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Financial support from IPAM is acknowledged.

CERMICS, Ecole des Ponts ParisTech & MicMac project-team, INRIA.

V. Ehrlacher (CERMICS) Greedy algorithm CEA, September 2014 1 / 26



Motivation

High-dimensional problems are ubiquitous: quantum mechanics, kinetic models,
molecular dynamics, uncertainty quantification, finance, multiscale models etc.

How to compute u(x1, · · · , xd ) with d potentially large?

The bottom line of deterministic approaches is to represent solutions as linear
combinations of tensor products of small-dimensional functions (parallelepipedic
domains):

u(x1, · · · , xd) =
∑

k≥1

r1k (x1)r
2
k (x2) · · · r

d
k (xd )

=
∑

k≥1

(

r1k ⊗ r2k ⊗ · · · ⊗ rdk
)

(x1, x2, · · · , xd ).
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Curse of dimensionality

Classical approach: Galerkin method using standard finite element discretization
with N degrees of freedom per variate.

u(x1, · · · , xd) ≈
∑

(i1,··· ,id )∈{1,··· ,N}d

λi1,··· ,id
(

φ1i1 ⊗ · · · ⊗ φdid

)

(x1, · · · , xd ),

where the basis functions
(

φ
j
i

)

1≤i≤N, 1≤j≤d
are chosen a priori and the real

numbers (λi1,··· ,id )1≤i1,··· ,id≤N are to be computed.

DIM = Nd

This is the so-called curse of dimensionality ([Bellman, 1957])
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Greedy algorithms

Progressive Generalized Decomposition: Here, we consider an approach
proposed by:

Ladevèze et al. to do time-space variable separation;

Chinesta et al. to solve high-dimensional Fokker-Planck equations in the
context of kinetic models for polymers;

Nouy et al in the context of uncertainty quantification.

They are related to the so-called greedy algorithms introduced in nonlinear
approximation theory: ([Temlyakov, 2008], Cohen, DeVore, Dahmen, Maday...)

The idea is to look iteratively for the best tensor product:

u(x1, . . . , xd) ≈
n
∑

k=1

(

r1k ⊗ r2k ⊗ · · · ⊗ rdk
)

(x1, x2, . . . , xd ).

DIM = n× Nd
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Minimization problem

Let us consider for simplicity the case of only two variables: u(x , y) ∈ V , with V
a Hilbert space of functions depending on the two variables x and y . The
algorithm and all the results below generalize to the case of tensor products of
more than two functions.

Let us introduce a functional E : V → R with a unique global minimizer:

u = argmin
v∈V

E(v),

and the set of tensor product functions

Σ := {r ⊗ s, r ∈ Vx , s ∈ Vy} , (1)

where Vx (respectively Vy ) is a Hilbert space of functions depending only on the
variable x (respectively on the variable y) such that

SpanΣ ⊂ V .

We wish to approximate the function u(x , y) as

u(x , y) =
∑

k≥1

rk (x)sk(y), where for all k ∈ N
∗, rk ∈ Vx , sk ∈ Vy .

V. Ehrlacher (CERMICS) Greedy algorithm CEA, September 2014 7 / 26



Definition of the Pure Greedy algorithm for unconstrained

minimization problems

The so-called Pure Greedy algorithm reads:

1 set u0 = 0 and n = 1;

2 find (rn, sn) ∈ Vx × Vy such that

(rn, sn) ∈ argmin
r∈Vx , s∈Vy

E (un−1 + r ⊗ s) .

3 set un = un−1 + rn ⊗ sn and n = n + 1. Return to step 2.

At the nth iteration of the algorithm, we have

un =

n
∑

k=1

rk ⊗ sk .

Question: Are the iterations of the algorithm well-defined and does (un)n∈N∗

converge towards u?

