INSTITUT D'ELECTRONIQUE ET DE TELECOMMUNICATIONS DE RENNES

Reliability and Sensitivity Analysis of Extreme Electromagnetic Events by considering Uncertain Parameters

M. Larbi^{1,2}, P. Besnier¹, B. Pecqueux² ¹IETR, UMR CNRS 6164 – INSA de Rennes ²CEA, DAM, Gramat

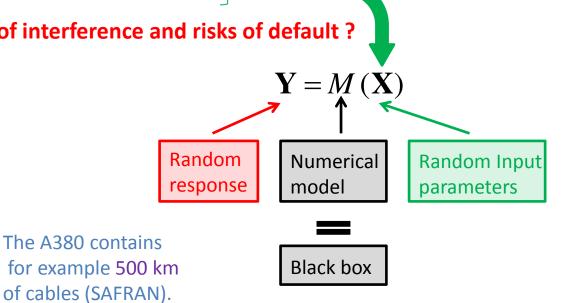
3rd DAM Forum, methods for quantifying uncertainties CEA DAM, October 1-2, 2014, Bruyères-le-Châtel, Paris

RENNES

- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

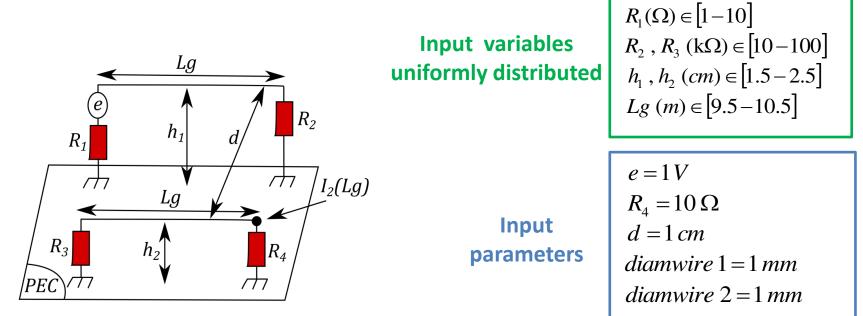
I. Introduction

- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References



• Some structures studied in electromagnetism are described by factors which are sometimes poorly defined

- Case of a cable bundle in an airplane
- variability of this structure between two identical airplanes
 imperfectly defined path, relative position of cables, impedances...
- Problem: How to predict the levels of interference and risks of default ?


Source: www.safran-group.com

Problem: Computing of the probability of failure: $P_f = P(\max_{\Delta f} I_2(Lg) \ge I_t)$ where I_t is an arbitrarily threshold, and $\Delta f = [5-10 \text{ MHz}]$ is a predefined frequency band.

- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

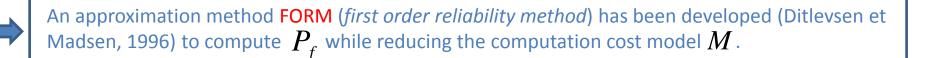
• Let g(X) the *limit state function*:

$$g(\mathbf{X}) = S - M(\mathbf{X})$$

Threshold value

Computer code providing the interest response (*e.g.* induced current)

- $$\begin{split} D_f &= \left\{ \mathbf{X} \; ; \; g(\mathbf{X}) \leq 0 \right\} \; \text{defines the failure domain;} \\ D_s &= \left\{ \mathbf{X} \; ; \; g(\mathbf{X}) > 0 \right\} \; \text{defines the safe domain;} \\ dD &= \left\{ \mathbf{X} \; ; \; g(\mathbf{X}) = 0 \right\} \; \text{defines the limit state surface.} \end{split}$$
- We define the probability of failure by


$$P_f = P(g(\mathbf{X}) \le 0) = \int_{D_f} f_{\mathbf{X}}(\mathbf{X}) d\mathbf{X}$$

Joint probability density function of **X**

Disadvantages related to the computation

- direct computation of this integral is difficult (since g(X) is rarely analytical)

- Monte Carlo simulation but this method requires a large number of calls to the limit state function g, and therefore to the numerical model

The main steps of FORM:

- Using a transformation T from physical input random variables X_i to standard Gaussian random 1. variables ξ_i by Rosenblatt or Nataf transformation. Standard Gaussian random variables uncorrelated standard Gaussian random variables
- 2. Find the so-called design point ξ^* (or Most Probable Point (MPP) of failure), which is the point of the failure domain nearest to the origin in the standard Gaussian space (*i.e.* having the maximum probability density function)
- Carry out a linear approximation of the limit state function g at the design point ξ^* . 3.

