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(Some) Divergences and distances between
probability distributions




Common distances and divergences

Let P and () denote two probability measures defined on the same measur-
able space (X, F), with respective densities p and g with respect to a common
dominating measure (typically the Lebesgue measure)



Common distances and divergences

Let P and () denote two probability measures defined on the same measur-
able space (X, F), with respective densities p and g with respect to a common
dominating measure (typically the Lebesgue measure)

The total variation distance measures the largest possible difference in prob-
abilities assigned by P and () to the same event:

drv (P, Q) = sup P(A) — Q(A)].

When P and () admit densities p and ¢, this can be equivalently expressed as

drv (P, Q) = /‘P —q(x



Common distances and divergences

A large class of divergences, known as f-divergences, are defined for a convex
function f : (0,+00) — R such that f(1) = 0:

q(x) f(%) dz.

Different choices of f yield well-known divergences. For example:

Ds(PllQ) = [

X

¢ Kullback—Leibler divergence (KL divergence):

KL(P||@) = [ p(o)log ) 4o

X q()

e Reverse KL divergence:

KL(Q|| P) = /X /() log% iz,

e Total variation as an f-divergence:

iry(P.Q)= 3D(P||Q) with f()=|t—1]|



Common distances and divergences

Mutual information between two random variables X and Y measures the

divergence between the joint distribution Px y and the product of the marginals
PX PyI

I(X;Y) = KL(Pxy || Px Py) = /X  play)log pffjj(’i) de dy.

It quantifies the amount of information shared between X and Y.



Common distances and divergences

Unlike f-divergences, which compare probability densities pointwise, the
Wasserstein distance (or optimal transport distance) takes the geometry of the
space X into account. For p > 1, the p-Wasserstein distance between P and ()
is defined as

1/p
W(P,0Q) — ( inf /X Xux—yupdw(x,m) |

mell(P,Q)

where II( P, () denotes the set of all couplings of P and @), i.e., joint distributions
on X X X with marginals P and () respectively.



Sliced-Wasserstein distance

3|

1
Wf,a (P, Q) — / |FP—1 (t) — Fél (t) ‘rdt Wassertein in dimension 1 is easy
0

1 - P, Q distribution on R’
-
W L W * * r - S~ lis the (s — 1)-dimensional unit sphere
> r (P’ Q) o T (eﬁ P’ Hﬁ Q) dO’(@) . ¢ uniform distribution on S$*~!
SS —1 . . . . . s—1
. 0* projection function on direction @ € S

. H;P push-forward measure of P by 6*

SW2 (P Q Z W2 (9* ﬁP 9*,ﬁQ) d,, ..., 0, projection directions

uniformly drawn on S$*~!




Kernel-embedding of probability distributions

_|_ Option 1: work directly in the space of probability measures
M 1 Examples: KS, TV, KL, Hellinger, ...




Kernel-embedding of probability distributions

_|_ Option 1: work directly in the space of probability measures
M 1 Examples: KS, TV, KL, Hellinger, ...

Option 2: represent probability measures with some features




Kernel-embedding of probability distributions
J

Feature Space

o UP




Kernel-embedding of probability distributions
J

Feature Space

The dissimilarity between probability distributions is measured through the IUJQ
distance between their representation in the feature space




Kernel-embedding of probability distributions
J

Feature Space

Dissimilarity\measured only through the means



Kernel-embedding of probability distributions
J

Feature Space




Kernel-embedding of probability distributions

Gaussian and Laplace densities
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Obviously using a finite number of features will not lead
to a distance between probability distributions



Kernel-embedding of probability distributions
J

Feature Space

Dissimilarity measured through characteristic functions
Weighted distance leads to energy distance (Szekely & Rizzo 2013)



Kernel-embedding of probability distributions
J

_l_ Feature Space

General setting: take a feature map

o: Q) — F



Kernel-embedding of probability distributions
J

Feature Space




Kernel-embedding of probability distributions

+ RKHS

Instead of choosing the feature map, make it implicit and
assume that the feature space is a RKHS with a given kernel

k(z,z') = (o(z), p(z)) 7



Kernel-embedding of probability distributions




Kernel-embedding of probability distributions

The kernel mean embedding of a probability measure is defined as

Up — 4:§Npkx(€, ) — /X kz\.’(fa )dP(f)

A distance between probability measures is then given by the Maximum Mean Discrepancy

MMD(P1,P2) = ||up, — pp,||#

The reproducing property in the RKHS gives the central result

MMD?(P,P3) =

e erkx(E,€) — 2

4:§,CkX (‘Sa C) T

ek (¢, ¢

Smola et al. 2007, Song 2008, Song et al. 2009



Kernel-embedding of probability distributions

Advantages of this distance vs others
~ Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

>~ Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using
specific kernels

> (This Is a distance only if a characteristic kernel is used)



Kernel-embedding of probability distributions

Other major use: testing independence of random vectors

2
MMD?(Pyv, Pu ® Pv) = [[upyy — kpy @ ppy ||%

HSIC(U,V) = MMD?*(Pyv,Pu ® Pv)
= 4:U,U’,V,V’ k/\g(U, U’)ky (V, V,)

+ 43U,U’ k’)( (U, U,)

— 9 4:U,V [

“:U/k)((U, U,)

QV,V’ ky (V, V,)

4:V/ k‘y (V, V,)]

Many applications: goodness-of-fit, independence tests, feature selection, ...

