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General framework of uncertainties treatment

Basically, we are interested in explaining the behavior of a random vector of interest

Y = g(X , d)

g is (most often) a deterministic function (computer model)

X is a random vector of inputs living in a probability space χ, often associated to a
parametric density X ∼ f (x |θ)

d is a set of environmental fixed parameters in ID

Bayesian statistical modelling of uncertainties

Technical tools of assessment and exploration allowing for:

agglomerating several sources of information (legacy data, simulated data, expert
opinions, constraints...)

differentiating aleatory and epistemic uncertainties in assessment and simulation

decision-helping under uncertainty
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Basics on Bayesian modelling

Main assumption

Quantities usually considered as fixed (θ,g(x0, d)) but unknown are given the sense of
realizations of random variables associated to so-called prior distributions

Conditioned to data (observed in situ or produced by numerical means) (x1, . . . , xn, y1, . . . , yn),
the uncertain prior information is updated and summarized by the posterior distribution

Example on θ

Given a prior measure (or density) π(θ), the posterior density is given by [Bayes rule]

π(θ|x1, . . . , xn) =
ℓ(x1, . . . , xn|θ)π(θ)∫

Θ ℓ(x1, . . . , xn|θ)π(θ) dθ

where ℓ(x1, . . . , xn|θ) is the data likelihood

Consequences:

1 the posterior distributions "traduce" less uncertainty on the true (θ, g(x0, d)) than the
prior distributions

2 rather than focusing on single estimators (θ̂n, ĝn(x0, d)), one focuses on estimating the
whole posterior distribution
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A practical view of mind, but reinforced by the de Finetti theorem (1931), generalized by
Hewitt, Savage (1955), Diaconis, Freedman (1980)

Let X1, . . . ,Xn, . . . be an exchangeable sequence of 0-1 random variables with joint probability
P. Then there exists a unique probability measure π(θ) such that

P(X1 = x1, |dots,X1 = xn, . . .) =

∫

Θ
f (x1, . . . , xn, . . . |θ)π(θ) dθ

where f (x1, . . . , xn|θ) is the likelihood of iid Bernoulli observations

Consequences:

Bayesian modelling appears as a natural statistical modelling for correlated but
exchangeable data

Formal existence of a prior π(θ) defined by the sampling mechanism
= { uncertain information about the state of nature θ }

In facts:

The sampling model f (x |θ) is determined by statistical testing, physical reasoning...
(aleatory part)

Need to define a prior (epistemic part)

Subjectivist view: a prior/posterior probability is a degree of belief
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Eliciting prior distributions: several frameworks in uncertainty treatment

1 - Modelling of inputs: X ∼ f (x |θ) with θ ∈ Θ ⊂ IRd

(a) estimate the posterior distribution π(θ|xn)

(b) predict the next input xn+1 according to the posterior predictive distribution

f (xn+1) =

∫

Ω
f (xn+1|θ)π(θ|xn)dθ

2 - Emulating a time-consuming code g : a stochastic prior is placed on g through the choice
of a random process (e.g., Gaussian)

∀z = (x , d) ∈ χ× ID, g(z) ∼ m(z)T θ1 + G(z)

with Ef [H(z)] = 0 and Cov(H(z),H(z ′)) = θ22Rθ3
(‖z − z ′|)

Ex: Bayesian kriging for estimating θ = (θ1, θ2, θ3) using a numerical DOE (Berger et al.

2001, Paulo 2005, Helbert et al. 2009, Deng et al. 2011...)

3 - Mixing both frameworks for Bayesian inversion

Possibly, the data xn are missing and the posterior is π(θ|y∗
n
) where

y∗
i = g(xi , di ) + ǫi
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Prospective questions about prior elicitation of parameters of input distributions

expert strenght quantifying the ratio “prior information" / "data information"

needs for an understandable definition

practicity is π easy to handle? [Rios Insua and Ruggeri 2000]

explicit if possible (sensitivity studies are simplified)
easy to sample (comparisons a posteriori-a priori)
defined by formal rules in a unique way

coherence w.r.t. consensual qualitative knowledge on Σ, is π coherent?

