p d\pi(x,y)\right)^{1/p},$$

where $\Pi(P,Q)$ denotes the set of all *couplings* of P and Q, i.e., joint distributions on $\mathcal{X} \times \mathcal{X}$ with marginals P and Q respectively.

Sliced-Wasserstein distance

$$W_r(P,Q) = \left(\int_0^1 |F_P^{-1}(t) - F_Q^{-1}(t)|^r dt \right)^{\frac{1}{r}}$$

Wassertein in dimension 1 is easy

$$SW_r(P,Q) = \left(\int_{\mathbb{S}^{s-1}} W_r(\theta_{\sharp}^* P, \theta_{\sharp}^* Q)^r d\sigma(\theta) \right)^{\frac{1}{r}}$$

- P, Q distribution on \mathbb{R}^s
- \mathbb{S}^{s-1} is the (s-1)-dimensional unit sphere
- σ uniform distribution on \mathbb{S}^{s-1}
- θ^* projection function on direction $\theta \in \mathbb{S}^{s-1}$
- . θ_{\sharp}^*P push-forward measure of P by θ^*

$$\widehat{SW}_{2}^{2}(P,Q) = \frac{1}{R} \sum_{r=1}^{R} \widehat{W}_{2}^{2}(\theta_{r,\sharp}^{*} P, \theta_{r,\sharp}^{*} Q)$$

 $\theta_1, \dots, \theta_R$ projection directions uniformly drawn on \mathbb{S}^{s-1}

Obviously using a finite number of features will not lead to a distance between probability distributions

Dissimilarity measured through characteristic functions Weighted distance leads to energy distance (Székely & Rizzo 2013)

The kernel mean embedding of a probability measure is defined as

$$\mu_{\mathrm{P}} = \mathbb{E}_{\xi \sim \mathrm{P}} k_{\mathcal{X}}(\xi, \cdot) = \int_{\mathcal{X}} k_{\mathcal{X}}(\xi, \cdot) d\mathrm{P}(\xi)$$

A distance between probability measures is then given by the Maximum Mean Discrepancy

$$MMD(P_1, P_2) = \|\mu_{P_1} - \mu_{P_2}\|_{\mathcal{H}}$$

The reproducing property in the RKHS gives the central result

$$MMD^{2}(P_{1}, P_{2}) = \mathbb{E}_{\xi, \xi'} k_{\mathcal{X}}(\xi, \xi') - 2\mathbb{E}_{\xi, \zeta} k_{\mathcal{X}}(\xi, \zeta) + \mathbb{E}_{\zeta, \zeta'} k_{\mathcal{X}}(\zeta, \zeta')$$

Advantages of this distance vs others

- Thanks to the RKHS, only involves expectations of kernels
- Less prone to the curse of dimensionality
- Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using specific kernels
- (This is a distance only if a characteristic kernel is used)

Other major use: testing independence of random vectors

$$\begin{split} \mathrm{MMD^2}(\mathrm{P}_{\mathbf{U}\mathbf{V}}, \mathrm{P}_{\mathbf{U}} \otimes \mathrm{P}_{\mathbf{V}}) &= \| \mu_{\mathrm{P}_{\mathbf{U}\mathbf{V}}} - \mu_{\mathrm{P}_{\mathbf{U}}} \otimes \mu_{\mathrm{P}_{\mathbf{V}}} \|_{\mathcal{H}}^2 \\ \mathrm{HSIC}(\mathbf{U}, \mathbf{V}) &= \mathrm{MMD^2}(\mathrm{P}_{\mathbf{U}\mathbf{V}}, \mathrm{P}_{\mathbf{U}} \otimes \mathrm{P}_{\mathbf{V}}) \\ &= \mathbb{E}_{\mathbf{U}, \mathbf{U}', \mathbf{V}, \mathbf{V}'} k_{\mathcal{X}}(\mathbf{U}, \mathbf{U}') k_{\mathcal{Y}}(\mathbf{V}, \mathbf{V}') \\ &+ \mathbb{E}_{\mathbf{U}, \mathbf{U}'} k_{\mathcal{X}}(\mathbf{U}, \mathbf{U}') \mathbb{E}_{\mathbf{V}, \mathbf{V}'} k_{\mathcal{Y}}(\mathbf{V}, \mathbf{V}') \\ &- 2\mathbb{E}_{\mathbf{U}, \mathbf{V}} \left[\mathbb{E}_{\mathbf{U}'} k_{\mathcal{X}}(\mathbf{U}, \mathbf{U}') \mathbb{E}_{\mathbf{V}'} k_{\mathcal{Y}}(\mathbf{V}, \mathbf{V}') \right] \end{split}$$
 Gretton et al. 2005a,b

Many applications: goodness-of-fit, independence tests, feature selection, ...

ETICS 2022

$$\mathrm{MMD}^2(\mathrm{P}_{\mathbf{U}\mathbf{V}},\mathrm{P}_{\mathbf{U}}\otimes\mathrm{P})$$

$$egin{array}{lll} \mathrm{HSIC}(\mathbf{U},\mathbf{V}) &=& \mathrm{MI} \ &=& \mathbb{E}_{\mathbf{U}} \ &+& \mathbb{E}_{\mathbf{U}} \ &-& 2\mathbb{E} \end{array}$$

Many applications: goodness-of-fit,

Other major use: testing independer École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodère Golfe de Lozari, France https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

Several appearances in ETICS community

Several appearances in ETICS community

1 - Sensitivity analysis

Sensitivity analysis

What is sensitivity analysis?

- Originates from the field of computer experiments
- Main goal: identify and rank the input parameters according to their impact on the output of a computer code
- Why?
 - Simplify the model
 - Improve the knowledge of the physical phenomenon
 - For uncertainty quantification, we can reduce the output uncertainty by focusing on the main input contributors

Notation

Computer code

$$Y=\eta(X_1,\ldots,X_d)$$
Output Input parameters

Sensitivity analysis

What is sensitivity analysis?