Gretton et al. 2005a,b



Kernel-embedding of probability distributions

ETICS 2022

Other major use: testing independer Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

MMD2 (PUV7 PU R P https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodere Golfe de Lozari , France -
https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

HSIC(U,V) = Ml

Many applications: goodness-of-fit,

Talk of D. J. Sutherland



Several appearances in ETICS community



Several appearances in ETICS community

1 - Sensitivity analysis



Sensitivity analysis

 What is sensitivity analysis?

> Originates from the field of computer experiments

> Main goal: identify and rank the input parameters according to their impact on the output of a
computer code

> Why?
> Simplify the model
> Improve the knowledge of the physical phenomenon
> For uncertainty quantification, we can reduce the output uncertainty by focusing on the main

input contributors

* Notation

Computer code

X=Xy, Xa)

Output
Input parameters



Sensitivity analysis

 What is sensitivity analysis?

> Originates from the field of computer experiments

> Main goal: identify and rank the input parameters according to their impact on the output of a
computer code

> Why?
> Simplify the model
> Improve the knowledge of the physical phenomenon
> For uncertainty quantification, we can reduce the output uncertainty by focusing on the main

input contributors

* Notation

Computer code As a side note |
* Replace « computer code » by « ML model » trained

on a data set
.: 7’,(-) * The goal of SA actually corresponds to assessing the
feature importance in a given ML model

Input parameters - Consequently, SA has many strong links with the field
of explainability and interpretability in modern ML

Output



Sensitivity analysis: beyond Sobol’ indices

 General framework for moment independent indices
Sl — EXZ (d(PY7 PYle )) [Bf;c(ﬁlil_)s&BorgonOVOZOB

> If the output probability distribution and the conditional one are « close », the input parameter has
little influence



Sensitivity analysis: beyond Sobol’ indices

 General framework for moment independent indices
Sl — EXZ (d(PY7 PYle )) [B)é;c(ﬁlil_)s&BorgonOVOZOB

> If the output probability distribution and the conditional one are « close », the input parameter has
little influence

> Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL



Sensitivity analysis: beyond Sobol’ indices

 General framework for moment independent indices
Sl — :[EXZ (d(PY7 PY‘XZ )) géggﬁlls&Borgonovo 2013

> If the output probability distribution and the conditional one are « close », the input parameter has
little influence
\ |7

~ ”



Sensitivity analysis: beyond Sobol’ indices

 General framework for moment independent indices
Sl — EXI (d(PY7 PY‘XZ )) g?ggﬁlls&Borgonovo 2013

> If the output probability distribution and the conditional one are « close », the input parameter has
little influence
\ |7

> Toy example -
Y =sin(X;) + 7sin(X3)* + X3 sin(X;)

X ~U(—m,m)forl=1,...,4
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X1 fixed X3 fixed
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X2 fixed X4 fixed
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Moment independent indices

= Pros
> They account for the whole effect of a parameter on the output distribution

> Density-based (many methods & packages)

= Cons
> Higher-order indices or outputs implies curse of dimensionality

> No ANOVA (« natural » normalization constant? Separation between interactions & main effects?)

StV = / oy (¥)px, (®)px, (&') — px;,x, v (%, &', y)|drdx’dy — StV — stV Does this make sense?



Sensitivity analysis: beyond Sobol’ indices

Remember our general GSA setting ?

Sl — 4:Xl (d(PYvPY‘Xl))

Other point of view

/PY\XZ_:I;(?/) In (pY‘Xl_m(y)) px, (x)dzdy

py (¥)

/lﬂ( PY. X, (yﬂr) )pijl (y,a?)dajdy

PY (y)sz (m)
— MI(X,,Y)

KL
S

> The KL-based index actually corresponds to the mutual information between one of the inputs and the
output, i.e. a measure of their dependence



Sensitivity analysis: beyond Sobol’ indices

Remember our general GSA setting ?

Sl — 4:Xl (d(PYaPY‘Xl))

Other point of view

/PY\XZ::I:(U) In (pY‘Xl:x(y)> px, (x)dzdy

py (¥)

KL
S

PY, X, (y7 :C)
X (x)

In

) PY, X, (ya .CE)d:Cdy

\ |7
(@)
>

> The KL-based index actually corresponds to the mutual information between one of the inputs and the
output, i.e. a measure of their dependence



Sensitivity analysis: beyond Sobol’ indices

HSIC-based sensitivity index
SH> = HSIC(X 4,Y)

> Already proposed with a hand-made normalization in D. 2015

> Detects independence, with small sample size — Screening!

> A kernel for the output just like for the MMD + now a kernel for the inputs

Screening can be achieved via statistical tests of independence (De Lozzo & Marrel 2016)



Sensitivity analysis: beyond Sobol’ indices

HSIC-based sensitivity index \ |/
@

> Already proposed with a hand-made ETICS

Ecole Thématique sur les Incertitudes en Calcul Scientifique
> Detects independence, with small s ~ Research School on Uncertainty in Scientific Computing

June 6-10 2016
> A kernel for the output just like for th

Centre de séminaire S€olane
http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of S. D.



Sensitivity analysis: beyond Sobol’ indices

HSIC-based sensitivity index )

\ !/
@
—

ETICS 2025 ETICS
Ecole Thématique sur les Incertitudes en Calcul Scientifique Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing Research School on Uncertainty in Scientific Computing

https://www.gdr-mascotnum.fr/etics.html

June 6-10 2016
October, 5-10, VVF Lac Léman Evian-les-Bains, France

https://www.vvf.fr/villages-vacances/vacances-evian-vvif-villages.html Centre de séminaire Séolane

http://eost.u-strasbg.fr/seolane/

Barcelonnette

Talk of S. D.

