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 Computer models of  physical systems affected by both 

errors and uncertainties 

 

 Numerical approximation errors, solution errors, round-off  errors  

 can be improved 

 Model definition uncertainties (geometry, operating conditions) 

  cannot be improved 

 Errors/uncertainties specific to the physical/mathematical model 

◦ E.G.: fluid properties (density, viscosity, compressibility,...) 

◦ Submodels describing material behavior (E.G.: EOS, turbulence models, 

viscosity, ...) 

 Could be improved, but… 

 



 Uncertainties on geometrical and operating conditions and model 

tuning parameters are essentially irreductible  

 aleatoric  uncertainties 

 

 Physical/mathematical models: error or uncertainty? 

◦ Modeling errors : conscious use of  a possibly unsuitable/partially 

suitable model for a given problem 

 e.g. use of  an inviscid or incompressible flow model, use of  

turbulence models, use of  the ideal polytropic gas model 

◦ Modelling uncertainties : does a model fit a given problem? How close it 

is to reality?  lack of  knowledge that could be improved  

 epistemic uncertainty 
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  For a given level 

- Several possible models, which differ by 

• Their mathematical structure 

• The associated closure parameters 

  Choice of  the appropriate modelling level : essentially  

“expert judgement” 

  Common practice 

• Model structure chosen by expert judgement 

• Model constants imperfectly known/adjustable  

 Sources of  uncertainty 
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Epistemic uncertainties 
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Turbulent flow past an airfoil,  M=0.8, AoA=2°, Re=9e6 

 Perfect gas, Newtonian fluid, eddy viscosity turbulence model 
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Motivating example 

IsoMach lines 

Wall pressure coefficient, different 

models 

Wall pressure 

coefficient,  

BL model, different 

values of  a closure 

coefficient 
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Reynolds stress tensor 

Reynolds stresses need additional modelling: a turbulence model 



 Rich zoology of  models proposed through the years: 

◦ Algebraic: Prandtl’s mixing length (1921), Cebeci-Smith (1974), 

Baldwin-Lomax (1978), … 

◦ Half-equation: Johnson and King (1984) 

◦ One equation: Bradshaw (k, 1967), Baldwin-Barth (1990), Spalart-

Allmaras (1992), … 

◦ Two equations: k-ε  (several), k-ω (several), k-l, k-t, … 

◦ Two equations non linear: …. 

◦ Three-equations ... 

◦ Seven equations (Reynolds-Stress Models): … 

◦ … 

 No universally accepted and valid model yet 
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 Example: k-ε models 
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 Parametric uncertainty 
◦ Imperfect knowledge of  model parameters 

 Use of  uncertain experimental data 

 Uncertain choice of  calibration scenario 

 

 Model-form uncertainty 
◦ Imperfect knowledge of  model mathematical 

structure 

13 



 Introductory thoughts 

 Parametric and model-form uncertainties in Reynolds-Averaged 

Navier-Stokes (RANS) solutions of  turbulent flows 

 Bayesian calibration of  turbulence models 

 Quantifying model-form uncertainty 

 Bayesian model-scenario averaging (BMSA) 

 Conclusions and perspectives 

14 



 Bayesian inference is the process of  fitting a probability model to 

a set of  data and summarizing the result by a probability 

distribution on the parameters of  the model and on unobserved 

quantities such as predictions for new observations 

◦ Represents uncertainty as a probability distribution 

◦ Uses a set of  observational data to infer a PDF of  the closure 

coefficients  estimate + measure of  confidence in estimate 

◦ All uncertainties are treated in terms of  probabilities,  

 including model-form uncertainties 
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 Problem data  
 

◦ A model 

 with θ  the unknown model random inputs and x  the explanatory (known) 

variables 

◦ An a priori probability distribution for θ, p(θ) 

◦ A sample of  observations for y 
 

 Problem outcome 

◦ The a posteriori probability distribution for θ 

  results from our a priori  knowledge on θ, plus   
 the observation likelihood 

◦ An estimate of  the model/measurement error variance 
 

Remark  

 standard calibration by, e.g. least mean square regression, only provides the 

« best fit » value for θ, θ*, no error estimate 
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y=M(x, θ) 
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Model calibration results from Bayes theorem on conditional probability: 

 

 

 

 

where p(θ) is the prior belief  about θ and p(z|θ) is the likelihood function; p(z) 

can be treated as a normalization constant 

 

Equation (1) is a statistical calibration : it infers the posterior pdf 

of  the parameters  that fits the model to the observations y. 