equitability Do the complete Bayesian models (fi (.|θi ), πi (θi )) be equitable?

a model should not be arbitrarily favorized a priori
the prior of a nested sampling model should be itself nested in the prior
of a more complex model

Remark: Incorporation of subjective information

Subjective degrees of belief (gambles) are biased and should be partially

corrected from empirical studies and meta-analyses in similar situations (Lannoy & Procaccia

2003)

accounted for in the decision process via game theory (Green 2002)

reduced by theories of evidence and knowledge representation (e.g., Dempster-Shafer theory)
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An example of coherence : the Weibull banana shape

Weibull distribution in lifetime data analysis

f (t|η, β) =
β

η

(

t

η

)β−1

exp

{

−

(

t

η

)β
}

✶{t≥0}

A prior π(θ) = π(β, η) with strongly positive correlation threatens to be incoherent with
the meaning of the model:

high β ⇔ strong ageing ⇒ short lifetime ⇔ small η
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Starting example: Bayesian modelling of a Weibull lifetime X

Σ = Steam turbine rotor from a fossil-fuel power station

Feedback experience lifetime

data

To account for technical improvement, two independent experts can express their feeling about
X and the qualitative behavior of Σ (aging)

8 / 35



A decision-theoretic elicitation in reliability (1/2)

1 Consider a replacement of Σ planned at time X = t̄
2 Denote x the unknown true lifetime of Σ

3 It x were known, there would be the approximate costs (at first order)
C2(‖x − x̄‖) to have been too pessimistic if x > x̄
C1(‖x − x̄‖) to have been too optimistic if x < x̄

Question: can you plot how the costs evolve in a signed scale?
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A decision-theoretic elicitation in reliability (2/2)

Denote δ = C2(‖x − x̄‖)/C1(‖x − x̄‖) and

Lδ(x , x̄) =
1

1 + δ
(x̄ − x)✶{x≤x̄} +

δ

1 + δ
(x̄ − x)✶{x>x̄}

the total cost function

the mean cost due to carrying out the management decision at time x̄ is

ℓδ(x̄) =

∫

Θ

[∫ ∞

0
Lδ(f , f̄ )f (x |θ) dx

]
Π(dθ)

The aim of the dialog between expert and analyst is to estimate a couple

(x̄ , δ)∗ = arg min
x,δ

ℓδ(x)

(what is the best decision and how much are the associated costs?)

Given δ, x̄∗ is the prior predictive percentile of order α:

P(X < x̄∗) =

∫ x̄∗

0
P(X < x̄∗|θ)Π(dθ) = α = δ/(1 + δ)
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Prior form modelling based on information theory

Typically, a maximum entropy approach can be conducted to elicit a prior density π(θ) = Π(dθ)
under this kind of constraint

Principle : πME (θ) = arg max
π(θ)≥0

HJ(Θ)

with HJ(Θ) the relative entropy

HJ(Θ) = −

∫

Θ
π(θ) log

π(θ)

πJ(θ)
dθ

where πJ(θ) is a benchmark (noninformative) prior measure

under linear constraints
∫
Θ gi (θ)π(θ) dθ = ci for i = 1, . . . , q

⇒ πME (θ) ∝ πJ(θ) exp

{

−

q∑

i=1

λigi (θ)

}

Probably the most popular systematic elicitation method

allowing to progress carefully from noninformativeness to informativeness

usage quite broad for many applications (Jaynes 2003,...)

11 / 35



A first issue: non-invariance to reparameterization

Example: θ lives in [1, 2] ⇔ πME (θ) = πJ(θ) is uniform

assuming θ ∼ U [1, 2] is not equivalent to assuming θ−1 ∼ U [1/2, 1]

Invariance rule for defining noninformative priors (Jeffrey priors)

πJ(θ) ∝
√

det I (θ)

For any bijective variable change η = h(θ), one has

πJ(η) ∝
√

det I (η)
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A broader class of maximum entropy priors

Besides, we want that the data remain much more conclusive than the prior ⇒ need for a
“broader" criterion of non-informativeness than HJ(Θ)

Definition:
Maximal data information priors (Zellner 1977, 1991)