Talk of O. Zahm



Sensitivity analysis

* New emerging theme: sensitivity to misspecification of the input
distribution

> Assess the influence of a perturbation of the input distribution on some quantity of interest of the
model output

> Main question: define realistic perturbations



Sensitivity analysis

* New emerging theme: sensitivity to misspecification of the input
distribution

> Assess the influence of a perturbation of the input distribution on some quantity of interest of the
model output

> Main question: define realistic perturbations

> First proposal

fis = argmin KL(m, f;)
T

s.it. ExlYkl=Er [Yr]+dk
k=1,..K
where ¥4, ..., Y are K linear constraints on the modified density, and 0, ..., 0

are the values for the perturbations.



Sensitivity analysis

* New emerging theme: sensitivity to misspecification of the input
distribution

> Assess the influence of a perturbation of the input distribution on some quantity of interest of the

model output '

\ '/
ETICS 2020 NS
Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing =

October, 4-9, Ile d’Oléron, France - https://www.caes.cnrs.fr/sejours/la-vieille-perrotine/ -
.'__:;4- , : \ /78
:4' 17/4% ¥ 7 ;

+0

1¢ modified density, and 04, ..., Ok

Talk of B. looss



Several appearances in ETICS community

2 - Design of experiments



Design of experiments

 Defining a DOE = choosing points In a pre-defined parameter space

> Each point will then be evaluated to collect the corresponding value of the outputs of interest (via an
experimental protocol, a production process observation, a numerical simulator, ...)

> In general this evaluation is costly (time/money), which means that the DOE must be carefully chosen

 Objective: explore the output behavior thanks to a limited number of
evaluations

> Optimize the information: identify regions of interest (safety, optimization), detect influential
parameters, quantify their impact, ...

> Generate a DOE to build a regression model



Design of experiments: traditional approaches

 Family 1: Geometrical criteria

@® Minimax DOE

Minimize the maximal distance between any point in the space and
the DOE (i.e. smallest possible holes)

@® Maximin DOE

Maximize the minimal distance between points (i.e. limit cluster effect)

@ miniMaxd =2,n=7
(radius=0,,m(X,))
=

@ Maximind =2,n=7
(radius=dnmm(X,)/2)
o

o




Design of experiments: traditional approaches

 Family 2: Discrepancy criteria

D,(%,X,) = sup
Be#

nb. of x; in

n

vol(

with Z a family of subsets of [y (= 0 < D,(%4,X,) <1)

@ Goal: have points as close as possible to the uniform distribution

® Changing &3 yields different discrepancies

@ Point of view justified by QMC integration




Design of experiments: traditional approaches

ETICS 2017

Ecole Thématique sur les Incertitudes en Calcul Scientifique

Research School on Uncertainty in Scientific Computing
October 1-6 2017

Centre IGESA de Porquerolles

https://www.igesa.fr/les-catalogues-igesa/groupes-et-seminaires-2016/

Talk of L. Pronzato



Design of experiments: Quantization of probability distributions

 What is quantization?

@ ldentify a (small) set of point which represents as well as possible a
target probability distribution

 When the target is fully specified { PR et

| ¢
@ Uniform on hypercube: literature on (space-filling) design of experiments | St B

» Quasi Monte-Carlo / Low discrepancy sequences e

» Minimax / Maximin / MaxPro designs

@ Gaussian (see Pages 2003, extensions to GPs) Petosessod




Design of experiments: Quantization of probability distributions

 More generally, we may encounter situations where the target is

1. Fully specified but neither Uniform nor Gaussian Joseuh 2018

* e.g. exponential, Beta, ...

Exponential o Banana




Design of experiments: Quantization of probability distributions

 More generally, we may encounter situations where the target is

1. Fully specified but neither Uniform nor Gaussian

* e.g. exponential, Beta, ...

2. Given as a sample from the target Chen et al.
2010

* This is a subsampling problem Teymur et
al. 2021

Banana




Design of experiments: Quantization of probability distributions

 More generally, we may encounter situations where the target is

1. Fully specified but neither Uniform nor Gaussian

* e.g. exponential, Beta, ...

* This is a subsampling problem

_ Riabiz et al.

* This is a subsampling problem with correction e




Design of experiments: Quantization of probability distributions

 We can rewrite all cases as an optimization problem

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 mn
n d| — 0. ,
arg min (n ; 7, @)

L1y, EX



Design of experiments: Quantization of probability distributions

 We can rewrite all cases as an optimization problem

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

arg min__ d
ml,...,anrE)

Fully specified

o Q=P given
e X =R




Design of experiments: Quantization of probability distributions

 We can rewrite all cases as an optimization problem

@ We seek points x, ..., x, leading to an empirical distribution as close as possible to the target [P

1 mn
argmin_d | — » 04,
ml,...,:anK. (n Z:Zl ')




Design of experiments: Quantization of probability distributions

 We can rewrite all cases as an optimization problem

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 mn
argmin_d | — » 04,
ml,...,wn;. (n 7,221 ')




Design of experiments: Quantization of probability distributions

 We can rewrite all cases as an optimization problem

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 n

@ Recently in ML, many paper focused on a specific choice of distance, based on kernel embeddings
of probability distributions

arg min
L1,eee, Ty EX

 Simple computation with only expectations of kernels
e A «true » distance If the kernel is characteristic

 Used also for two-sample tests, independence tests, variable selection, GANSs, ...