V. Ehrlacher (CERMICS) Greedy algorithm CEA, September 2014 8 / 26



Main assumptions

[Le Bris, Lelièvre, Maday, 2009], [Cancès, VE, Lelièvre, 2011], [Nouy, Falco, 2011]

Assumptions:

(Σ1) SpanΣ ⊂ V is dense;

(Σ2) Σ is weakly closed in V ;

(E1) E is differentiable on V and its gradient is Lipschitz on bounded sets, i.e.

∀K bdd ⊂ V , ∃LK > 0, ∀v ,w ∈ K , ‖E ′(v) − E ′(w)‖V ≤ LK‖v − w‖V .

(E2) there exists α > 0 and s > 1 such that

∀v ,w ∈ V , 〈∇E(v) −∇E(w), v − w〉V ≥
α

2
‖v − w‖sV .
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The quadratic case and prototypical example

In particular, when for all v ∈ V ,

E(v) =
1

2
a(v , v)− l(v),

with a : V × V → R is a symmetric continuous coercive and l : V → R is a
continuous linear form, E satisfies (E1) and (E2).

Example: V = H1
0 (Ωx × Ωy ), with Ωx ,Ωy open regular bounded subsets of R,

f ∈ L2(Ωx × Ωy).

E(v) :=
1

2

∫

Ωx×Ωy

|∇x,y v |
2 −

∫

Ωx×Ωy

fv .

The unique global minimizer u = argminv∈V E(v) is the unique solution
u ∈ H1

0 (Ωx × Ωy ) of
−∆x,yu = f in D′(Ωx × Ωy ).

With Vx := H1
0 (Ωx ), Vy := H1

0 (Ωy ), Σ defined by (1) satisfies (Σ1) and (Σ2).
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Convergence results

(rn, sn) ∈ argmin
(r ,s)∈Vx×Vy

E (un−1 + r ⊗ s) (2)

Theorem

Under assumptions (Σ1), (Σ2), (E1) et (E2), the iterations of the Pure Greedy
algorithm are well-defined (i.e. there exists at least one minimizer (rn, sn) to (2)
for all n ∈ N

∗ and rn ⊗ sn is non-zero if and only if un−1 6= u). Moreover, the
sequence (un)n∈N∗ strongly converges in V towards u.

Theorem

In the case when the Hilbert space V is finite-dimensional, the convergence is
exponentially fast: ∃C > 0, σ ∈ (0, 1),

‖u − un‖V ≤ Cσn.
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Practical implementation

The Euler equations associated to (2) in the quadratic case read: for all
(δr , δs) ∈ Vx × Vy ,

a(un, rn ⊗ δs + δr ⊗ sn) = l(rn ⊗ δs + δr ⊗ sn).

Return to the Laplacian example: At the nth iteration of the greedy algorithm,
(rn, sn) ∈ Vx × Vy are solutions of







(

∫

Ωy
|sn|

2
)

(−∆x rn) +
(

∫

Ωy
|∇y sn|

2
)

rn =
∫

Ωy
fn−1(·, y), sn(y) dy ,

(

∫

Ωx
|rn|

2
)

(−∆y sn) +
(

∫

Ωx
|∇x rn|

2
)

sn =
∫

Ωx
fn−1(x , ·), rn(x) dx .

where fn−1 := f +∆x,yun−1.

Coupled nonlinear problem: usually solved via a fixed-point procedure.
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Definition of the Pure Greedy algorithm for general

dictionaries

[Nouy, Falco, 2011]

Σ ⊂ V satisfying (Σ1), (Σ2) and

(Σ3) Σ is a non-empty cone, i.e. 0 ∈ Σ and for all (t, z) ∈ R× Σ, tz ∈ Σ.

Any tensor format satisfying these assumptions (Hackbusch, Khoromskij, Kolda Bader,

Beylkin, Mohlenkamp...) can be used instead of rank-1 tensor products.

The so-called Pure Greedy algorithm reads:

1 set u0 = 0 and n = 1;

2 find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

E (un−1 + z) .

3 set un = un−1 + zn and n = n + 1. Return to step 2.

