

On the use of Bayesian inference for the quantification of turbulence modelling uncertainties

Paola CINNELLA

Università del Salento and Laboratoire DynFluid (EA 92), Paris paola.cinnella@ensam.eu

Joint work with : W. Edeling, R. Dwight

Forum incertitudes du CEA DAM, October the 1st, 2014

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Talk overview

Introductory thoughts

- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Errors and uncertainties

Computer models of physical systems affected by both errors and uncertainties

- Numerical approximation errors, solution errors, round-off errors → can be improved
- Model definition uncertainties (geometry, operating conditions)

 cannot be improved
- Errors/uncertainties specific to the physical/mathematical model
 - E.G.: fluid properties (density, viscosity, compressibility,...)
 - Submodels describing material behavior (E.G.: EOS, turbulence models, viscosity, ...)

 \rightarrow Could be improved, but...

Aleatoric and Epistemic uncertainties

- Uncertainties on geometrical and operating conditions and model tuning parameters are essentially irreductible
 - \rightarrow aleatoric uncertainties
- Physical/mathematical models: error or uncertainty?
 - Modeling errors : conscious use of a possibly unsuitable/partially suitable model for a given problem
 - e.g. use of an inviscid or incompressible flow model, use of turbulence models, use of the ideal polytropic gas model
 - Modelling uncertainties : does a model fit a given problem? How close it is to reality? → lack of knowledge that could be improved
 - \rightarrow epistemic uncertainty

Epistemic uncertainties

- Choice of the appropriate modelling level : essentially "expert judgement"
- For a given level
 - Several possible models, which differ by
 - Their mathematical structure
 - The associated closure parameters
- Common practice
 - Model structure chosen by expert judgement
 - Model constants imperfectly known/adjustable

 \rightarrow Sources of uncertainty

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Motivating example

- •Turbulent flow past an airfoil, M=0.8, AoA=2°, Re=9e6
- Perfect gas, Newtonian fluid, eddy viscosity turbulence model

Navier-Stokes equations

• Incompressible Navier-Stokes equations:

$$\nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \left(\mu \nabla \mathbf{u}\right)$$

• Reynolds averaged:

$$\begin{split} \mathbf{u} &= \bar{\mathbf{u}} + \mathbf{u}' \\ \nabla \cdot \mathbf{u} &= 0 \\ \frac{\partial \bar{\mathbf{u}}}{\partial t} + \bar{\mathbf{u}} \cdot \nabla \bar{\mathbf{u}} &= -\frac{1}{\rho} \nabla \bar{p} + \frac{1}{\rho} \nabla \left(\mu \nabla \bar{\mathbf{u}} - \rho \overline{\mathbf{u}' \mathbf{u}'} \right) \\ \text{Reynolds stress tensor} \end{split}$$

Reynolds stresses need additional modelling: a turbulence model

Closure models for the Reynolds stresses

- Rich zoology of models proposed through the years:
 - Algebraic: Prandtl's mixing length (1921), Cebeci-Smith (1974), Baldwin-Lomax (1978), ...
 - Half-equation: Johnson and King (1984)
 - One equation: Bradshaw (k, 1967), Baldwin-Barth (1990), Spalart-Allmaras (1992), ...
 - Two equations: k- ϵ (several), k- ω (several), k-l, k-t, ...
 - Two equations non linear:
 - Three-equations ...

0

• Seven equations (Reynolds-Stress Models): ...

 \rightarrow No universally accepted and valid model yet

Closure models for the Reynolds stresses

- ► Example: *k*-*ε* models
 - k-eps models:

$$egin{split}
u_T &= C_\mu f_\mu rac{k^2}{ ilde{arepsilon}}, \ rac{\partial k}{\partial t} + ar{u} rac{\partial k}{\partial x_1} + ar{v} rac{\partial k}{\partial x_2} =
u_T \left(rac{\partial ar{u}}{\partial x_2}
ight)^2 - arepsilon \ &+ rac{\partial}{\partial x_2} \left[\left(
u + rac{
u_T}{\sigma_k}
ight) rac{\partial k}{\partial x_2}
ight], \ rac{\partial ilde{arepsilon}}{\partial t} + ar{u} rac{\partial ilde{arepsilon}}{\partial x_1} + ar{v} rac{\partial ilde{arepsilon}}{\partial x_2} = C_{arepsilon1} f_1 rac{ ilde{arepsilon}}{k}
u_T \left(rac{\partial ar{u}}{\partial x_2}
ight)^2 - arepsilon \ &+ rac{\partial}{\partial x_2} \left[\left(
u + rac{
u_T}{\sigma_k}
ight) rac{\partial k}{\partial x_2}
ight], \ &- C_{arepsilon2} f_2 rac{ ilde{arepsilon}}{k} + E + rac{\partial}{\partial x_2} \left[\left(
u + rac{
u_T}{\sigma_arepsilon}
ight) rac{\partial ilde{arepsilon}}{\partial x_2}
ight], \end{split}$$

- Launder-Sharma:
- Jones-Launder:

$$C_{\mu} = 0.09, \quad C_{\varepsilon 1} = 1.44, \quad C_{\varepsilon 2} = 1.92, \\ \sigma_{k} = 1.0, \quad \sigma_{\varepsilon} = 1.3. \quad = > \theta$$

$$C_{\mu} = 0.09, \quad C_{\varepsilon 1} = 1.55, \quad C_{\varepsilon 2} = 2.0, \\ \sigma_{k} = 1.0, \quad \sigma_{\varepsilon} = 1.3.$$

Model coefficients are not sacred!!

- E.g. Isotropic decaying turbulence
- Equations reduce to

$$rac{d\kappa}{dt}=-arepsilon,
onumber \ rac{darepsilon}{dt}=-C_{arepsilon2}rac{arepsilon^2}{k}.$$

 $k(t) = k_0 \left(\frac{t}{t_0}\right)$

$$n=1/(C_{arepsilon2}-1)$$

- With exact solution
- Values for $\ C_{arepsilon 2}$ vary a lot:
 - Commonly used 1.92
 - RNG k-eps 1.68
 - k-tau 1.83
 - Best fit to data (n=1.3) 1.77

Summary of modelling uncertainties in RANS

Parametric uncertainty

- Imperfect knowledge of model parameters
 - Use of uncertain experimental data
 - Uncertain choice of calibration scenario

Model-form uncertainty

 Imperfect knowledge of model mathematical structure

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Bayesian inference

- Bayesian inference is the process of fitting a probability model to a set of data and summarizing the result by a probability distribution on the parameters of the model and on unobserved quantities such as predictions for new observations
 - Represents uncertainty as a probability distribution
 - Uses a set of observational data to infer a PDF of the closure coefficients \rightarrow estimate + measure of confidence in estimate
 - All uncertainties are treated in terms of probabilities, including model-form uncertainties

Bayesian inference for model calibration: problem statement

- Problem data
 - A model $y = M(x, \theta)$

with θ the unknown model random inputs and x the explanatory (known) variables

- An *a priori* probability distribution for θ , $\rho(\theta)$
- A sample of observations for y
- Problem outcome
 - The *a posteriori* probability distribution for θ
 - \rightarrow results from our *a priori* knowledge on θ , *plus* the observation *likelihood*
 - An estimate of the model/measurement error variance

Remark

 \rightarrow standard calibration by, e.g. least mean square regression, only provides the « best fit » value for θ , θ^* , *no error estimate*

Bayesian calibration of model parameters

Model calibration results from Bayes theorem on conditional probability:

 $p(\boldsymbol{\theta}|\mathbf{z}) = \frac{p(\mathbf{z}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{z})}$ (1)

where $p(\theta)$ is the prior belief about θ and $p(z|\theta)$ is the likelihood function; p(z) can be treated as a normalization constant

Equation (1) is a statistical calibration : it infers the posterior pdf of the parameters that fits the model to the observations y.

For most engineering problems, estimations of z often require running a computer code!!