- Originates from the field of computer experiments
- Main goal: identify and rank the input parameters according to their impact on the output of a computer code
- Why?
 - Simplify the model
 - Improve the knowledge of the physical phenomenon
 - For uncertainty quantification, we can reduce the output uncertainty by focusing on the main input contributors

Notation

Computer code

$$Y=\eta(X_1,\ldots,X_d)$$
 Output Input parameters

As a side note

- Replace « computer code » by « ML model » trained on a data set
- The goal of SA actually corresponds to assessing the feature importance in a given ML model
- Consequently, SA has many strong links with the field of explainability and interpretability in modern ML

General framework for moment independent indices

$$\mathcal{S}_l = \mathbb{E}_{X_l}\left(d(\mathrm{P}_Y, \mathrm{P}_{Y|X_l})
ight)$$
 Baucells & Borgonovo 2013 D. 2015

If the output probability distribution and the conditional one are « close », the input parameter has little influence

General framework for moment independent indices

$$\mathcal{S}_l = \mathbb{E}_{X_l}\left(d(\mathrm{P}_Y, \mathrm{P}_{Y|X_l})
ight)$$
 Baucells & Borgonovo 2013 D. 2015

- If the output probability distribution and the conditional one are « close », the input parameter has little influence
- Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL

General framework for moment independent indices

$$S_l = \mathbb{E}_{X_l} \left(d(\mathbf{P}_Y, \mathbf{P}_{Y|X_l}) \right)$$

Baucells & Borgonovo 2013 D. 2015

- If the output probability distribution and the conditional one are « close », the input parameter has little influence
- Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL

General framework for moment independent indices

$$S_l = \mathbb{E}_{X_l} \left(d(P_Y, P_{Y|X_l}) \right)$$

Baucells & Borgonovo 2013 D. 2015

- If the output probability distribution and the conditional one are « close », the input parameter has little influence
- Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL
- Toy example

$$Y = \sin(X_1) + 7\sin(X_2)^2 + X_3^4 \sin(X_1)$$
$$X_l \sim \mathcal{U}(-\pi, \pi) \text{ for } l = 1, \dots, 4$$

Moment independent indices

→ Pros

- They account for the whole effect of a parameter on the output distribution
- Density-based (many methods & packages)

→ Cons

- Higher-order indices or outputs implies curse of dimensionality
- No ANOVA (« natural » normalization constant? Separation between interactions & main effects?)

$$\mathcal{S}_{ll'}^{TV} = \int |p_Y(y)p_{X_l}(x)p_{X_{l'}}(x') - p_{X_l,X_{l'},Y}(x,x',y)| dx dx' dy - \mathcal{S}_{l}^{TV} - \mathcal{S}_{l'}^{TV}$$

Does this make sense?

Remember our general GSA setting?

$$S_l = \mathbb{E}_{X_l} \left(d(P_Y, P_{Y|X_l}) \right)$$

Other point of view

$$S_l^{KL} = \int p_{Y|X_l=x}(y) \ln\left(\frac{p_{Y|X_l=x}(y)}{p_{Y}(y)}\right) p_{X_l}(x) dx dy$$

$$= \int \ln\left(\frac{p_{Y,X_l}(y,x)}{p_{Y}(y)p_{X_l}(x)}\right) p_{Y,X_l}(y,x) dx dy$$

$$= MI(X_l,Y)$$

> The KL-based index actually corresponds to the mutual information between one of the inputs and the output, i.e. a measure of their dependence

Remember our general GSA setting?

$$S_l = \mathbb{E}_{X_l} \left(d(P_Y, P_{Y|X_l}) \right)$$

Other point of view

$$S_l^{KL} = \int p_{Y|X_l=x}(y) \ln\left(\frac{p_{Y|X_l=x}(y)}{p_{Y}(y)}\right) p_{X_l}(x) dx dy$$

$$= \int \ln\left(\frac{p_{Y,X_l}(y,x)}{p_{Y}(y)p_{X_l}(x)}\right) p_{Y,X_l}(y,x) dx dy$$

$$= MI(X_l,Y)$$

HSIC-based sensitivity index

$$\mathcal{S}_A^{HS} = \mathrm{HSIC}(\mathbf{X}_A, Y)$$

- > Already proposed with a hand-made normalization in D. 2015
- > Detects independence, with small sample size → Screening!
- > A kernel for the output just like for the MMD + now a kernel for the inputs

Screening can be achieved via statistical tests of independence (De Lozzo & Marrel 2016)

HSIC-based sensitivity index

$$\mathcal{S}_A^{HS} = \mathrm{HSIC}(\mathbf{X}_A, Y)$$

- Already proposed with a hand-made
- > Detects independence, with small sa
- > A kernel for the output just like for th

ETICS

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane http://eost.u-strasbg.fr/seolane/

Barcelonnette

HSIC-based sensitivity index

$$\mathcal{S}_A^{HS} = \mathrm{HSIC}(\mathbf{X}_A, Y)$$

ETICS 2025

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

October, 5-10, VVF Lac Léman Evian-les-Bains, France https://www.vvf.fr/villages-vacances/vacances-evian-vvf-villages.html

ETICS

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of S. D.

Sensitivity analysis

- New emerging theme: sensitivity to misspecification of the input distribution
 - Assess the influence of a perturbation of the input distribution on some quantity of interest of the model output
 - Main question: define realistic perturbations

Sensitivity analysis

- New emerging theme: sensitivity to misspecification of the input distribution
 - Assess the influence of a perturbation of the input distribution on some quantity of interest of the model output
 - Main question: define realistic perturbations
 - First proposal

$$f_{i\delta} = \underset{\pi}{\operatorname{argmin}} KL(\pi, f_i)$$

$$s.t. \ \mathbb{E}_{\pi}[\psi_k] = \mathbb{E}_{f_i}[\psi_k] + \delta_k$$

$$k=1,...,K$$

where $\psi_1, ..., \psi_K$ are K linear constraints on the modified density, and $\delta_1, ..., \delta_K$ are the values for the perturbations.

Sensitivity analysis

- New emerging theme: sensitivity to misspecification of the input distribution
 - Assess the influence of a perturbation of the input distribution on some quantity of interest of the model output

ETICS 2020

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

October, 4-9, Ile d'Oléron, France - https://www.caes.cnrs.fr/sejours/la-vieille-perrotine/

 $+\delta_k$

ne modified density, and $\delta_1, \dots, \delta_K$

Several appearances in ETICS community

2 - Design of experiments

Design of experiments

- Defining a DOE = choosing points in a pre-defined parameter space
 - ► Each point will then be evaluated to collect the corresponding value of the outputs of interest (via an experimental protocol, a production process observation, a numerical simulator, ...)
 - In general this evaluation is costly (time/money), which means that the DOE must be carefully chosen
- Objective: explore the output behavior thanks to a limited number of evaluations
 - Optimize the information: identify regions of interest (safety, optimization), detect influential parameters, quantify their impact, ...
 - Generate a DOE to build a regression model

Design of experiments: traditional approaches

Family 1: Geometrical criteria

- Minimax DOE
 - Minimize the maximal distance between any point in the space and the DOE (i.e. smallest possible holes)

- Maximin DOE
 - Maximize the minimal distance between points (i.e. limit cluster effect)

Design of experiments: traditional approaches

• Family 2: Discrepancy criteria

$$D_n(\mathscr{B}, \mathbf{X}_n) \triangleq \sup_{\mathbb{B} \in \mathscr{B}} \left| \frac{\text{nb. of } \mathbf{x}_i \text{ in } \mathbb{B}}{n} - \text{vol}(\mathbb{B}) \right|$$

with \mathscr{B} a family of subsets of \mathbb{I}_d (\Rightarrow 0 $\leq D_n(\mathscr{B}, \mathbf{X}_n) \leq 1$)

- Goal: have points as close as possible to the uniform distribution
- lacktriangle Changing ${\mathscr B}$ yields different discrepancies
- Point of view justified by QMC integration

Design of experiments: traditional approaches

ETICS 2017

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

October 1-6 2017

Centre IGESA de Porquerolles

https://www.igesa.fr/les-catalogues-igesa/groupes-et-seminaires-2016/

What is quantization?