 

For most engineering problems, estimations of  z often require running a 

computer code!! 

 

 The posterior has to be computed numerically 
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In Bayesian calibration the parameter vector is the parameter vector 

from the physical model θ   PLUS   parameters associated to the 

statistical model, e.g. σ: 

 

•  The a priori distribution on is the same we use for the initial propagation 

problem 

 

• In practice, when we know almost nothing about the parameter vector, we 

choose a large, non informative, distribution 

 

 typically, this will be a wide uniform distribution 

 

 It may be subject to constraints to avoid including unphysical values 
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•  The likelihood function models the dispersion of  the observed data 

around the model output 

Often taken as a multivariate Gaussian function. 

     

For our model problem: 

 

 

 

with Σ a covariance matrix  that may involve an additional vector of  parameters, 

called hyperparameters, σ 
 

•  For a given model and set of  observations, L depends only on the  

   unknown parameters 

( )( )( | ) , ,p z N M xθ − Σθ z



20 

 Bayes’ theorem provides the joint posterior for θ, σ: 

 

 

  

• In general this distribution does not belong to a known family of  PDF 

 

 It has to be approximated numerically 

 

• Markov-Chain Monte Carlo (MCMC) sampling is used to obtain a representative  

  sample of  the posterior 

•  The sample is used to represent marginal posteriors for each parameter 

•  Hereafter, we use the Python package pymc 

https://pymcmc.readthedocs.org/en/latest/# 

( ) ( ) ( ) ( )1
, | | ,p p p p

c
θ σ θ σ θ σ=z z

https://pymcmc.readthedocs.org/en/latest/�
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Objective: predict velocity profiles developing in the turbulent boundary layer 

close to the wall 

 

 

 

 

 

 

• Governing equations: Reynolds-Averaged Navier-Stokes equations 

supplemented by a turbulence model 

• Algebraic Baldwin-Lomax’ (1972) model 

• Launder-Jones’s (1972) k-ε model 

• Menter’s (1992) k-ω SST model 

• Spalart-Allmaras (1992) one-equation model 

• Wilcox’ stress-ω model (2006) 
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Incompressible turbulent flow over a flat 

plate: model parameter calibration 



Calibrate from available experimental velocity profiles for several values of  the 

pressure gradient (explanatory variable) 

 

The statistical model incorporates : 

• The code output as a function of  the uncertain closure coefficients : 

• A statistical model to represent the structural uncertainty : 

  

 

 

   where σ, α are additional uncertain (hyper) parameters, to be calibrated along     

    with closure coefficients θp 

• A statistical model to represent the experimental error e      

 

 

 

 

 

 

Calibration framework 

( )0,       =2% of the mean experimental velocity
i

e N λ λ



Example of  the k-ε model:  

“Standard” coefficients 

 

 

Not all the coefficients are independent 

• Cε2 is related to the rate of  decay of  homogeneous isotropic turbulence, n 

 

 

• C ε1 is related to Cε2 via the production-to-dissipation rate (about  1.9) 

 

 

 

• The other parameters are usually assumed to satisfy: 

 

 

 

  with κ the von Karman “constant”  

24 

Model parameters: priors (1) 



According to the available experimental measurements and to the different 

values proposed in the litterature, we assume the following uniform priors 

25 

Model parameters: priors (2) 



• Calibration based on experimental data (velocity measures) for 13 

boundary layers subject to both positive and negative pressure 

gradients 

 

• Numerical solutions obtained through a fast boundary-layer code, 

more complex flow topologies will require the use of  a surrogate 

model. 

• Use Markov-Chain Monte-Carlo method to draw samples from  

 

  

• Use these samples of  θ to construct approximate pdfs through a 

kernel-density estimation. 
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Calibration 



Some results 



Some results 

• Posteriors are propagated through the RANS code to get the 

posterior estimate of  the velocity profile 

• They can also be used to sample from the true process 

 

Posterior distribution of y Posterior distribution of ηy 
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Remarks 

• The spread in most-likely closure coefficients due to different 

pressure gradients is significant, thus there is no such thing as a true 

value for the closure coefficients. 