The two previous theorems also hold in this case!
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Orthogonal Greedy algorithm

[Le Bris, Lelièvre, Maday, 2009], [Nouy, Falco, 2011]

The so-called Orthogonal Greedy algorithm reads:

1 set u0 = 0 and n = 1;

2 find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

E (un−1 + z) ;

3 find (βn
1 , · · · , β

n
n) ∈ R

n such that

(βn
1 , · · · , β

n
n) ∈ argmin

(β1,··· ,βn)∈Rn

E

(

n
∑

k=1

βkzk

)

;

4 set un =
∑n

k=1 β
n
k zk and n = n + 1. Return to step 2.

The same convergence results as for the Pure Greedy algorithm hold for the
Orthogonal Greedy algorithm.
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More on the quadratic case

Two cases where we know a little more on approximations with rank-1 tensor
product functions:

The Singular Value Decomposition (SVD) case: Only two Hilbert spaces
Vx and Vy , E(v) = ‖v − u‖2V and ‖r ⊗ s‖V = ‖r‖Vx‖s‖Vy .

Orthogonality relations: ∀n 6= n′, 〈rn, rn′〉Vx = 〈sn, sn′〉Vy = 0.

Optimal decomposition: at iteration n, un =
∑n

k=1 rk ⊗ sk is the minimizer of
‖
∑n

k=1 φk ⊗ ψk − u‖2V over all possible (φk , ψk)1≤k≤n ∈ (Vx × Vy )
n.

The linear case: ([De Vore, Temlyakov, 1996] [Le Bris, TL, Maday, 2009]) Either more
than two Hilbert spaces or E(v) = ‖v − u‖2V (but ‖r ⊗ s‖V 6= ‖r‖Vt‖s‖Vx )

Example: E(v) = 1
2

∫

Ωx×Ωy
|∇x,y v |

2 −
∫

Ωx×Ωy
fv = ‖v − u‖2

H1
0 (Ωx×Ωy )

where

−∆x,tu = f .

The above orthogonality relations do not hold anymore, however, the
following convergence rates hold in the infinite dimensional case: there exists
C > 0 such that for all n ∈ N

∗,
Pure Greedy Algorithm: ‖un − u‖V ≤ Cn−1/6.

Orthogonal Greedy Algorithm: ‖un − u‖V ≤ Cn−1/2.
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The tyre problem

Uncertainty quantification on a model of tyre

Uncertainty sources:

Mechanical characteritics of the
materials (Young modulus ...)

Geometrical uncertainties

Profile of the road

Output of interest:

p0 =
1
|Γ|

∫

Γ
p : Mean pressure on Γ

the part of the tyre which is in
contact with the soil
∫

Γ |p − p0|
2

Complex contact problem!
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Rope hanging over an obstacle

T : Random vector modelizing some
uncertain parameters in the model.
x : Position
x and T respectively take values in X
and T .

z(T , x): Height of the rope
g(T , x): Height of the obstacle
f (T , x): Stresses applied to the rope

Notation: L2T (T ,Hx) =
{

v : T → Hx | E
[

‖v(T )‖2Hx

]

< +∞
}

g ∈ L2T (T ,H
1
0 (X )), f ∈ L2T (T , L

2(X )).
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Rope hanging over an obstacle

Find z ∈ L2(T ,H1
0 (X )) such that















−∆xz ≥ f sur T × X ,
z ≥ g sur T × X ,

(∆xz + f )(z − g) = 0 sur T × X ,
z(T , x) = 0 ∀(T , x) ∈ T × ∂X .

Equivalent formulation:

K =
{

v ∈ L2(T ,H1
0 (X )) | v(T , x) ≥ g(T , x) ∀(T , x) ∈ T × X

}

z = argmin
v∈K

J (v)

with J (v) = E
[

1
2

∫

X |∇xv(T , x)|
2 dx −

∫

X f (T , x)v(T , x) dx
]
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Penalized formulation

Problem: K is not a Hilbert space!!