 Identify a (small) set of point which represents as well as possible a target probability distribution

When the target is fully specified

- Uniform on hypercube: literature on (space-filling) design of experiments
 - Quasi Monte-Carlo / Low discrepancy sequences
 - Minimax / Maximin / MaxPro designs
- Gaussian (see Pages 2003, extensions to GPs)

More generally, we may encounter situations where the target is

- 1. Fully specified but neither Uniform nor Gaussian
 - e.g. exponential, Beta, ...

More generally, we may encounter situations where the target is

- 1. Fully specified but neither Uniform nor Gaussian
 - e.g. exponential, Beta, ...
- 2. Given as a sample from the target
 - This is a subsampling problem

Chen et al. 2010

Teymur et al. 2021

More generally, we may encounter situations where the target is

- 1. Fully specified but neither Uniform nor Gaussian
 - e.g. exponential, Beta, ...
- 2. Given as a sample from the target
 - This is a subsampling problem
- 3. Given as an approximate sample from the target
 - This is a subsampling problem with correction

Riabiz et al. 2022

- We can rewrite all cases as an optimization problem
 - We seek points $x_1, ..., x_n$ leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

- We can rewrite all cases as an optimization problem
 - We seek points x_1, \ldots, x_n leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d\left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q}\right)$$

Fully specified • $\mathbb{Q} = \mathbb{P}$ given

- We can rewrite all cases as an optimization problem
 - We seek points $x_1, ..., x_n$ leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d\left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q}\right)$$

Subsampling

- $x_1, \ldots, x_N \sim \mathbb{P}$
- $\mathbb{Q} = 1/N \sum_{j=1}^{N} \delta_{x_j}$ with N >> n
- $\bullet \ \mathcal{X} = \{x_1, \dots, x_N\}$

- We can rewrite all cases as an optimization problem
 - We seek points $x_1, ..., x_n$ leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d\left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q}\right)$$

Subsampling & correction

- $x_1, \ldots, x_N \sim \widehat{\mathbb{P}}$ approximation of \mathbb{P}
- $\mathbb{Q} = 1/N \sum_{j=1}^{N} \delta_{x_j}$ with N >> n
- $\bullet \ \mathcal{X} = \{x_1, \dots, x_N\}$

- We can rewrite all cases as an optimization problem
 - We seek points $x_1, ..., x_n$ leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

- Recently in ML, many paper focused on a specific choice of distance, based on kernel embeddings of probability distributions
 - Simple computation with only expectations of kernels
 - A « true » distance if the kernel is characteristic
 - Used also for two-sample tests, independence tests, variable selection, GANs, ...

If we plug the MMD in the optimization problem

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

$$MMD^{2}(P_{1}, P_{2}) = \mathbb{E}_{\xi, \xi'} k_{\mathcal{X}}(\xi, \xi') - 2\mathbb{E}_{\xi, \zeta} k_{\mathcal{X}}(\xi, \zeta) + \mathbb{E}_{\zeta, \zeta'} k_{\mathcal{X}}(\zeta, \zeta')$$

If we plug the MMD in the optimization problem

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

$$MMD^{2}(P_{1}, P_{2}) = \mathbb{E}_{\xi, \xi'} k_{\mathcal{X}}(\xi, \xi') - 2\mathbb{E}_{\xi, \zeta} k_{\mathcal{X}}(\xi, \zeta) + \mathbb{E}_{\zeta, \zeta'} k_{\mathcal{X}}(\zeta, \zeta')$$

If we plug the MMD in the optimization problem

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

 $\mathrm{MMD}^2(\mathrm{P}_1,\mathrm{P}_2)$

ETICS 2021

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

September, 12-17, Keravel resort, Erdeven, France - https://www.keravelvacances.com/

Talk of C. Oates

If we plug the MMD in the optimization problem

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

$$MMD^{2}(P_{1}, P_{2}) = \mathbb{E}_{\xi, \xi'} k_{\mathcal{X}}(\xi, \xi') - 2\mathbb{E}_{\xi, \zeta} k_{\mathcal{X}}(\xi, \zeta) + \mathbb{E}_{\zeta, \zeta'} k_{\mathcal{X}}(\zeta, \zeta')$$

- 1. Fully specified
 - → We can compute both expectations (empirical is easy, theoretical in many cases)
- 2. Given as a sample from the target
 - → We can compute both empirical expectations
- 3. Given as an approximate sample from the target
 - woheadrightarrow We can compute the empirical expectation but the second one is biased $\left(\hat{\mathbb{P}}pprox\mathbb{P}\right)$

If we plug the MMD in the optimization problem

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} d \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \mathbb{Q} \right)$$

$$MMD^{2}(P_{1}, P_{2}) = \mathbb{E}_{\xi, \xi'} k_{\mathcal{X}}(\xi, \xi') - 2\mathbb{E}_{\xi, \zeta} k_{\mathcal{X}}(\xi, \zeta) + \mathbb{E}_{\zeta, \zeta'} k_{\mathcal{X}}(\zeta, \zeta')$$

- 1. Fully specified
 - → We can compute both expectations (empirical is easy, theoretical in many cases)
- 2. Given as a sample from the target
 - → We can compute both empirical expectations
- 3. Given as an approximate sample from the target
 - ightharpoonup We can compute the empirical expectation but the second one is biased $\left(\hat{\mathbb{P}}pprox\mathbb{P}\right)$
 - Other point of view: do we need to know the target?