 \rightarrow The posterior has to be computed numerically

Parameter vector and *a priori* distribution

- In Bayesian calibration the parameter vector is the parameter vector from the physical model θ *PLUS* parameters associated to the statistical model, e.g. σ :
- The *a priori* distribution on is the same we use for the initial propagation problem
- In practice, when we know almost nothing about the parameter vector, we choose a large, non informative, distribution

typically, this will be a wide uniform distribution

It may be subject to constraints to avoid including unphysical values

Likelihood function

- The likelihood function models the dispersion of the observed data around the model output
- \rightarrow Often taken as a multivariate Gaussian function.

For our model problem:

$$p(z \mid \theta) \sim N(M(x, \theta) - z, \Sigma)$$

with Σ a covariance matrix that may involve an additional vector of parameters, called hyperparameters, σ

 For a given model and set of observations, *L* depends only on the unknown parameters

A posteriori distribution

Bayes' theorem provides the joint posterior for θ , σ :

$$p(\theta, \sigma | \mathbf{z}) = \frac{1}{c} p(\theta) p(\sigma) p(\mathbf{z} | \theta, \sigma)$$

In general this distribution does not belong to a known family of PDF

It has to be approximated numerically

- Markov-Chain Monte Carlo (MCMC) sampling is used to obtain a representative sample of the posterior
- The sample is used to represent marginal posteriors for each parameter
- Hereafter, we use the Python package pymc

https://pymcmc.readthedocs.org/en/latest/#

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Incompressible turbulent flow over a flat plate: model parameter calibration

Objective: predict velocity profiles developing in the turbulent boundary layer close to the wall

• **Governing equations**: Reynolds-Averaged Navier-Stokes equations supplemented by a turbulence model

- Algebraic Baldwin-Lomax' (1972) model
- Launder-Jones's (1972) k- ϵ model
- Menter's (1992) k- ω SST model
- Spalart-Allmaras (1992) one-equation model
- Wilcox' stress- ω model (2006)

22

Calibration framework

Calibrate from available experimental velocity profiles for several values of the pressure gradient (explanatory variable)

The statistical model incorporates :

- The code output as a function of the uncertain closure coefficients : $y(\theta_p)$
- A statistical model to represent the structural uncertainty : $\eta \sim N(\mathbf{1}, K_{mc})$

$$K_{mc} = \sigma^2 u(\mathbf{x}) u(\mathbf{x}') \exp\left[-\left(\frac{\mathbf{x} - \mathbf{x}'}{\alpha l}\right)^2\right]$$

where σ , α are additional uncertain (hyper) parameters, to be calibrated along with closure coefficients θ_p

A statistical model to represent the experimental error *e*

$$z_i = \eta_i y_i(\boldsymbol{\theta}_i) + e_i$$

 $e_i \sim N(0, \lambda)$ $\lambda = 2\%$ of the mean experimental velocity

Model parameters: priors (1)

Example of the *k*- ε model:

"Standard" coefficients

 $C_{\varepsilon 1} = 1.55, \quad C_{\varepsilon 2} = 2.0, \quad C_{\mu} = 0.09, \quad \sigma_k = 1.0, \quad \sigma_{\varepsilon} = 1.3$

Not all the coefficients are independent

• $C_{\epsilon 2}$ is related to the rate of decay of homogeneous isotropic turbulence, n

$$C_{2,\epsilon} = \frac{n+1}{n}$$

• C_{ϵ_1} is related to C_{ϵ_2} via the production-to-dissipation rate (about 1.9)

$$C_{1,\epsilon} = \frac{n+1}{n(\frac{P}{\epsilon})^{k-\epsilon}} + \frac{(\frac{P}{\epsilon})^{k-\epsilon} - 1}{(\frac{P}{\epsilon})^{k-\epsilon}}$$

• The other parameters are usually assumed to satisfy:

$$\sigma_{\epsilon} = \frac{\kappa^2}{C_{\mu}^{1/2}(C_{2,\epsilon} - C_{1,\epsilon})}$$

with κ the von Karman "constant"

Model parameters: priors (2)

According to the available experimental measurements and to the different values proposed in the litterature, we assume the following uniform priors

coefficient	left boundary	right boundary
$C_{\epsilon 2}$	1.152 (-40%)	2.88 (+50%)
C_{μ}	0.054~(-~40~%)	0.135~(+50~%)
σ_k	0.450~(-45~%)	$1.15 \ (+50 \ \%)$
κ	0.287~(-30~%)	0.615~(+50~%)
σ	0.0	0.1
$\log \alpha$	0.0	4.0

Calibration

 Calibration based on experimental data (velocity measures) for 13 boundary layers subject to both positive and negative pressure gradients

• Numerical solutions obtained through a fast boundary-layer code, more complex flow topologies will require the use of a surrogate model.