Design of experiments: Quantization of probability distributions

* If we plug the MMD In the optimization problem

1 T
] d| — 6:1:'7
arg min (n Z:Zl 7, @)

L1y, EX

MMD2(P17 PQ) — 4:45,5’ kz\f' (57 6,) — 2 4:€,Ck/\f' (57 C) -+ f‘C,C’ kX (Cv C,)




Design of experiments: Quantization of probability distributions

* If we plug the MMD In the optimization problem

1 n
] d| — 6:17-7
arg min (n ; Z @)

L1,eee, Ty EX
\ | 7

:/_ -: eerkx(§:8') — 2Be ckx (€, Q) + Eccrkx (¢, ()




Design of experiments: Quantization of probability distributions

* If we plug the MMD In the optimization problem

L1y, EX

Mo ETICS 2021
— @ - - Ecole Thématique sur les Incertitudes en Calcul Scientifique
— Research School on Uncertainty in Scientific Computing

September, 12-17, Keravel resort, Erdeven, France - https://www.keravelvacances.com/

1 n
] d| — 5:1:'7
arg min - ; 5 Q

Talk of C. Oates



Design of experiments: Quantization of probability distributions

* If we plug the MMD In the optimization problem

L1y, EX

1 n
] d| — 6:13'7
arg min - ; 5 Q

MMD2(P17 PZ) — 43&,{’ kX (57 gl) — 2 4:§,CkX (gv C) -+ 43(,(' kX (Ca C,)

1. Fully specified
= \We can compute both expectations (empirical is easy, theoretical in many cases)

2. Given as a sample from the target
= \We can compute both empirical expectations

3. Given as an approximate sample from the target
= We can compute the empirical expectation but the second one is biased (IP ~ IP)



Design of experiments: Quantization of probability distributions

* If we plug the MMD In the optimization problem

1 n
] d| — 6:13'7
arg min - ; 5 Q

L1y, EX

MMD2(P17 PZ) — 43&,{’ kX (57 gl) — 2 4:§,CkX (gv C) -+ 43(,(' kX (Ca C,)

1. Fully specified
= \We can compute both expectations (empirical is easy, theoretical in many cases)

2. Given as a sample from the target
= \We can compute both empirical expectations

3. Given as an approximate sample from the target
= We can compute the empirical expectation but the second one is biased (IP ~ IP)

= Other point of view: do we need to know the target?



Quantization with the KSD

 When the target is not tractable

® Stein’s method



Quantization with the KSD

* When the target is not tractable

® Stein’s method

e Define an operator 7,, that maps functions g : R? — R? to real-valued
functions such that E[7,¢9(X)] = 0, with X ~ P, forallg € G = {g : R* —

- d
RY: 37 laillg < 13

e We assume the probability measure P on R¢ admits a continuously differ-
entiable Lebesgue density p € C1(R%), such that E[||V log p(X)][|?] < oo

e The Stein discrepancy is then defined as

SD(P,P') = sup [(Tp9)(2))]

where Z ~ P’



Quantization with the KSD

* When the target is not tractable

® Kernelized Stein’s method

o Take § = H, a RKHS with kernel &
e Choose T, as the Langevin operator (7,9)(x) = (g(x), Vlogp(x))+(V, g(x))

¢ The Kernel Stein discrepancy (KSD) is given by

KSD*(P,P') = E[k,(Z, Z"),

where Z, 7' ~ P' and k, is the Langevin Stein kernel defined from the
score function s,(x) = Vlogp(x) for z,z’ € R, as

kp(z,2") = (Va, Vark(z, 7)) +(sp(2), Vo (2, 2"))+(sp(27), Vek (2, 27)) +(sp (), sp(2)) k(, 27)



Quantization with the KSD

e Summary

® Only requires the score function of the target!

@ This means that we can replace the MMD by the KSD in Case 3 for problems where the score
function is known



Quantization with the KSD

e Summary

® Only requires the score function of the target!

@ This means that we can replace the MMD by the KSD in Case 3 for problems where the score
function is known

= The KSD is thus popular in Bayesian inference, and the sample to correct comes from a
MCMC algorithm

= This is the so-called KSD thinning algorithm

Riabiz et al.
2022




Quantization with the KSD

 KSD thinning

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 (4
arg min KSD? (IP, - E 5%)
L1,..., L EX n i—1



Quantization with the KSD

 KSD thinning

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 n
in KSD*|P, =) 6,
arg min ( - Zzzl z)

L1,..., T EX

n
, 1
argmin — g kp(xi, x;)
L1,e.., Ty EX n .



Quantization with the KSD

 KSD thinning

® We seek points xy, ..., x, leading to an empirical distribution as close as possible to the target P

1 n
in KSD*|P, =) 6,
arg min ( - Zzzl z)

L1,..., T EX

n
, 1
argmin — g kp(xi, x;)
L1,e.., Ty EX n i ]

@ lypically solved by greedy algorithm

t—1

T+ € argmin kp(a’;,zv) -+ Zka(ﬂf,CEj)

reX =1



KSD pathologies

 Pathology I: mode proportion blindness

® The score function is insensitive to distant mode weights



KSD pathologies

 Pathology I: mode proportion blindness

® The score function is insensitive to distant mode weights

Example 1. Let the density p be a Gaussian mixture model of two components, respectively centered
in (—u,04—1) and (i, 04—1), of weights w and 1 — w, and of variance 0°I4. The initial particles
{x;}_, are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