The failure probability is given by: Φ is the cdf of an unidimensional $P_f \approx P_{f,\text{FORM}} = \Phi(-\beta)$ Standard Gaussian random variable. Х2 g(X)=0Tangent hyperplane Failure Failure domain domain Р* G(E)=(

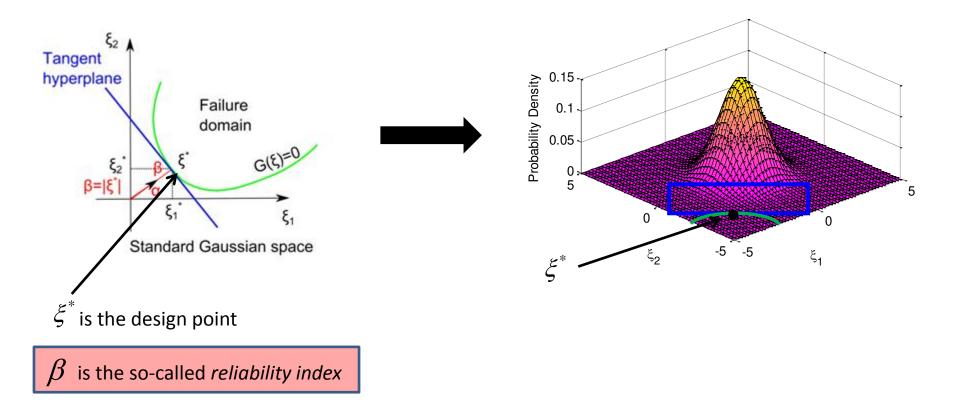
X1

ξ2 β=|ξ

ξ1

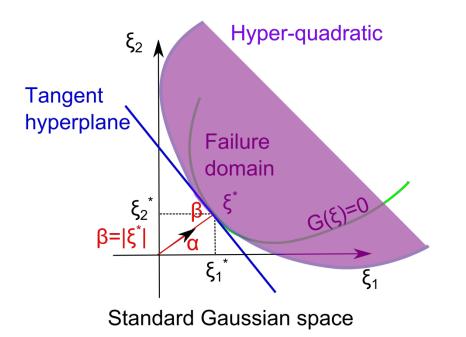
Standard Gaussian space

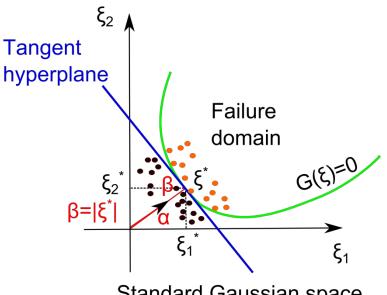
X2


X1^{*}

physical space

FORM (First Order Reliability Method)

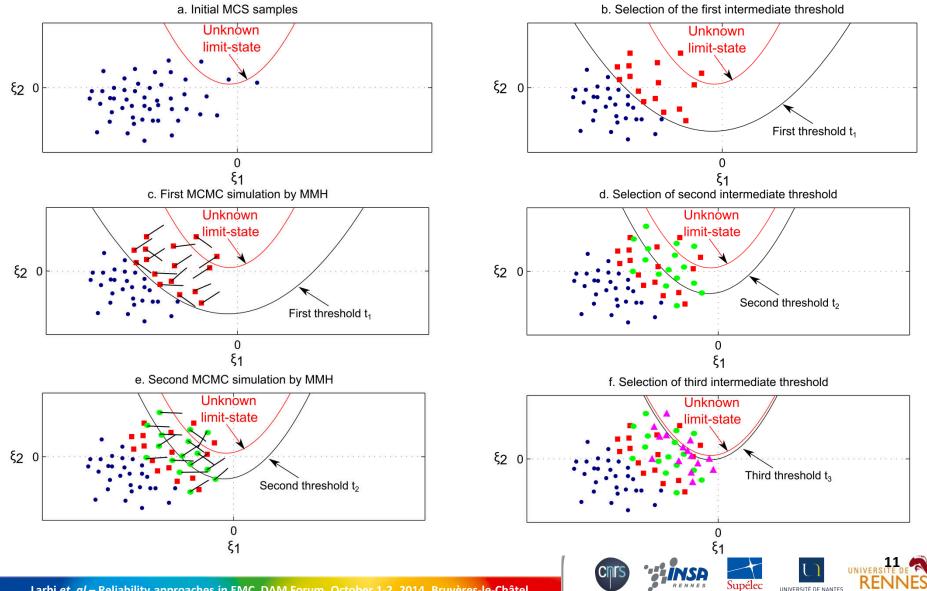

Larbi et. al – Reliability approaches in EMC. DAM Forum, October 1-2, 2014, Bruyères-le-Châtel