- When the target is not tractable
 - Stein's method

When the target is not tractable

- Stein's method
 - Define an operator \mathcal{T}_p , that maps functions $g : \mathbb{R}^d \to \mathbb{R}^d$ to real-valued functions such that $\mathbb{E}[\mathcal{T}_p g(X)] = 0$, with $X \sim \mathbb{P}$, for all $g \in \mathcal{G} = \{g : \mathbb{R}^d \to \mathbb{R}^d : \sum_{i=1}^d \|g_i\|_{\mathcal{G}} \leq 1\}$
 - We assume the probability measure \mathbb{P} on \mathbb{R}^d admits a continuously differentiable Lebesgue density $p \in C^1(\mathbb{R}^d)$, such that $\mathbb{E}[\|\nabla \log p(X)\|^2] < \infty$
 - The Stein discrepancy is then defined as

$$\mathrm{SD}(\mathbb{P}, \mathbb{P}') = \sup_{g \in G} \mathbb{E}[(\mathcal{T}_p g)(Z)]$$

- When the target is not tractable
 - Kernelized Stein's method
- Take $\mathcal{G} = \mathcal{H}_k$ a RKHS with kernel k
- Choose \mathcal{T}_p as the Langevin operator $(\mathcal{T}_p g)(x) = \langle g(x), \nabla \log p(x) \rangle + \langle \nabla, g(x) \rangle$
- The Kernel Stein discrepancy (KSD) is given by

$$\mathrm{KSD}^2(\mathbb{P}, \mathbb{P}') = \mathbb{E}[k_p(Z, Z')]$$

where $Z, Z' \sim \mathbb{P}'$ and k_p is the Langevin Stein kernel defined from the score function $s_p(x) = \nabla \log p(x)$ for $x, x' \in \mathbb{R}^d$, as

$$k_p(x, x') = \langle \nabla_x, \nabla_{x'} k(x, x') \rangle + \langle s_p(x), \nabla_{x'} k(x, x') \rangle + \langle s_p(x'), \nabla_x k(x, x') \rangle + \langle s_p(x), s_p(x') \rangle k(x, x')$$

Summary

- Only requires the score function of the target!
- This means that we can replace the MMD by the KSD in Case 3 for problems where the score function is known

Summary

- Only requires the score function of the target!
- This means that we can replace the MMD by the KSD in Case 3 for problems where the score function is known
 - → The KSD is thus popular in Bayesian inference, and the sample to correct comes from a MCMC algorithm
 - → This is the so-called **KSD** thinning algorithm

KSD thinning

• We seek points x_1, \ldots, x_n leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_1, \dots, x_n \in \mathcal{X}}{\operatorname{arg\,min}} \operatorname{KSD}^2 \left(\mathbb{P}, \frac{1}{n} \sum_{i=1}^n \delta_{x_i} \right)$$

KSD thinning

• We seek points $x_1, ..., x_n$ leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_{1},...,x_{n} \in \mathcal{X}}{\operatorname{arg \, min}} \operatorname{KSD}^{2} \left(\mathbb{P}, \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \right)$$

$$\underset{x_{1},...,x_{n} \in \mathcal{X}}{\operatorname{arg \, min}} \frac{1}{n^{2}} \sum_{i,j}^{n} k_{p}(x_{i}, x_{j})$$

Quantization with the KSD

KSD thinning

• We seek points x_1, \ldots, x_n leading to an empirical distribution as close as possible to the target $\mathbb P$

$$\underset{x_{1},...,x_{n} \in \mathcal{X}}{\operatorname{arg \, min}} \operatorname{KSD}^{2} \left(\mathbb{P}, \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \right)$$

$$\underset{x_{1},...,x_{n} \in \mathcal{X}}{\operatorname{arg \, min}} \frac{1}{n^{2}} \sum_{i,j}^{n} k_{p}(x_{i}, x_{j})$$

Typically solved by greedy algorithm

$$x_t \in \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \ k_p(x, x) + 2 \sum_{j=1}^{t-1} k_p(x, x_j)$$

- Pathology I: mode proportion blindness
 - The score function is insensitive to distant mode weights

- Pathology I: mode proportion blindness
 - The score function is insensitive to distant mode weights

Example 1. Let the density p be a Gaussian mixture model of two components, respectively centered in $(-\mu, \mathbf{0}_{d-1})$ and $(\mu, \mathbf{0}_{d-1})$, of weights w and 1-w, and of variance $\sigma^2 \mathbf{I_d}$. The initial particles $\{\mathbf{x}_i\}_{i=1}^n$ are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

$$d = 2, \mu = 3, \sigma = 1, w = 0.2, n = 3000, m = 300$$

- Pathology I: mode proportion blindness
 - The score function is insensitive to distant mode weights

- The score function is insensitive to distant mode weights
- Observed but quite overlooked in the literature
- We proved the following theorem

Pathology I: mode proportion blindness

- The score function is insensitive to distant mode weights
- Observed but quite overlooked in the literature
- We proved the following theorem

Theorem 2.3. Let k_p be the Stein kernel associated with the radial kernel $k(\mathbf{x}, \mathbf{x}') = \phi(\|\mathbf{x} - \mathbf{x}'\|_2/\ell)$, where $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$, $\ell > 0$, and $\phi \in C^2(\mathbb{R}^d)$, such that $\phi(z) \to 0$, $\phi'(z) \to 0$, and $\phi''(z) \to 0$ for $z \to \infty$. Let p and q be two bimodal mixture distributions satisfying Assumptions 2.1 and 2.2, for any $\eta \in (0,1)$. We define w^* as the optimal mixture weight of q with respect to the KSD distance, i.e., $w^* = \underset{w \in [0,1]}{\operatorname{argmin}} \operatorname{KSD}(\mathbb{P}, \mathbb{Q}_w)$. Then, for μ large enough, we have $|w^* - \frac{1}{2}| < \frac{\eta}{2(1-\eta)}$.

 Regardless of the true target weights, the optimal mixture in terms of KSD is 1/2, whenever the mixture is close to the target, in the distant mode setting

Assumption 2.2. For distant bimodal mixture distributions q and p satisfying Assumption 2.1, and for $\eta \in (0,1)$, we have $|\text{KSD}^2(\mathbb{P}, \mathbb{Q}_L)/\text{KSD}^2(\mathbb{P}, \mathbb{Q}_R) - 1| < \eta$.