Stein Thinning

d=2.1u=30=1w=0.2mn=3000,m = 300

|
-
e
—
-



KSD pathologies

 Pathology I: mode proportion blindness

® The score function is insensitive to distant mode weights

Stein Thinning




KSD pathologies

 Pathology I: mode proportion blindness

@ The score function is insensitive to distant mode weights
® Observed but quite overlooked in the literature
® We proved the following theorem



KSD pathologies

 Pathology I: mode proportion blindness

@ The score function is insensitive to distant mode weights
® Observed but quite overlooked in the literature
® We proved the following theorem

Theorem 2 3. Let k,, be the Stein kernel associated with the radial kernel k(x,x’) = ¢(||x—x"||2/4),
where x,x’ € RY, € > 0, and ¢ € C*(R?), such that ¢(z) — 0, ¢'(z) — 0, and ¢" (z) — 0 for
z — 00. Let p and q be two bimodal mixture distributions satisfying Assumptions 2.1 and 2.2, for
any n € (0, 1) We define w™ as the optimal mixture weight of q with respect to the KSD distance, i.e.,

w* = argmin KSD(P, Q,,). Then, for u large enough, we have |w 2| < 2(1 ~E
we[0,1]

@ Regardless of the true target weights, the optimal mixture in terms of KSD is 1/2,
whenever the mixture is close to the target, in the distant mode setting

Assumption 2.2. For distant bimodal mixture distributions ¢ and p satisfying Assumption 2.1, and
for n € (0,1), we have |KSD?*(P, Q) /KSD?*(P, Qr) — 1| < 7.



KSD pathologies

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability



KSD pathologies

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability

Example 1. Let the density p be a Gaussian mixture model of two components, respectively centered
in (—u,04—1) and (i, 04—1), of weights w and 1 — w, and of variance 0°I4. The initial particles
{x;}_, are drawn from p. The KSD thinning algorithm selects m < n points to approximate p.

Stein Thinning

5.0 .

® ®
2.5
% 0.0
~2.5

d=2pu=20=1w=0.5mn=3000,m = 300



KSD pathologies

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability

Stein Thinning
2 :




KSD pathologies

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
@ Also observed but quite overlooked in the literature
® We proved the following theorem

Theorem 2.4 (KSD spurious minimum). Let k,, be the Stein kernel associated with the IMQ kernel
with £ > 0, B € (0, 1) and c = 1. Let {x;}", C My, = {x € Rd |55 (x%)]|2 < so} be a fixed
NOLTi O] _emp AL _measlt Qm = — xz 1 5(){7,) with So = > 0and m > 2. We have

KSD2 (IP Qm) < E[KSD? 'P’ P )] zf the score threshold so and the sample size m are small
enough to satisfy m < 1+ (E[||s,(X)||3] — s§)/(28d/€* + 2850/ + s7).

Corollary 2.5 (Low KSD samples at density minimum). Let k,, be the Stein kernel associated with
the IMQ kernel with £ > 0, B € (0,1), and c = 1. Let p be a density with at least one local minimum

or saddle point. For m > 2, if {x;}™ ., C R? is a set of points, all located at local mmzmum or
2B8d ™ 2
ifm <1+ 2 E[]|s,(X)|13].

saddle points of p, then we have{ KSD*(P, Q,,) < E[KSD* (P, P,, )]

@ Samples in low score regions have a better KSD than samples from the true target




KSD pathologies - Regularized KSD

 Pathology I: mode proportion blindness

@ The score function is insensitive to distant mode weights
® We propose entropic regularization to lessen this phenomenon

KSD3 (P, P') = Elk,(Z, Z')] — AE[log p(Z))

® The second term takes higher values in modes with smaller probabillity

@ It is known up to an additive constant in the Bayesian setting, but greedy selection of particles
used In practice does not need it
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 Pathology I: mode proportion blindness

@ The score function is insensitive to distant mode weights
® We propose entropic regularization to lessen this phenomenon

KSDj (P,

=
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® We propose entropic regularization to lessen this phenomenon
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KSD pathologies - Regularized KSD

 Pathology I: mode proportion blindness

® The score function is insensitive to distant mode weights
® We propose entropic regularization to lessen this phenomenon

KSD3(P,P') = Elk,(Z, Z)] — AE[log p(Z)]

Theorem 3 2. Let k,, be the Stein kernel associated with the radial kernel k(x,x’) = ¢(||lx—x"||2/¢),
where x,x’ € R, E > 0, and ¢ € C*(R?). Let p and q be two bimodal mixture distributions satisfying
Assumptzon 2.1. We define w} as the optimal mixture weight of q with respect to the entropic

regularized KSD distance, i.e., wy = argmin KSD(P, Q). IfE|log(p(Zr))| # E|log(p(ZRr))]

wéE (0,1
where Zi;, ~ Qr, and 21, ~ Qpr,| it exists A € R such that wy = w,

@ There is a 4 such that the true proportion si recovered




KSD pathologies - Regularized KSD

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
® We propose a Laplacian correction to lessen this phenomenon

L-KSD*(B,P;,) = — Zk (25, 27) + — Z (5, 27) + AT log p(x;),
17

® Since Pathology Il is caused by the weaknesses of the diagonal terms, which favor samples
concentrated in stationary points

® We thus penalize them more heavily with the positive values of the Laplacian of the density
(since they are located in areas of convexity of the density)

ATf(x) = X5y (9% (x)/0202)