πMDI (θ) = arg max
π(θ)≥0

G(Θ)

with G(Θ) = Eθ

[
HJ(Θ)− Z(θ)

]
where Z(θ) = entropy of the sampling model

Z(θ) =

∫
f (x |θ) log f (x |θ) dx

G(Θ) gives “the total information provided by an experiment over and above the prior" (Zellner

1997)

Maximizing gain G(Θ) implies to minimize the information carried by π(θ) through the
inference (Soofi 2000)

πMDI (θ) ∝ πJ(θ) exp

(

Z(θ)−

p∑

i=1

λigi (θ)

)
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A second issue

The obvious propriety constraint

∫

Θ
πME (θ) dθ =

∫

Θ
πMDI (θ) dθ = 1

remains inoperative in the (Lagrange) resolution

Doing better: an indirect prior form constraint (Soofi 2000, Soofi et al. 2007, B. 2010)

The integrability of π over Θ implies

∫

Θ
Z(θ)π(θ) dθ = c <∞ (1)

The ME prior under (1) encompasses usual ME and MDI priors

πMEH(θ) ∝ πJ(θ) exp

(

−γ0Z(θ)−

p∑

i=1

λigi (θ)

)

.
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Coming back to our industrial example: Weibull lifetimes

Use the noninformative prior πJ(η, β) ∝ (ηβ)−1

The MEH prior takes the conditional form

η|β ∼ G(γ0, λ1Γ(1 + 1/β)),

πMEH(β) ∝
β−1

Γγ0 (1/β)
exp(−γ0γ/β)

It is proper iif γ0 > 0

γ0 is the solution of

Π(β > βe) =

∫ ∞

βe

β−1

Γγ0 (1/β)
exp

(
−
γγ0

β

)
dβ

∫ ∞

0

β−1

Γγ0 (1/β)
exp

(
−
γγ0

β

)
dβ

= 1 − αe .

and

λ1 = γ0/xe where xe is the prior median lifetime

Default case : Π(β > 1) = 1/2 (the experts have no opinion on aging...) ⇒ log γ0 ≃ −5 ⇒
extremely flat but integrable prior
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Prior form modelling based on virtual data approximate posterior priors

Assume X |θ lives in the natural exponential family:

f (x |θ) = h(x) exp(θ · x − ψ(θ))

then the ME prior defined by

π(θ|x0,m) = K(a, b) exp(θ · x0 − m · ψ(θ)) (2)

is conjugated: given xn = (x1, . . . , xn), then

π(θ|x0,m, xn) = π(θ|t0 +
n∑

i=1

xi ,m + n)

The posterior predictive mean is

E[X |xn] =
x0 + nx̄n

m + n
(3)

Under continuity conditions, (3) ⇒ (2) from Diaconis & Ylvisaker (1979)

The prior can be interpreted as a posterior based on both virtual data and a noninformative prior
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Some conjugate prior/posterior distributions for some usual exponential families

courtesy of VS-RSF
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The virtual sample idea

Imagine the "true" prior information is ~xm ∼ f (.|θ) of size m

A nice (and logical) prior is π(θ) = πJ(θ|~xm) where πJ
i is noninformative

It answers to most of our requirements (unicity, assessing correlations within θ...)

Construction principle of conjugate models, with π entirely explicit only in those cases
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Nonconjugate cases

For a given pdf f (x |θ)

1 select πJ(θ)

2 assume there exists a “hidden" (virtual) sample ~xm of size m

3 give a unique form choosing π(θ) ≡ πJ(θ|~xm), ie.