 

• Performing a calibration with a structural uncertainty term tells you 

something about the structural uncertainty of  that case alone. 

 

• How to summarize the effect of  both parametric and model-form 

uncertainty to make predictions of  new cases? 
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The model M  is not univocally determined because of  both parameter and 

structural uncertainty  

Call M  the space of  all possible models, M  a precise model : 

 M composed by two parts: the structure S and the model parameters θ 

 

 

     

 

 

 

 

 

     

Remark : M  infinite !!  use of  a discrete set of  models  

Weighted average of  the posterior distributions using posterior model 

probabilities (model plausibilities) 

Computation of  model probabilities?  Again Bayes theorem 

 

 

Prior probability of  S         Prior probability of  parameters                       Evidence 

( ) ( ) ( )| , | , ( | ) | , , ( , | )p y x p y x M p M y dM p y x S p S y d dSθ θ θ= =∫ ∫ ∫M
M

( ),M S θ=

( ) ( ) ( ) ( ) ( )( | ) | | ,   | | ,p M y p S y p y S C p S p S p y Sθ θ θ= =

Draper (1997) 
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Posterior plausibility quantifies the relative probability that a particular 

model in a given set produces the observed data 

  For a model M  in M  the posterior plausibility is: 

 

 

 

 

  If  the prior is a flat non informative function, E  is a measure of  the 

“peakedness” of  the posterior 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

| ,   | ; ,

| prior model plausibility

; , model Evidence:= | , | ,

p M y C p M E M y

p M

E M y p y M p p y M dθ θ θ

=

=

= = ∫

M M M

M

M M



 Obtained by applying Draper’s decomposition to a discrete set of  

models 

◦ Let Mi  be a turbulence model in set M, Sk a pressure gradient scenario 

in set S, and Z  the set of  all calibration data 

◦ The BMA prediction of  the expectancy a quantity of  interest ∆ is then: 

 

 

 

Introduction of  an additional decomposition over different calibration 

scenarios (BMSA) 

The scenario of  ∆ is not in the calibration set S 

 Each individual expectation is weighted by: 
 

◦ The posterior model plausibility 
 

◦ The prior scenario probability 
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 Similarly, the variance of  ∆ writes: 
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In-model, in-scenario variance 

Between-model, in-scenario variance (model error) 

Between-scenario variance (spread) 



 Posterior model plausibilities computed for all models in M  for each Sk 

using samples from 

 

 Can be considered as a measure of  consistency of  calibrated model Mi 

with data zk 
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Application of  BMSA to the incompressible 

turbulent flow over a flat plate 

Large spread in model  

plausibilities, according to the  

pressure gradient scenario 



 BMA prediction for a validation case (not in the calibration set) 

◦ Strong adverse pressure gradient 

 Scenario pmf  weighted according to an error measure 

  penalizes scenarios with a large between-model, in-scenario variance  

 

 

 

 

 

 

 

 

 

◦ Good prediction, variance consistent with experimental uncertainty 

 

◦ Significant contribution of  the between-scenario variance 
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BMSA prediction 



 Coefficient and plausibility database applied to the prediction of  the 
pressure coefficient for high-subsonic flow past an NACA64A010 airfoil 
(M=0.61, AoA=6.2°) 

 Preliminary results with one model, several scenarios 

 Propagation through an improved Simplex Stochastic Collocation method 
(Edeling, Dwight, Cinnella, 2014 – submitted) 

 

 

 

 

 

 
 

 

 

 

 

 

 Parametric uncertainty mostly relevant in the high-gradient region 
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BMSA applied to the prediction of  a more 

complex flow 
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 Bayesian inference allows updating engineering models as soon as 

some observations become available 

◦ Particularly suitable for problems such that only a few data are available 

◦ Calibration allows to unfold parameters not informed by the data and 

correlated parameters 

◦ It not only provides optimal values for the parameters, but also error 

estimates (e.g. coefficients of  variation) 

 It offers criteria for model selection 

 Bayesian model/scenario averaging can be used to summarize 

predictions made from alternative mathematical models/calibration 

cases 
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