KSD pathologies - Regularized KSD

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
® We propose a Laplacian correction to lessen this phenomenon

L-KSD*(P,P;,) = —; Zk (24, 25) + — Z (zi,2;) + AT log p(;)]

17
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KSD pathologies - Regularized KSD

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
® We propose a Laplacian correction to lessen this phenomenon

1 m
L-KSD?*(P, P, ) m2 E bp (i, 25) + —5 ) [kp(xi, 1) + AT log p(a;)
i#£] =

.._S'T(‘ill I hillllill”‘ R(?‘""lllal'iZO(l ..')“T(?ill I hillllill‘*”
' O '
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KSD pathologies - Regularized KSD

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
® We propose a Laplacian correction to lessen this phenomenon

L-KSD*(P,P;,) = —; Zk (24, 25) + — Z (zi,2;) + AT log p(;)]
17

Stein Thinning Regularized Stem Thlnnmg A" log(p)




KSD pathologies - Regularized KSD

 Pathology ll: spurious minimum

® The KSD selects samples concentrated in regions of low probability
® We propose a Laplacian correction to lessen this phenomenon

L-KSD*(P,P;,) = —; Zk (24, 25) + — Z (zi,2;) + AT log p(;)]
17

Theorem 3.3. Let k,, be the Stein kernel associated with the IMQ kernel with £ > , ﬁ e (0,1), and

c = 1. Form > 2, let{xZ " . C R? be a set of points concentrated at Xo, a_local minimum c
point of p, and of empzrzcal measure Q,,,. Then, we have|LL- KSD2
the density at X satisfies p(xg) < AT (xo)/( s (X)[5] + E[A™ log p(X)]).

@ Points with low score are not interesting candidates with respect to the L-KSD

nddle



KSD pathologies - Regularized KSD

 We also keep the central convergence result of KSD thinning

® Riabiz et al. 2022: for a distantly dissipative target distribution and if the sample candidates
are generated by a MCMC algorithm, samples generated by KSD thinning converge almost
surely towards the target

® We extend their result to our regularized KSD, with the additional assumption
Am = o(logm/m)

® This gives a rule of thumb for the choice of the penalty intensity, which works surprisingly well
in all our experiments :

A=1/m

Bénard, C., Staber, B., & Da Veiga, S. (2023). Kernel Stein Discrepancy
thinning: a theoretical perspective of pathologies and a practical fix with
regularization. Neurips 2023



Several appearances in ETICS community

3 - Optimal transport & the Wasserstein



Optimal transport: everywhere in ETICS

ETICS 2019 ETICS 2022

Ecole Thématique sur les Incertitudes en Calcul Scientifique Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing Research School on Uncertainty in Scientific Computing

September, 22-27, Fréjus, France - https://www.caes.cnrs.f{r/sejours/la-villa-clythia

| PR

Talk of Y. Marzouk

ETICS 2023

Ecole Thématique sur les Incertitudes en Calcul Scientifique

Research School on Uncertainty in Scientific Computing
https://www.gdr-mascotnum.fr/etics.html

October, 8-13, VVF Lége Cap Ferret, France

Talk of R. Carpintero-Perez

https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodére Golfe de Lozari , France -
https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

Talks of G. Peyré & M. Il [drissi
ETICS 2024

Ecole Thématique sur les Incertitudes en Calcul Scientifique

Research School on Uncertainty in Scientific Computing
https://www.gdr-mascotnum.fr/etics.html

September, 22-27, VVF, France
https://www.vvf.fr/villages-vacances/vacances-saissac-vvf-villages.html

Talk of R. Carpintero-Perez



Optimal transport: focus on building kernels

e Goal: build regression models with highly structured inputs

> 3D meshes / graphs

» Point clouds

* If using kernel methods,

ETICS 2023 ETICS 2022

le Thématique sur les Incertitudes en Calcul Scientif

esearch School on Uncertainty in Scientific Computi
https://www.gdr-mascotnum.fr/etics.html

https://www.gdr-mascotnum.fr/etics.html

October, 2-7, Belhambra, Belgodére Golfe de Lozari , France -
https://www.belambra.com/club-belgodere-golfe-de-lozari/summer

October, 8-13, VVF Lége Cap Ferret, France

Talk of R.
| Carpintero-Perez

« Just » need to design the kernel

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

Talk of B. Sow



Optimal transport: focus on building kernels

 General methodology for a kernel between graphs
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Point cloud
(seen as a prob. distribution)




Optimal transport: focus on building kernels

 General methodology for a kernel between graphs

Point cloud Kernel between
(seen as a prob. distribution) prob. distributions



Optimal transport: focus on building kernels

 General methodology for a kernel between graphs

O e Se Continuous Weisfeiler-
Lehman embedding



Optimal transport: focus on building kernels

 General methodology for a kernel between graphs

O Final step: building a kernel between

O O probability distributions, from a
O E distance
@) G
O
\ 17
(@)
=

O

O O



Optimal transport: focus on building kernels

 The last ingredient is to define a (sdp) kernel to compare probability distributions

@® Kernel based on Wasserstein distance (W2)
kwa (P, Q) = exp(—yWa(P,Q))

® Kernel based on Maximum Mean Discrepancy (MMD)
knvivp (P, Q) = exp(—yMMD?(P, Q))

® Kernel based on Sliced-Wasserstein distance (SW2)

kswa (P, Q) = exp(—ySWa (P, Q))

sdp for any power between 0 and 2
and for one-dimensional distributions only

Complexity O(n log n)

Peyré & Cuturi (2019)

sdp for any distributions

Complexity O(n?)