- Pathology II: spurious minimum
 - The KSD selects samples concentrated in regions of low probability

Pathology II: spurious minimum

The KSD selects samples concentrated in regions of low probability

Example 1. Let the density p be a Gaussian mixture model of two components, respectively centered in $(-\mu, \mathbf{0}_{d-1})$ and $(\mu, \mathbf{0}_{d-1})$, of weights w and 1-w, and of variance $\sigma^2 \mathbf{I_d}$. The initial particles $\{\mathbf{x}_i\}_{i=1}^n$ are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

$$d = 2, \mu = 2, \sigma = 1, w = 0.5, n = 3000, m = 300$$

Pathology II: spurious minimum

The KSD selects samples concentrated in regions of low probability

Pathology II: spurious minimum

- The KSD selects samples concentrated in regions of low probability
- Also observed but quite overlooked in the literature
- We proved the following theorem

Theorem 2.4 (KSD spurious minimum). Let k_p be the Stein kernel associated with the IMQ kernel with $\ell > 0$, $\beta \in (0,1)$, and c = 1. Let $\{\mathbf{x}_i\}_{i=1}^m \subset \mathcal{M}_{s_0} = \{\mathbf{x} \in \mathbb{R}^d : \|s_p(\mathbf{x})\|_2 \leq s_0\}$ be a fixed set of points of empirical measure $\mathbb{Q}_m = \frac{1}{m} \sum_{i=1}^m \delta(\mathbf{x}_i)$, with $s_0 \geq 0$ and $m \geq 2$. We have $\mathrm{KSD}^2(\mathbb{P}, \mathbb{Q}_m) < \mathbb{E}[\mathrm{KSD}^2(\mathbb{P}, \mathbb{P}_m)]$, if the score threshold s_0 and the sample size m are small enough to satisfy $m < 1 + (\mathbb{E}[\|s_p(\mathbf{X})\|_2^2] - s_0^2)/(2\beta d/\ell^2 + 2\beta s_0/\ell + s_0^2)$.

Corollary 2.5 (Low KSD samples at density minimum). Let k_p be the Stein kernel associated with the IMQ kernel with $\ell > 0$, $\beta \in (0,1)$, and c=1. Let p be a density with at least one local minimum or saddle point. For $m \geq 2$, if $\{\mathbf{x}_i\}_{i=1}^m \subset \mathbb{R}^d$ is a set of points, all located at local minimum or saddle points of p, then we have $\mathrm{KSD}^2(\mathbb{P},\mathbb{Q}_m) < \mathbb{E}[\mathrm{KSD}^2(\mathbb{P},\mathbb{P}_m)]$, if $m < 1 + \frac{\ell^2}{2\beta d}\mathbb{E}[\|s_p(\mathbf{X})\|_2^2]$.

Samples in low score regions have a better KSD than samples from the true target

- The score function is insensitive to distant mode weights
- We propose entropic regularization to lessen this phenomenon

$$KSD_{\lambda}^{2}(\mathbb{P}, \mathbb{P}') = \mathbb{E}[k_{p}(Z, Z')] - \lambda \mathbb{E}[\log p(Z)]$$

- The second term takes higher values in modes with smaller probability
- It is known up to an additive constant in the Bayesian setting, but greedy selection of particles used in practice does not need it

- The score function is insensitive to distant mode weights
- We propose entropic regularization to lessen this phenomenon

$$KSD_{\lambda}^{2}(\mathbb{P}, \mathbb{P}') = \mathbb{E}[k_{p}(Z, Z')] - \lambda \mathbb{E}[\log p(Z)]$$

- The score function is insensitive to distant mode weights
- We propose entropic regularization to lessen this phenomenon

$$KSD_{\lambda}^{2}(\mathbb{P}, \mathbb{P}') = \mathbb{E}[k_{p}(Z, Z')] - \lambda \mathbb{E}[\log p(Z)]$$

- Pathology I: mode proportion blindness
 - The score function is insensitive to distant mode weights
 - We propose entropic regularization to lessen this phenomenon

$$KSD_{\lambda}^{2}(\mathbb{P}, \mathbb{P}') = \mathbb{E}[k_{p}(Z, Z')] - \lambda \mathbb{E}[\log p(Z)]$$

Theorem 3.2. Let k_p be the Stein kernel associated with the radial kernel $k(\mathbf{x}, \mathbf{x}') = \phi(\|\mathbf{x} - \mathbf{x}'\|_2/\ell)$, where $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$, $\ell > 0$, and $\phi \in C^2(\mathbb{R}^d)$. Let p and q be two bimodal mixture distributions satisfying Assumption 2.1. We define w_{λ}^{\star} as the optimal mixture weight of q with respect to the entropic regularized KSD distance, i.e., $w_{\lambda}^{\star} = \underset{w \in [0,1]}{\operatorname{argmin}} \operatorname{KSD}_{\lambda}(\mathbb{P}, \mathbb{Q}_w)$. If $\mathbb{E}[\log(p(\mathbf{Z}_L))] \neq \mathbb{E}[\log(p(\mathbf{Z}_R))]$

where $\mathbf{Z}_L \sim \mathbb{Q}_L$ and $\mathbf{Z}_L \sim \mathbb{Q}_R$, it exists $\lambda \in \mathbb{R}$ such that $w_\lambda^\star = w_p$.

• There is a λ such that the true proportion si recovered

- The KSD selects samples concentrated in regions of low probability
- We propose a Laplacian correction to lessen this phenomenon

L-KSD²(
$$\mathbb{P}, \mathbb{P}'_m$$
) = $\frac{1}{m^2} \sum_{i \neq j}^m k_p(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \left[k_p(x_i, x_i) + \Delta^+ \log p(x_i) \right]$

- Since Pathology II is caused by the weaknesses of the diagonal terms, which favor samples concentrated in stationary points
- We thus penalize them more heavily with the positive values of the Laplacian of the density (since they are located in areas of convexity of the density)

$$\Delta^{+} f(\mathbf{x}) = \sum_{j=1}^{d} \left(\frac{\partial^{2} f(\mathbf{x})}{\partial x^{(j)2}} \right)^{+}$$

- The KSD selects samples concentrated in regions of low probability
- We propose a Laplacian correction to lessen this phenomenon

L-KSD²(
$$\mathbb{P}, \mathbb{P}'_m$$
) = $\frac{1}{m^2} \sum_{i \neq j}^m k_p(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \left[k_p(x_i, x_i) + \Delta^+ \log p(x_i) \right]$

- The KSD selects samples concentrated in regions of low probability
- We propose a Laplacian correction to lessen this phenomenon

L-KSD²(
$$\mathbb{P}, \mathbb{P}'_m$$
) = $\frac{1}{m^2} \sum_{i \neq j}^m k_p(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \left[k_p(x_i, x_i) + \Delta^+ \log p(x_i) \right]$

Stein Thinning

Regularized Stein Thinning

1. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

2. So $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

2. So $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Constant $(x_i, x_i) + \Delta^+ \log p(x_i)$

3. Stein Thinning

1. Ste

- The KSD selects samples concentrated in regions of low probability
- We propose a Laplacian correction to lessen this phenomenon