Use Markov-Chain Monte-Carlo method to draw samples from

 $p(\boldsymbol{\theta}_k \mid \mathbf{z}_k)$

• Use these samples of θ to construct approximate pdfs through a kernel-density estimation.

Some results

Posterior distributions for $C_{\varepsilon 2}$ for a favorable, zero, mild, moderate and strongly adverse $d\bar{p}/dx$.

Posterior distributions for κ for a favorable, zero, mild, moderate and strongly adverse $d\bar{p}/dx$.

Posterior distributions for C_{μ} for a favorable, zero, mild, moderate and strongly adverse $d\bar{p}/dx$.

Some results

Posteriors are *propagated* through the RANS code to get the posterior estimate of the velocity profile They can also be used to sample from the true process

Remarks

- The spread in most-likely closure coefficients due to different pressure gradients is significant, thus there is no such thing as a true value for the closure coefficients.
- Performing a calibration with a structural uncertainty term tells you something about the structural uncertainty of that case alone.
- How to summarize the effect of both parametric and model-form uncertainty to make predictions of new cases?

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Model-form uncertainty

The model *M* is not univocally determined because of both parameter and structural uncertainty

Call *M* the space of all possible models, *M* a precise model : $M = (S, \theta)$ \rightarrow *M* composed by two parts: the structure *S* and the model parameters θ

$$p(y|x, \mathcal{M}) = \int_{\mathcal{M}} p(y|x, \mathcal{M}) p(\mathcal{M} | y) d\mathcal{M} = \int \int p(y|x, \theta, S) p(\theta, S | y) d\theta dS$$

Weighted average of the posterior distributions using posterior model probabilities (model plausibilities)

Computation of model probabilities? \rightarrow Again Bayes theorem

$$p(M \mid y) = p(S \mid y) p(\theta \mid y, S) = C p(S) p(\theta \mid S) p(y \mid \theta, S)$$
Prior probability of S Prior probability of parameters Evidence

Remark : M infinite $!! \rightarrow$ use of a **discrete** set of models

Model plausibility

Posterior plausibility quantifies the relative probability that a particular model in a given set produces the observed data

▶ For a model *M* in *M* the posterior plausibility is:

$$p(M | y, M) = C \ p(M | M) E(M; y, M)$$

$$p(M | M) = \text{prior model plausibility}$$

$$E(M; y, M) = \text{model Evidence} = p(y | M, M) = \int p(\theta) p(y | \theta, M) d\theta$$

 If the prior is a flat non informative function, *E* is a measure of the "peakedness" of the posterior

Bayesian model averaging (BMA)

- Obtained by applying Draper's decomposition to a discrete set of models
 - Let M_i be a turbulence model in set M, S_k a pressure gradient scenario in set S, and Z the set of all calibration data
 - The BMA prediction of the expectancy a quantity of interest Δ is then:

$$\mathrm{E}\left(\Delta \mid \mathcal{Z}\right) = \sum_{i=1}^{I} \sum_{k=1}^{K} \mathrm{E}\left(\Delta \mid M_{i}, S_{k}, \mathbf{z}_{k}\right) \mathrm{pr}\left(M_{i} \mid S_{k}, \mathbf{z}_{k}\right) \mathrm{pr}\left(S_{k}\right)$$

- Introduction of an additional decomposition over different calibration scenarios (BMSA)
- \rightarrow The scenario of Δ is not in the calibration set S
- Each individual expectation is weighted by:
 - The posterior model plausibility $\operatorname{pr}(M_i \mid S_k, \mathsf{z}_k)$
 - The prior scenario probability $pr(S_k)$

Bayesian model averaging (BMA)