Song (2008)

sdp for any power between 0 and 2
and for any distributions

Complexity O(Rnlogn)

Meunier et al. (2022)




Selected topics for future directions



Selected topics for future directions
1- Other usage of OT



Multivariate quantiles
 Recent framework (Hallin et al. 2021, Ghosal and Sen 2022)

> Step 1: choose a reference measure, with natural ordering

> Step 2: transport your multivariate distribution towards the reference

By

3R
AR
ST

Thurin 2024

FIGURE 3 — (Gauche) quantiles d’une loi de référence et (droite) quantiles de
Monge-Kantorovich d’une loi discréte v obtenus par Quu = v.



Multivariate quantiles
 Recent framework (Hallin et al. 2021, Ghosal and Sen 2022)

» Step 1: choose a reference measure, with natural ordering

> Step 2: transport your multivariate distribution towards the reference

 Recently used for multivariate conformal prediction (Thurin et al. 2025)

(a) Multivariate scores {S;}i—1 (b) Reference rank vectors {U; }i—,



Selected topics for future directions
2- Links between distances



Links between distances

« Recent results to link HSIC and Mi SUp,cx ey P((Z,Y), (z,y)) < v?

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

VHSIC(X,Y) < sup L [f(X,Y)] - E [f(X,Y)] =20 TV(Pyy, P, x P,)
Fell flloo v (Y ) ~Pay ey
Y ' ~P, Wang & Tay 2023, Xu et al. 2025




Links between distances

« Recent results to link HSIC and Mi SUp,cx ey P((Z,Y), (z,y)) < v?

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

HSIC(X.Y) <  sup 2 [f(X,Y)] - E [f(X,Y)]=20TV(P,, P, xP
VESICXY) < swp B [FXGY)]- B FGY) (Pay, s X P)
Y ' ~P, Wang & Tay 2023, Xu et al. 2025

Result 2: links between HSIC and MI

1
2V

5 HSIC(X, Y) S I(X, Y) Xu et al. 2025

1
— log (1 12 HSIC(X, Y)) <I(X;Y) Allain et al. 2025, Xu et al. 2025
vV



Links between distances

« Recent results to link HSIC and Mi SUP,cx yey (2, Y), (z,y)) < V7

Assumption that the HSIC kernel is bounded

Result 1: links between HSIC and TV

VHSIC(X,Y) < sup L [f(X,Y)] - E [f(X,Y)] =20 TV(Pyy, P, x P,)
Fell flloo v (Y ) ~Pay ey
Y ' ~P, Wang & Tay 2023, Xu et al. 2025

Result 2: links between HSIC and MI

1
2V

5 HSIC(X, Y) S I(X, Y) Xu et al. 2025

@
1 =
_ log (]. 43,2 HSIC(X, Y)) < I(X; Y) u etal. 2025 \jea for CP!




Selected topics for future directions
3- More kernels!



Kernel mean embedding becomes kernel quantile embedding

« Remember mean embedding?




Kernel mean embedding becomes kernel quantile embedding

 Why focus on the mean?




Kernel mean embedding becomes kernel quantile embedding

* Directional quantiles (Kong & Mizera 2012)

density of ¢, #P




Kernel mean embedding becomes kernel quantile embedding

* Directional quantiles (Kong & Mizera 2012)

density of ¢, #P

e—KQDp(P, Q;v, 7) — (ﬂuN’y [’7'5 (P, Q;v, u)])l/p

Kernel Quantile Discrepancy (KQD) - Naslidnyk et al. 2025



Kernel mean embedding becomes kernel quantile embedding

* Directional quantiles (Kong & Mizera 2012)

density of ¢, ,#P

Y, U uniform + linear kernel = SW2!




Selected topics for future directions
4- Distributionally robust ML



Distributionally robust ML
« Optimal UQ

ETICS

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane
http://eost.u-strasbg.fr/seolane/

Barcelonnette

ETICS 2018

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

Station Biologique June 3-8 2018 http://www.sb-roscoff.fr/

wi@ Roscoff

Talk of M. Keller & J. Stenger



Distributionally robust ML
« Optimal UQ

Principle

Find optimal bounds for a quantity of interest Q(u'), functional of an uncertain
probability measure u', known only to lie in some subset A of M;(X) :

Q(A) < Q(r") < Q(A),
with :

© Q(A) =infuca Q(u)

o Q(A) =sup,c4 QK)
o A={ue Mi(X)| o(u) <c,j=1,...,N} the admissible subset,

ETICS

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

June 6-10 2016

Centre de séminaire Séolane
http://eost.u-strasbg.fr/seolane/

Barcelonnette

~
\\\\\

g -

Talk of T. Sullivan

e

ETICS 2018

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

Station Biologique June 3-8 2018 http://www.sb-roscoff.fr/

Roscoff

Talk of M. Keller & J. Stenger



Distributionally robust ML ETICS

Ecole Thématique sur les Incertitudes en Calcul Scientifique
Research School on Uncertainty in Scientific Computing

¢ Optlmal UuQ June 6-10 2016

Principle Centre de séminaire Séolane
P http://eost.u-strasbg.fr/seolane/

Find optimal bounds for a quantity of interest Q(u'), functional of an uncertain
probability measure ', known only to lie in some subset A of M;(X) :