π(θ) = π(θ|∆m)

with ∆m a set of virtual statistics

4 estimate ∆m by ∆̂m = arg min
δm

D (Λe ,Λ(δm))

Λe are wished prior features elicited (e.g., from expert knowledge)
Λ(δm) are features of the effective prior distribution
D is some kind of distance

under homogeneity constraints

Calibrating priors with information-theoretic distances: methodological works by Cooke
(1991).Clarke (1996), Neal (2001), Liu & Clarke (2004), Lin et al. (2007), Morita et al. (2007)
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Application: Gamma processes for crack increases

crack size Zk,t monotonously increasing

independent increments Xk,i = Zk,ti − Zk,ti−1
assumed to follow gamma distributions

fα(t−s),β(x) =
1

Γ(αi (t − s))
·
xα(t−s)−1e

− x
β

βα(t−s)
✶{x≥0}
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Building an informative prior on (α, β) [B. et al. 2014]

Noninformative prior (Jeffreys) πJ(α, β) ∝ 1
β

√

αΨ1(α)− 1

Posterior prior of a virtual sample of crack increases ~xm = (x̃1, . . . , x̃m) observed at times
~tm = (t̃1, . . . , t̃m)

β|α ∼ IG (αmt̃e,1,mx̃e)

α ∼ G (m/2,mt̃e,2)

the meaning of which being given by

t̃e,1 =
1

m

m
∑

i=1

t̃i (average time of observation)

x̃e =
1

m

m
∑

i=1

x̃i (average crack increase)

t̃e,2 =
1

m

m
∑

i=1

t̃i log

m
∑

j=1

x̃j/x̃i

m
∑

j=1

t̃j/t̃i

(tuning hyperparameters)

Actually, approximation at the first order of the real posterior (Taylor-Edgeworth
expansion)
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Finding nice properties to calibrate from expert opinions

The mean crack increasing during the time interval ∆i admits as its most likely a priori value

r̂(∆i ) =
x̃e∆i

t̃e,1
.

Questioning an expert. During the next 15 then 30 years (ie., the value of mt̃e,1), what will be
the chances (1 − δ1, 1 − δ2) that any crack of size Z appearing on the device be upper than
(z1, z2) = (5, 10) mm? ie., for i = {1, 2},

P
(
Zmt̃e,1

< zi

)
= δi =

∫ zi

0

∫ ∞

0

xαmt̃e,1−1(mx̃e)αmt̃e,1Γ
(
2αmt̃e,1

)

(mx̃e + x)2αmt̃e,1 Γ2
(
αmt̃e,1

) π(α) dαdx

Calibrating the prior form by minimizing in (m, t̃e,2) the L2 relative distance

2∑

i=1

{
1 − δ−1

i P
(
Zmt̃e,1

< zi

)}2
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Agreement between prior and data

.
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Equitability between models: minimizing a distance between prior predictive distributions
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A final remark: Bayesian inversion of a computer code (Fu et al. 2013)

Y = g(X ) + ǫ,

X ∼ N (m,C)

ǫ ∼ Np(0,R) (known observation noise)

where Y = (Y1, . . . ,Yd ), X = (X1, . . . ,Xq)

Given the Gaussian structure of the missing data X , the Jeffrey noninformative prior can be
elicited

πJ(θ) =
IΩm

(m)

Vol(Ωm)
·

∆C

|C |
q+2

2

IΩC
(C)

with Ωm × ΩC the prior domain

This prior should be constrained by a basic condition of relevance (well-posed problem in
Hadamard’s sense)

solving the inversion problem (getting the posterior of θ from information on Y ) makes
sense only if the uncertainty on Y is mainly explained by the uncertainty on X

If g is linear, it is equivalent to ANOVA or the result of Sobol’ analysis
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Rewrite

Y = ΓX + ǫ

(with Γ associated to the Jacobian of g in linearized cases)

A condition of relevance is for instance

Cov[ΓX] > Cov[ǫ]

Another one is based on entropy

H(ΓX) > H(ǫ)

Both lead to a similar kind of constraint

|C | > CR,Γ

Then

ΩC ∈
{
C ∈ S+

q , |C | > CR,Γ

}

and the Jeffrey prior can be integrable (proper)

Other constraints should be added if g is replaced by an emulator estimated from a finite design
of numerical experiments (e.g., Gaussian process prior)
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Take-home messages

Uniform priors should not be used with purely artificial parameterizations

Formal elicitation of priors:

seminal review by Kass and Wasserman (1996)

theoretic arguments from decision and information theories

virtual data posterior prior approach = emerging methodology

virtual sizes = levers of sensitivity analysis
clear weighs of subjectivity within the model
useful to defend Bayesian choices in an objective world

Constraints specific to uncertainty problems can help to elicit useful priors

Towards Robust Bayesian analysis in industrial applications (Rios Insua and Ruggeri 2000)

critics of prior guesses: generic approaches

links to develop with global sensitivity analysis
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Application 1: Weibull ([B. 2010, Epifani et al. 2014])

Denote GIG(a, b, γ) the generalized inverse gamma distribution with density

baγ

Γ(a)

1

ηaγ+1
exp

(
−

b

ηγ

)
✶{η≥0}.