We introduce a series of approached problems: ρ > 0 (large)

zρ = argminv∈L2
T (T ,H1

0 (X )) Jρ(v)

where Jρ(v) = E

[

1

2

∫

X

|∇xv(T , x)|2 dx −

∫

X

f (T , x)v(T , x) dx +
ρ

2

∫

X

[g(T , x) − v(T , x)]2+dx

]

zρ −→
ρ→+∞

z

Our aim is to approximate zρ = u for a given value of ρ with the greedy algorithm.
Let us denote V = L2T (T ,H

1
0 (X )), E = Jρ.

The penalized problem can be rewritten under a more general form:

u = argmin
v∈V

E(v)
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Numerical results

Assumptions (H1), (H2), (H3), (H4) and (H5) are satisfied with Vt = L2T (T ) and
Vx = H1

0 (X ) (V = Vt ⊗ Vx ).

X = T = (0, 1). T uniform law of probability on (0, 1).

f (t, x) = −1 and g(t, x) = t[sin(3πx)]+ + (t − 1)[sin(3πx)]−.

ρ = 2500
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Rate of convergence
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Conclusions

Presentation of greedy algorithms in the context of high-dimensionnal convex
problems

Illustration to the study of uncertainty quantification on an obstacle problem
via penalization methods on a toy example

Problems involving a larger number of variables/parameters can also be
tackled using this method

Greedy algorithms can also be used for the resolution of high-dimensional
eigenvalue problems (parametric and non-parametric): application to the
resolution of the many-body Schrdinger electronic problem (joint work with
Eric Cancès, Tony Lelièvre and Majdi Hochlaf)
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Linear eigenvalue problem

Let V ,H be separable Hilbert spaces such that

(V1) V ⊂ H is dense and the injection V →֒ H is compact;

and let a : V × V → R be a continuous symmetric bilinear form such that

(A1) ∃κ > 0, ν ∈ R, ∀v ∈ V , a(v , v) ≥ κ‖v‖2V − ν‖v‖2H .

We wish to compute the lowest eigenvalue µ of the bilinear form a, which satisfies

µ = inf
v∈V , v 6=0

a(v , v)

‖v‖2H

and an associated H-normalized eigenvector u ∈ V , i.e. such that ‖u‖H = 1 and

∀v ∈ V , a(u, v) = µ〈u, v〉H .

Σ ⊂ V satisfying (Σ1), (Σ2) and (Σ3).

λΣ := inf
z∈Σ,z 6=0

a(z , z)

‖z‖2H
.
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Three greedy algorithms

Rayleigh Greedy algorithm ([Cancès, VE, Lelièvre, 2012]);

Residual Greedy algorithm ([Cancès, VE, Lelièvre, 2012]);

Explicit Greedy algorithm ([Chinesta, Ammar, 2010]);

All these algorithms rely on the choice of an initial guess u1 ∈ V such that
‖u1‖H = 1.
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Rayleigh Greedy algorithm

Rayleigh quotient: ∀v ∈ V , J (v) :=

{

a(v,v)
‖v‖2

H
if v 6= 0,

+∞ if v = 0.
The Rayleigh Greedy algorithm reads:

1 choose u1 ∈ V such that ‖u1‖H = 1, set λ1 := a(u1, u1) and n = 2;

2 find zn ∈ Σ such that

zn ∈ argmin
z∈Σ

J (un−1 + z) . (3)

3 set un = un−1+zn
‖un−1+zn‖H

, λn := a(un, un) and n = n+ 1. Return to step 2.