Q(A) < Q(r") < Q(A),

Barcelonnette

e

with : - oy :
o Q(A) =infuca Q1) Talk of T. Sullivan

o Q(A) =sup,c4 QK)
o A={pue Mi(X)| ®(u) <c,j=1,...,N} the admissible subset,

ETICS 2018
Ecole Thématique sur les Incertitudes en Calcul Scientifique
Theorem (Measure affine functionals over generalized moment classes) Research School on Uncertainty in Scientific Computing
If : itggi;%lﬁBiologique June 3-8 2018 http://www.sb-roscoff.fr/

@ Q(u) is measure affine (e.g. Q(n) :=E,[q], g bounded above or below)

o A={pue Mi(X)E,[p;]] <c,j=1,...,N} for measurable functions p;

o Ap = {u € Alu =3[, wiéx,} extremal admissible probability measures
Then :

o Q(A) = Q(Aar); Q(A) = Q(Aa)

Talk of M. Keller & J. Stenger



Distributionally robust ML

 Optimal UQ Staib & Jegelka 2019
Principle
Find optimal bounds for a quantity of interest @(x'), functional of an uncertain n /
probability measure p', known only to lie in some subset A of M;(X) : ‘37"“@[ f(w)]

Q(A) < Q(p) < Q(A),

with :
o Q(A) = inf.c A0

o Q(A) = sup,,c 4 Q1)
o A={pe Mi(X)| ®j(n) <cj,j=1,..., N} the admissible subset,

Theorem (Measure affine functionals over generalized moment classes)

If :
® Q(w) is measure affine (e.g. Q(n) := E.[q], g bounded above or below)
o A={pue Mi(X)|E,[p]] < ¢c,j=1,..., N} for measurable functions y;
o Ap = {u € Alu =3[, widx,} extremal admissible probability measures
Then :
o Q(A) =Q(Asr); Q(A) = Q(Aa)



Distributionally robust ML

 Optimal UQ Staib & Jegelka 2019
Principle
Find optimal bounds for a quantity of interest Q(uT), functional of an uncertain ~
4
probability measure p', known only to lie in some subset A of M;(X) : SUp <z~ [ef (.’L')]

Q(A) < Q(p') < Q(A),

with :
o Q(A) = inf @

° 6(—'4) — SUp,cA Q(/'l’)
o A= {pue Mi(X)| ®j(n) <cj,j=1,...,N} the admissible subset,

Theorem (Measure affine functionals over generalized moment classes)

If :
® Q(w) is measure affine (e.g. Q(n) := E.[q], g bounded above or below)
o A={pue Mi(X)|E.[p]] < c,j=1,..., N} for measurable functions y;
o Ap = {u € Alu =3[, widx,} extremal admissible probability measures
Then :
o Q(A) =Q(Asr); Q(A) = Q(Aa)



Distributionally robust ML

* Optimal UQ Staib & Jegelka 2019

Principle

Find optimal bounds for a quantity of interest.functional of an uncertain

probability measure p, known only to lie in s set A of M;1(X) : SUu -
QW) < .s Q).
\ |7
@
=

If :

- - — /U .
A . 0=1 "1Yx

Then :
o Q(A)=Q(Ar): Q(A) = Q(Aa)



Conclusion

® Comparing probability distributions has been a key ingredient in many ETICS courses and talks since
the beginning, sometimes hidden

= Were you aware of that?

@ This is a very active research area in machine learning, and we should follow the current

developments with care!
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0.47

-1.47

red
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0.52

-0.79

green

0.20

0.11

-2.67

green

0.48

0.75

0.43

blue

1.82

0.11

1.91

red

-4.2

0.96

2.92

blue

2.34

0.64

0.33

blue

4.51

0.01

2.14

red

-3.7

0.15

1.39

green

0.86

0.63

-1.93

red

-2.9

Table 3: Original dataset.

X: | Xo | X3 | Y
0.47 | -1.47 -1.5
0.52 | -0.79 0.20
0.11 | -2.67 0.48
0.75 | 0.43 1.82
0.11 | 1.91 -4.2
0.96 | 2.92 2.34
0.64 | 0.33 41401
0.01 | 2.14 -3.7
0.15 | 1.39 0.86
0.63 | -1.93 -2.9

Table 4: Distributional encoding.

X: | Xo | X3 | X4 ] Y7 | Yo X1 | X9 | X3 | Y1 | Yo

0.47 | -1.47 -1.5 | 5.67 0.47 | -1.47| = -1.5 | 5.67
0.52 | -0.79 0.20 | -0.89 0.52 | -0.79 « 10.20 | -0.89
0.11 | -2.67 0.48 | -3.65 0.11|-2.67| =+ |0.48]| -3.65
0.75 | 0.43 1.82 | 7.34 0.7 | 0.43 - 1182 7.34
0.11 | 1.91 -4.2 | 6.32 0.11] 1.91 | = -4.2 | 6.32
0.96 | 2.92 01234 4.28 0.96 | 2.92 - 1234 4.28
0.64 | 0.33 2 14.51]10.12 | 1 0.64 | 0.33 - 1451 10.12
0.01 | 2.14 -3.7 | 7.98 0.01 ] 2.14 | = -3.7 | 7.98
0.15 | 1.39 0.86 | 0.73 0.15 | 1.39 « | 0.86| 0.73
0.63 | -1.93 -2.9 | 9.21 0.63 | -1.93 | = -2.9 | 9.21

Table 7: Multi 1D-Distrib. encoding.

Table 8: 2D-Distrib. encoding.

D. 2025