L-KSD²(
$$\mathbb{P}, \mathbb{P}'_m$$
) = $\frac{1}{m^2} \sum_{i \neq j}^m k_p(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \left[k_p(x_i, x_i) + \Delta^+ \log p(x_i) \right]$

- Pathology II: spurious minimum
 - The KSD selects samples concentrated in regions of low probability
 - We propose a Laplacian correction to lessen this phenomenon

L-KSD²(
$$\mathbb{P}, \mathbb{P}'_m$$
) = $\frac{1}{m^2} \sum_{i \neq j}^m k_p(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^m \left[k_p(x_i, x_i) + \Delta^+ \log p(x_i) \right]$

Theorem 3.3. Let k_p be the Stein kernel associated with the IMQ kernel with $\ell > 0$, $\beta \in (0,1)$, and c = 1. For $m \geq 2$, let $\{\mathbf{x}_i\}_{i=1}^m \subset \mathbb{R}^d$ be a set of points concentrated at \mathbf{x}_0 , a local minimum or saddle point of p, and of empirical measure \mathbb{Q}_m . Then, we have $L\text{-KSD}^2(\mathbb{P},\mathbb{Q}_m) > \mathbb{E}[L\text{-KSD}^2(\mathbb{P},\mathbb{P}_m)]$, if the density at \mathbf{x}_0 satisfies $p(\mathbf{x}_0) < \Delta^+ p(\mathbf{x}_0) / (\mathbb{E}[\|s_p(\mathbf{X})\|_2^2] + \mathbb{E}[\Delta^+ \log p(\mathbf{X})])$.

Points with low score are not interesting candidates with respect to the L-KSD

- We also keep the central convergence result of KSD thinning
 - Riabiz et al. 2022: for a distantly dissipative target distribution and if the sample candidates are generated by a MCMC algorithm, samples generated by KSD thinning converge almost surely towards the target
 - We extend their result to our regularized KSD, with the additional assumption

$$\lambda_m = o(\log m/m)$$

 This gives a rule of thumb for the choice of the penalty intensity, which works surprisingly well in all our experiments:

$$\lambda = 1/m$$

Bénard, C., Staber, B., & Da Veiga, S. (2023). Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a practical fix with regularization. *Neurips 2023*

Several appearances in ETICS community

3 - Optimal transport & the Wasserstein

Optimal transport: everywhere in ETICS

ETICS 2019

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

September, 22-27, Fréjus, France - https://www.caes.cnrs.fr/sejours/la-villa-clythia

Talk of Y. Marzouk

ETICS 2023

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

October, 8-13, <u>VVF Lège Cap Ferret</u>, France

Talk of R. Carpintero-Perez

ETICS 2022

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodère Golfe de Lozari, France - https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

Talks of G. Peyré & M. II Idrissi

ETICS 2024

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

September, 22-27, VVF, France https://www.vvf.fr/villages-vacances/vacances-saissac-vvf-villages.html

Talk of R. Carpintero-Perez

- Goal: build regression models with highly structured inputs
 - 3D meshes / graphs

Point clouds

ETICS 2023
le Thématique sur les Incertitudes en Calcul Scientif
esearch School on Uncertainty in Scientific Computi
https://www.gdr-mascotnum.fr/etics.html

October, 8-13, VVF Lège Cap Ferret, France

Talk of R. Carpintero-Perez

ETICS 2022
École Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing
https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodère Golfe de Lozari, France - https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

Talk of B. Sow

If using kernel methods, « just » need to design the kernel

General methodology for a kernel between graphs

Continuous Weisfeiler-Lehman embedding

The last ingredient is to define a (sdp) kernel to compare probability distributions

Kernel based on Wasserstein distance (W2)

$$k_{W2}(P,Q) = \exp(-\gamma W_2(P,Q))$$

Kernel based on Maximum Mean Discrepancy (MMD)

$$k_{\text{MMD}}(P,Q) = \exp(-\gamma \text{MMD}^2(P,Q))$$

Kernel based on Sliced-Wasserstein distance (SW2)

$$k_{\text{SW2}}(P,Q) = \exp(-\gamma \text{SW}_2(P,Q))$$

sdp for any power between 0 and 2 and for **one-dimensional distributions only**

Complexity $\mathcal{O}(n \log n)$

Peyré & Cuturi (2019)

sdp for any distributions

Complexity $\mathcal{O}(n^2)$

Song (2008)

sdp for any power between 0 and 2 and for any distributions

Complexity $\mathcal{O}(R n \log n)$

Meunier et al. (2022)

Selected topics for future directions

Selected topics for future directions 1- Other usage of OT

Multivariate quantiles

- Recent framework (Hallin et al. 2021, Ghosal and Sen 2022)
 - Step 1: choose a reference measure, with natural ordering
 - Step 2: transport your multivariate distribution towards the reference

Thurin 2024

FIGURE 3 – (Gauche) quantiles d'une loi de référence et (droite) quantiles de Monge-Kantorovich d'une loi discrète ν obtenus par $\mathbf{Q}_{\#}\mu = \nu$.

Multivariate quantiles

- Recent framework (Hallin et al. 2021, Ghosal and Sen 2022)
 - Step 1: choose a reference measure, with natural ordering
 - Step 2: transport your multivariate distribution towards the reference
- Recently used for multivariate conformal prediction (Thurin et al. 2025)

(a) Multivariate scores $\{S_i\}_{i=1}^n$

(b) Reference rank vectors $\{U_i\}_{i=1}^n$

Selected topics for future directions 2- Links between distances

Links between distances

Recent results to link HSIC and MI

$$\sup_{x \in \mathcal{X}, y \in \mathcal{Y}} h((x, y), (x, y)) \le \nu^2$$

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

$$\sqrt{\mathrm{HSIC}(X,Y)} \leq \sup_{f: \|f\|_{\infty} \leq \nu} \mathbb{E}_{(X,Y) \sim \mathbb{P}_{xy}}[f(X,Y)] - \mathbb{E}_{\substack{X \sim \mathbb{P}_x \\ Y' \sim \mathbb{P}_y}}[f(X,Y')] = 2\nu \, \mathrm{TV}(\mathbb{P}_{xy}, \mathbb{P}_x \times \mathbb{P}_y)$$

$$\text{Wang \& Tay 2023, Xu et al. 2025}$$

Links between distances

Recent results to link HSIC and MI

$$\sup_{x \in \mathcal{X}, y \in \mathcal{Y}} h((x, y), (x, y)) \le \nu^2$$

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

$$\sqrt{\mathrm{HSIC}(X,Y)} \leq \sup_{f: \|f\|_{\infty} \leq \nu} \mathop{\mathbb{E}}_{(X,Y) \sim \mathbb{P}_{xy}} [f(X,Y)] - \mathop{\mathbb{E}}_{\substack{X \sim \mathbb{P}_x \\ Y' \sim \mathbb{P}_y}} [f(X,Y')] = 2\nu \operatorname{TV}(\mathbb{P}_{xy}, \mathbb{P}_x \times \mathbb{P}_y)$$

$$\operatorname{Wang \& Tay 2023, Xu et al. 2025}$$

$$\frac{1}{2\nu^2} \operatorname{HSIC}(X, Y) \le \operatorname{I}(X; Y)$$

Xu et al. 2025

$$-\log\left(1 - \frac{1}{4\nu^2}\operatorname{HSIC}(X, Y)\right) \le \operatorname{I}(X; Y)$$