Euler equations associated to (3) when Σ is the set of rank-1 tensor-products (1):
∀(δr , δs) ∈ Vx × Vy ,

(a − λn)(un, rn ⊗ δs + δr ⊗ sn) = 0.
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Residual Greedy algorithm

The Residual Greedy algorithm reads:

1 choose u1 ∈ V such that ‖u1‖H = 1, set λ1 := a(u1, u1) and n = 2;

2 find zn ∈ Σ such that
zn ∈ argmin

z∈Σ
Rn (z) . (4)

3 set un = un−1+zn
‖un−1+zn‖H

, λn := a(un, un) and n = n+ 1. Return to step 2.

where for all n ∈ N
∗ and all v ∈ V ,

Rn(v) :=
1

2
(a+ ν)(un−1 + v , un−1 + v)− (λn−1 + ν)〈un−1, v〉H .

Euler equations associated to (4) when Σ is the set of rank-1 tensor product (1):
∀(δr , δs) ∈ Vx × Vy ,

(a + ν)(un, rn ⊗ δs + δr ⊗ sn)− (λn−1 + ν)〈un−1, rn ⊗ δs + δr ⊗ sn〉H = 0.
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Convergence results in infinite dimension

Theorem (Cancès, VE, Lelièvre, 2012)

Provided that (A1), (V1), (Σ1), (Σ2), (Σ3) and that λ1 ≤ λΣ, the iterations of
the Rayleigh (up to a slight modification) and Residual Greedy algorithms are
well-defined. Besides, the sequence (λn)n∈N converges to λ, an eigenvalue of the
bilinear form a. Besides, if Fλ denotes the set of H-normalized eigenfunctions of a
associated with the eigenvalue λ,

d(un,Fλ) := inf
w∈Fλ

‖un − w‖V −→
n→∞

0.

If the eigenvalue λ is simple, the sequence (un)n∈N∗ strongly converges in V
towards an element wλ ∈ Fλ such that ‖wλ‖H = 1.

Unfortunately, λ may not be the smallest eigenvalue of a: this depends strongly
on the choice of the initial guess u1.
In the case when the eigenvalue λ is not simple, the uniqueness of the limit is not
guaranteed.
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Convergence results in finite dimension for the Residual

algorithm

Lojasiewicz inequality: ( [Lojasiewicz, 1965], [Levitt, 2012])

Lemma

Let D := {u ∈ V , 1/2 < ‖u‖ < 3/2}. Besides, let Fλ be the set of H-normalized eigenvectors of a(·, ·)
associated to λ. Then, J : D → R is analytic, and there exists K > 0, θ ∈ (0, 1/2] and ε > 0 such that

∀u ∈ D, d(u, Fλ) := inf
w∈Fλ

‖u − w‖ ≤ ε, |J (u) − λ|
1−θ

≤ K‖∇J (u)‖∗. (5)

Theorem (Cancès, VE, Lelièvre, 2012)

Let us assume (A1), (V1), (Σ1), (Σ2), (Σ3), λ1 ≤ λΣ and that the dimension of V is finite. Then, for the
Residual algorithm, the whole sequence (un)n∈N∗ strongly converges in V towards an element wλ of Fλ.
Besides, if θ denotes the same real number appearing in (5), the following convergence rates hold:

if θ = 1/2, there exists C > 0 and 0 < σ < 1 such that for n large enough,

‖un − wλ‖a ≤ Cσn ; (6)

if θ 6= 1/2, there exits C > 0 such that

‖un − wλ‖a ≤ Cn
− θ

1−2θ . (7)
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Explicit Greedy algorithm

The Explicit Greedy algorithm is not defined for general dictionaries.
For the set of rank-1 tensor-product, at iteration n, the pair (rn, sn) ∈ Vx × Vy is
defined through the “Euler” equation: ∀(δr , δs) ∈ Vx × Vy ,

(a− λn−1)(un, rn ⊗ δs + δr ⊗ sn) = 0.