• Similarly, the variance of Δ writes:

$$\operatorname{var} \left[\Delta \mid \mathcal{Z}\right] = \sum_{i=1}^{l} \sum_{k=1}^{K} \operatorname{var} \left[\Delta \mid M_{i}, S_{k}, \mathbf{z}_{k}\right] \operatorname{pr} \left(M_{i} \mid S_{k}, \mathbf{z}_{k}\right) \operatorname{pr} \left(S_{k}\right) +$$
In-model, in-scenario variance
$$\sum_{i=1}^{l} \sum_{k=1}^{K} \left(\operatorname{E} \left[\Delta \mid M_{i}, S_{k}, \mathbf{z}_{k}\right] - \operatorname{E} \left[\Delta \mid S_{k}, \mathbf{z}_{k}\right]\right)^{2} \operatorname{pr} \left(M_{i} \mid S_{k}, \mathbf{z}_{k}\right) \operatorname{pr} \left(S_{k}\right) +$$
Between-model, in-scenario variance (model error)
$$\sum_{k=1}^{K} \left(\operatorname{E} \left[\Delta \mid S_{k}, \mathbf{z}_{k}\right] - \operatorname{E} \left[\Delta \mid \mathbf{z}_{k}\right]\right)^{2} \operatorname{pr} \left(S_{k}\right)$$
Between-scenario variance (spread)

Application of BMSA to the incompressible turbulent flow over a flat plate

Posterior model plausibilities computed for all models in M for each S_k using samples from

 $p(\boldsymbol{\theta}_k \mid \mathbf{z}_k)$

 Can be considered as a measure of consistency of calibrated model M_i with data z_k

Large spread in model plausibilities, according to the pressure gradient scenario

BMSA prediction

- BMA prediction for a validation case (not in the calibration set)
 - Strong adverse pressure gradient
- Scenario pmf weighted according to an error measure
 - \rightarrow penalizes scenarios with a large between-model, in-scenario variance

$$\mathcal{E}_{k} = \frac{\sum_{i=1}^{l} \| \mathbf{E} \left[\Delta \mid M_{i}, S_{k}, \mathbf{z}_{k} \right] - \mathbf{E} \left[\Delta \mid S_{k}, \mathbf{z}_{k} \right] \|_{2} \mathrm{pr} \left(M_{i} \mid S_{k}, \mathbf{z}_{k} \right) }{\| \mathbf{E} \left[\Delta \mid S_{k}, \mathbf{z}_{k} \right] \|_{2}} \mathbf{pr} \left(S_{k}, \mathbf{z}_{k} \right) \mathbf{pr} \left(S_{k} \right) = \frac{\mathcal{E}_{k}^{-p}}{\sum_{k=1}^{K} \mathcal{E}_{k}^{-p}}, \quad k = 1, 2, \cdots, K$$

Good prediction, variance consistent with experimental uncertainty

Significant contribution of the between-scenario variance

BMSA applied to the prediction of a more complex flow

- Coefficient and plausibility database applied to the prediction of the pressure coefficient for high-subsonic flow past an NACA64A010 airfoil (M=0.61, AoA=6.2°)
- > Preliminary results with one model, several scenarios
- Propagation through an improved Simplex Stochastic Collocation method (Edeling, Dwight, Cinnella, 2014 – submitted)

Parametric uncertainty mostly relevant in the high-gradient region

Talk overview

- Introductory thoughts
- Parametric and model-form uncertainties in Reynolds-Averaged
 Navier-Stokes (RANS) solutions of turbulent flows
- Bayesian calibration of turbulence models
- Quantifying model-form uncertainty
 - Bayesian model-scenario averaging (BMSA)
- Conclusions and perspectives

Conclusions

- Bayesian inference allows updating engineering models as soon as some observations become available
 - Particularly suitable for problems such that only a few data are available
 - Calibration allows to unfold parameters not informed by the data and correlated parameters
 - It not only provides optimal values for the parameters, but also error estimates (e.g. coefficients of variation)
- It offers criteria for model selection
- Bayesian model/scenario averaging can be used to summarize predictions made from alternative mathematical models/calibration

cases

Thank you