Allain et al. 2025, Xu et al. 2025

Links between distances

Recent results to link HSIC and MI

$$\sup_{x \in \mathcal{X}, y \in \mathcal{Y}} h((x, y), (x, y)) \le \nu^2$$

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

$$\sqrt{\mathrm{HSIC}(X,Y)} \leq \sup_{f: \|f\|_{\infty} \leq \nu} \mathbb{E}_{(X,Y) \sim \mathbb{P}_{xy}}[f(X,Y)] - \mathbb{E}_{\substack{X \sim \mathbb{P}_x \\ Y' \sim \mathbb{P}_y}}[f(X,Y')] = 2\nu \, \mathrm{TV}(\mathbb{P}_{xy}, \mathbb{P}_x \times \mathbb{P}_y)$$

$$\mathrm{Wang \& Tay 2023, Xu \ et \ al. \ 2025}$$

$$\frac{1}{2\nu^2} \operatorname{HSIC}(X, Y) \le \operatorname{I}(X; Y)$$

$$-\log\left(1 - \frac{1}{4\nu^2}\operatorname{HSIC}(X, Y)\right) \le \operatorname{I}(X; Y)$$

Xu et al. 2025

Allain et al. 2025, Xu et al. 2025

Selected topics for future directions 3- More kernels!

Remember mean embedding?

Why focus on the mean?

Directional quantiles (Kong & Mizera 2012)

Directional quantiles (Kong & Mizera 2012)

$$\tau_p(P,Q;\nu,u) = \left(\int_0^1 \left\|\rho_P^{\alpha,u} - \rho_Q^{\alpha,u}\right\|_{\mathcal{H}}^p \nu(\mathrm{d}\alpha)\right)^{1/p}$$

$$\operatorname{e-KQD}_p(P,Q;\nu,\gamma) = \left(\mathbb{E}_{u\sim\gamma}\left[\tau_p^p\left(P,Q;\nu,u\right)\right]\right)^{1/p}$$

Kernel Quantile Discrepancy (KQD) - Naslidnyk et al. 2025

Directional quantiles (Kong & Mizera 2012)

$$\tau_p(P,Q;\nu,u) = \left(\int_0^1 \|\rho_P^{\alpha,u} - \rho_Q^{\alpha,u}\|_{\mathcal{H}}^p \nu(\mathrm{d}\alpha)\right)^{1/p}$$

$$\operatorname{e-KQD}_p(P,Q;\nu,\gamma) = \left(\mathbb{E}_{u\sim\gamma}\left[\tau_p^p\left(P,Q;\nu,u\right)\right]\right)^{1/p}$$

Kernel Quantile Discrepancy (KQD) - Naslidnyk et al. 2025

 γ , ν uniform + linear kernel = SW2!

Selected topics for future directions 4- Distributionally robust ML

Optimal UQ

ETICS

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of T. Sullivan

ETICS 2018

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 3-8 2018

http://www.sb-roscoff.fr/

Talk of M. Keller & J. Stenger

Optimal UQ

Principle

Find optimal bounds for a quantity of interest $Q(\mu^{\dagger})$, functional of an uncertain probability measure μ^{\dagger} , known only to lie in some subset \mathcal{A} of $\mathcal{M}_1(\mathcal{X})$:

$$Q(A) \leq Q(\mu^{\dagger}) \leq \overline{Q}(A),$$

with:

- $ullet \overline{Q}(\mathcal{A}) = \sup_{\mu \in \mathcal{A}} Q(\mu)$
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) \mid \Phi_j(\mu) \leq c_j, j = 1, \dots, N \}$ the *admissible* subset,

ETICS

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of T. Sullivan

ETICS 2018

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 3-8 2018

http://www.sb-roscoff.fr/

Talk of M. Keller & J. Stenger

Optimal UQ

Principle

Find optimal bounds for a quantity of interest $Q(\mu^{\dagger})$, functional of an uncertain probability measure μ^{\dagger} , known only to lie in some subset \mathcal{A} of $\mathcal{M}_1(\mathcal{X})$:

$$Q(A) \leq Q(\mu^{\dagger}) \leq \overline{Q}(A),$$

with:

- $Q(A) = \inf_{\mu \in A} Q(\mu)$
- $ullet \overline{Q}(\mathcal{A}) = \sup_{\mu \in \mathcal{A}} Q(\mu)$
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) \mid \Phi_j(\mu) \leq c_j, j = 1, \dots, N \}$ the *admissible* subset,

Theorem (Measure affine functionals over generalized moment classes)

If:

- $Q(\mu)$ is measure affine (e.g. $Q(\mu) := \mathbb{E}_{\mu}[q]$, q bounded above or below)
- $\mathcal{A} = \{\mu \in \mathcal{M}_1(\mathcal{X}) | \mathbb{E}_{\mu}[\varphi_j] \leq c_j, j = 1, \dots, N\}$ for measurable functions φ_j
- $\mathcal{A}_{\Delta} = \{ \mu \in \mathcal{A} | \mu = \sum_{i=1}^{N} w_i \delta_{x_i} \}$ extremal admissible probability measures

Then:

 $ullet Q(\mathcal{A}) = \overline{Q}(\mathcal{A}_{\Delta}) \; ; \quad \overline{Q}(\mathcal{A}) = \overline{Q}(\mathcal{A}_{\Delta})$

ETICS

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of T. Sullivan

ETICS 2018

École Thématique sur les Incertitudes en Calcul Scientifique Research School on Uncertainty in Scientific Computing

June 3-8 2018

http://www.sb-roscoff.fr/

Talk of M. Keller & J. Stenger

Optimal UQ

Principle

Find optimal bounds for a quantity of interest $Q(\mu^{\dagger})$, functional of an uncertain probability measure μ^{\dagger} , known only to lie in some subset \mathcal{A} of $\mathcal{M}_1(\mathcal{X})$:

$$\underline{Q}(\mathcal{A}) \leq \overline{Q}(\mu^{\dagger}) \leq \overline{Q}(\mathcal{A}),$$

with:

- $\underline{Q}(A) = \inf_{\mu \in A} \underline{Q}(\mu)$
- $\overline{Q}(\mathcal{A}) = \sup_{\mu \in \mathcal{A}} \overline{Q(\mu)}$
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) \mid \Phi_j(\mu) \leq c_j, j = 1, \dots, N \}$ the *admissible* subset,

Theorem (Measure affine functionals over generalized moment classes)

If:

- ullet $Q(\mu)$ is measure affine (e.g. $Q(\mu):=\mathbb{E}_{\mu}[q],\ q$ bounded above or below)
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) | \mathbb{E}_{\mu}[\varphi_j] \leq c_j, j = 1, \dots, N \}$ for measurable functions φ_j
- $\mathcal{A}_{\Delta} = \{ \mu \in \mathcal{A} | \mu = \sum_{i=1}^{N} w_i \delta_{x_i} \}$ extremal admissible probability measures

Then:

Staib & Jegelka 2019

Optimal UQ

Principle

Find optimal bounds for a quantity of interest $Q(\mu^{\dagger})$, functional of an uncertain probability measure μ^{\dagger} , known only to lie in some subset \mathcal{A} of $\mathcal{M}_1(\mathcal{X})$:

$$\underline{Q}(\mathcal{A}) \leq \underline{Q}(\mu^{\dagger}) \leq \overline{Q}(\mathcal{A}),$$

with:

- $\underline{Q}(A) = \inf_{\mu \in A} \underline{Q}(\mu)$
- $ullet \overline{Q}(\mathcal{A}) = \sup_{\mu \in \mathcal{A}} \overline{Q}(\mu)$
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) \mid \Phi_j(\mu) \leq c_j, j = 1, \dots, N \}$ the *admissible* subset,

Theorem (Measure affine functionals over generalized moment classes)

If:

- ullet $Q(\mu)$ is measure affine (e.g. $Q(\mu):=\mathbb{E}_{\mu}[q],\ q$ bounded above or below)
- $\mathcal{A} = \{\mu \in \mathcal{M}_1(\mathcal{X}) | \mathbb{E}_{\mu}[\varphi_j] \leq c_j, j = 1, \dots, N \}$ for measurable functions φ_j
- $\mathcal{A}_{\Delta} = \{ \mu \in \mathcal{A} | \mu = \sum_{i=1}^{N} w_i \delta_{x_i} \}$ extremal admissible probability measures

Then:

Staib & Jegelka 2019

sup

Optimal UQ

Principle

Find optimal bounds for a quantity of interest $Q(\mu^{\dagger})$, functional of an uncertain probability measure μ^{\dagger} , known only to lie in some subset \mathcal{A} of $\mathcal{M}_1(\mathcal{X})$:

$$\underline{Q}(\mathcal{A}) \leq \underline{Q}(\mu^{\dagger}) \leq \overline{Q}(\mathcal{A}),$$

with:

- $\underline{Q}(A) = \inf_{\mu \in A} \underline{Q}(\mu)$
- $\overline{Q}(A) = \sup_{\mu \in A} Q(\mu)$
- $\mathcal{A} = \{ \mu \in \mathcal{M}_1(\mathcal{X}) \mid \Phi_j(\mu) \leq c_j, j = 1, \dots, N \}$ the *admissible* subset,

Theorem (Measure affine functionals over generalized moment classes)

If:

- $Q(\mu)$ is measure affine (e.g. $Q(\mu) := \mathbb{E}_{\mu}[q]$, q bounded above or below)
- $\mathcal{A} = \{\mu \in \mathcal{M}_1(\mathcal{X}) | \mathbb{E}_{\mu}[\varphi_j] \leq c_j, j = 1, \ldots, N\}$ for measurable functions φ_j
- $A_{\Delta} = \{\mu \in A | \mu = \sum_{0=1}^{N} w_i \delta_{x_i} \}$ extremal admissible probability measures

Then:

Staib & Jegelka 2019

Conclusion

 Comparing probability distributions has been a key ingredient in many ETICS courses and talks since the beginning, sometimes hidden

→ Were you aware of that?

 This is a very active research area in machine learning, and we should follow the current developments with care!

$\mathbf{X_1}$	X_2	$\mathbf{U_1}$	\mathbf{Y}
0.47	-1.47	red	-1.5
0.52	-0.79	green	0.20
0.11	-2.67	green	0.48
0.75	0.43	blue	1.82
0.11	1.91	red	-4.2
0.96	2.92	blue	2.34
0.64	0.33	blue	4.51
0.01	2.14	red	-3.7
0.15	1.39	green	0.86
0.63	-1.93	red	-2.9

Table 3: Original dataset.

\mathbf{X}_1	X_2	X_3	Y
	_	213	
0.47	-1.47		-1.5
0.52	-0.79		0.20
0.11	-2.67		0.48
0.75	0.43		1.82
0.11	1.91		-4.2
0.96	2.92		2.34
0.64	0.33		4.51
0.01	2.14		-3.7
0.15	1.39		0.86
0.63	-1.93		-2.9

Table 4: Distributional encoding.

$\mathbf{X_1}$	$\mathbf{X_2}$	$\mathbf{X_3}$	$\mathbf{X_4}$	$\mathbf{Y_1}$	$\mathbf{Y_2}$
0.47	-1.47			-1.5	5.67
0.52	-0.79			0.20	-0.89
0.11	-2.67			0.48	-3.65
0.75	0.43			1.82	7.34
0.11	1.91			-4.2	6.32
0.96	2.92			2.34	4.28
0.64	0.33			4.51	10.12
0.01	2.14			-3.7	7.98
0.15	1.39			0.86	0.73
0.63	-1.93			-2.9	9.21

0.64	0.33			4.51	$\mid 10.12$
0.01	2.14			-3.7	7.98
0.15	1.39			0.86	0.73
0.63	-1.93			-2.9	9.21
Table 7: Multi 1D-Distrib. encoding.					

.0.12		0.04	0.55		4.01	10.12
7.98		0.01	2.14	-	-3.7	7.98
0.73		0.15	1.39	*	0.86	0.73
9.21		0.63	-1.93	-	-2.9	9.21
Table 8: 2D Digtrib anading						

Table 8: 2D-Distrib. encoding.

 $\mathbf{X_3}$

-1.47

-0.79

-2.67

0.43

1.91

2.92

0.52

0.75

-1.5

0.20

0.48

1.82

-4.2

 $\mathbf{Y_2}$

5.67

-0.89

-3.65

7.34

6.32