No mathematical results on this method, even if it seems very efficient in practice
for scalar problems. Does not seem to converge for vectorial problems.
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Choice of the initial guess

To ensure that λ1 ≤ λΣ, in all the numerical results presented hereafter, the initial
guess is chosen according to the following procedure:

1 find z1 ∈ Σ such that
z1 ∈ argmin

z∈Σ
J (z);

2 set u1 :=
z1

‖z1‖H
.
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Orthogonal versions of the algorithms

[Le Bris, Lelièvre, Maday, 2009], [Nouy, Falco, 2011]

The so-called Orthogonal Greedy algorithm reads:

1 set u0 = 0 and n = 1;

2 find zn ∈ Σ as in the second step of the algorithms (Rayleigh, Residual).

3 find (βn
1 , · · · , β

n
n) ∈ R

n such that

(βn
1 , · · · , β

n
n ) ∈ argmin

(β1,··· ,βn)∈Rn

J

(

n
∑

k=1

βkzk

)

;

4 set un =
∑n

k=1 βkzk

‖
∑n

k=1 βkzk‖
H

. If 〈un, un−1〉H ≤ 0, set un = −un. Set n = n + 1 and

return to step 2.

The two previous theorems still hold!
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Practical implementation

When Σ is the set of rank-1 tensor product functions (1), a fixed-point procedure
is also used to compute (rn, sn) ∈ Vx × Vy at each iteration n ∈ N

∗.

Residual and Explicit algorithms: only requires the inversion of
small-dimensional linear problems (like in the greedy algorithms for quadratic
minimization problems);

Rayleigh algorithm: requires the full diagonalization of small-dimensional
bilinear forms.
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Toy numerical tests with matrices

V := R
Nx×Ny , Vx := R

Nx , Vy := R
Ny , Σ :=

{

rsT , r ∈ Vx , s ∈ Vy

}

.

For all M1,M2 ∈ V ,

a(M1,M2) := Tr
[

MT
1 (PxM2P

y + QxM2Q
y )
]

,

with Px ,Qx ∈ R
Nx×Nx and Py ,Qy ∈ R

Ny×Ny symmetric matrices.

Computing the smallest eigenvalue of a is equivalent to computing the smallest
eigenvalue of the symmetric matrix
A = (Aij,kl )1≤i ,k≤Nx, 1≤j,l≤Ny

∈ R
(Nx×Ny )×(Nx×Ny ), where Aij,kl = Px

ikP
y
jl + Qx

ikQ
y
jl .
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Buckling mode of the microstructured plate

V u :=
{

u = (ux , uy ) ∈
(

H1(Ωx × Ωy )
)2
, ux = uy = 0 on Γb

}

,

V v :=
{

v ∈ H2(Ωx × Ωy ), v = ∇v · n = 0 on Γb ∪ Γt
}

.

dW 0
(

(u1, v1), (u2, v2)
)

= dW 0
u (u

1, u2) + dW 0
v (v

1, v2),

To determine whether there is buckling, we only need to compute the smallest
eigenvalue of the bilinear form av := dW 0

v : V v × V v → R.

Continuous setting: Σ :=
{

r ⊗ s, r ∈ V v
x , s ∈ V v

y

}

with

V v
x :=

{

r ∈ H2(Ωx), r(0) = r ′(0) = r(2) = r ′(2) = 0
}

and V v
y := H2(Ωy ).

Discrete setting: cubic splines ⊗ cubic splines.
The resolution of the full discretized problem via classical galerkin methods would
require the computation of the lowest eigenvalue of one 106 × 106 matrix!
With the greedy algorithm, we only need the diagonalization (Rayleigh) or the
inversion (Residual and Explicit) of several matrices whose maximum size is
2000× 2000.
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Numerical results
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Numerical results
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Conclusions

Parametric eigenvalue problems: the eigenvalue is itself a high-dimensional
function!

Electronic structure calculations: theoretical and practical issues

Nonlinear eigenvalue problems: ex:Gross-Pitaevskii model

−∆u + u3 = µu.
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Thank you for your attention!

V. Ehrlacher (CERMICS) Greedy algorithm CEA, September 2014 42 / 26


	Greedy algorithms for convex unconstrained minimization problems
	Application to uncertainty quantification on an obstacle problem
	Conclusions