Use Jeffrey’s prior πJ(η, β) ∝ η−1
✶{η≥0}✶{β≥0}

Posterior prior

η|β ∼ GIG (m, b(~xm, β), β) ,

π(β) ∝
βm−1

bm(~xm, β)
exp

(
m

β

β(~xm)

)
✶{β≥0}

with ∆m =




b(~xm, β) =
m∑

i=1

x̃β
i , β(~xm) = m

(
m∑

i=1

log x̃i

)−1
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To satisfy the prior predictive assumption

P(X < x
(e)
α ) =

∫ x
(e)
α

−∞
f (x |δm) dx = α

replace b(~xm, β) by

b(~xm, β) =
(
(1 − α)−1/m − 1

)−1 (
x
(e)
α

)β

Consequence: π(β) is gamma with shape parameter m and mean parameter

βe(m) = (log x
(e)
α − β−1(~xm))−1

Important points

The substituted joint prior is proper for any virtual size m extended on half-line IR+

A supplementary information is necessary to calibrate π(β) given m
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How choosing D?

1 Ex: Cooke’s method of discrete Kullback loss (1991).

assume prior information (ti,e , αi,e) such that P(X < xi,e) = αi,e

D (Λe ,Λ(δm)) =

q∑

i=0

(αi+1,e − αi,e) log
αi+1,e − αi,e

αi+1(δm)− αi (δm)

with α0,e = α0 = 0, αq+1,e = αq+1 = 1 and

αi (δm) =

∫ xi,e

−∞
f (t|δm) dx

2 One may weight the Kullback loss such that the most important constraints λi,e are
nearly fully respected

One cannot hope all expert specifications are simultaneous coherent with the Bayesian model
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Issue 1: other uncertainties in expert opinions

Observable values xe are provided by the Bayesian analyst (= the statistician)

Expert subjectivity is mainly expressed through an estimate αe of α

Assume to have q sorted prior estimates (αe,i )1≤i≤q

Pursuing the virtual sample idea, one has a priori

(α1, α2 − α1, . . . , αq − αq−1, 1 − αq) ∼ Dir (ν1, . . . , νq+1)

with νj − 1 = number of virtual “past" observations of event xe,j−1 ≤ X ≤ xe,j , ie.,

q+1
∑

j=1

νj = m + q + 1

A simple choice is

νj = (m + q + 1)(αe,j − αe,j−1)

How calibrating m?
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Issue 2: towards correlations between experts

Let ~xm1
and ~xm2

be two virtual samples associated to two experts E1 and E2

E1 and E2 dependent

In our view, ~xm1
and ~xm2

are “generated" dependently (possibly share common data)

Following O’Hagan et al. (2006), obtaining a consensus virtual sample

Same methodology:

1 looking for a most trustworthy specification;

2 minimizing a loss function w.r.t marginal specifications

Supra-Bayes approach?
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Issue 3: using expected posterior priors

Replacing π1(θ) = πJ(θ|~xm) by

π2(θ) = π2(θ|m, θe) =

∫

πJ(θ|~tm)f (~xm|θe) d~xm

For a fixed, m calibrating θe using a loss function w.r.t. prior predictive specifications

Total variance theorem: Varπ2
[θ] ≥ Eθe [Varπ1

[θ|~xm]]

Can appear more cautious (but somewhat difficult to work with in non-conjugate cases)

Ex: exponential model E(λ) with λe = x−1
e log 2 and xe = prior median

π2(λ) =
λm

e λ
m−1

(λe + λ)m+1
✶{λ≥0}

35 / 35


	Appendices
	Application: Weibull