I. Introduction II. Reliability analysis of a system III. Crosstalk problem

SORM (Second Order Reliability Method)

Importance Sampling (IS)

Standard Gaussian space



I. Introduction II. Reliability analysis of a system III. Crosstalk problem

Subset Simulation (SS)

Larbi et. al – Reliability approaches in EMC. DAM Forum, October 1-2, 2014, Bruyères-le-Châtel

Two kinds of methods

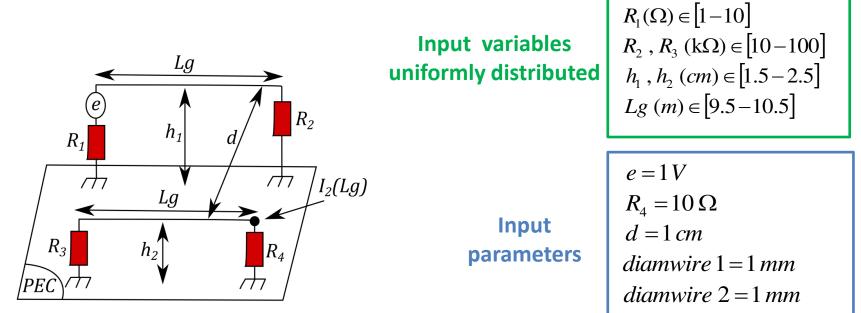
based on the identification of the design point $\boldsymbol{\xi}^{*}$

FORM

SORM

Importance Sampling

based on simulations tending towards the failure domain no identification of the design point

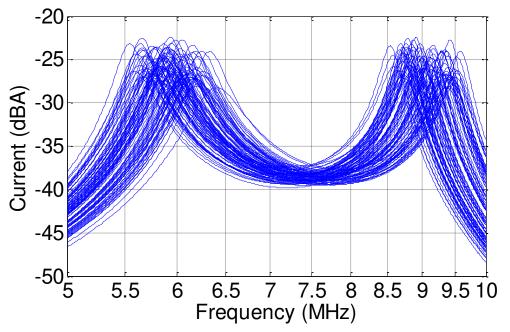


- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

Problem: Computing of the probability of failure: $P_f = P(\max_{\Delta f} I_2(Lg) \ge I_t)$ where I_t is an arbitrarily threshold, and $\Delta f = [5-10 \text{ MHz}]$ is a predefined frequency band.

Objectives :

- Compute the probability of failure by reliability methods
- $-R_4$ is the input impedance of a specific device


- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

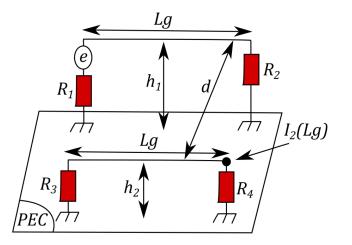
Representation of the induced current $I_2(Lg)$ with respect to the frequency band [5-10 MHz] (resonance regime) given by 100 Monte Carlo simulations depending on the uniform random variables: the loads R_1 , R_2 , R_3 , the heights h_1 , h_2 and the length Lg of the wires. The impedance R_4 is fixed.

Supélec

Computing of the probability of failure by reliability methods

70 mA = -23.09 dBA
/

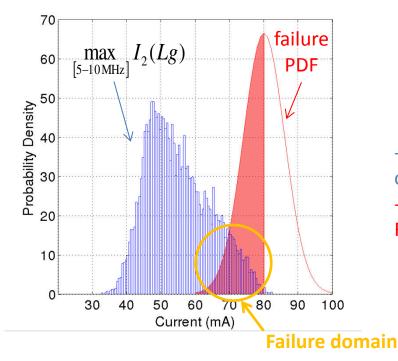
	FORM	SORM	IS	SS	MCS
$P(\max_{[5-10\mathrm{MHz}]}I_2(Lg) \ge 70\mathrm{mA})$	0.14	0.08	0.07 ± 13 %	0.09 ± 17 %	0.09 ± 3 %
Number of calls to the numerical model	77	27*	200	200	10,000
* In addtion to FORM					16


Larbi et. al - Reliability approaches in EMC. DAM Forum, October 1-2, 2014, Bruyères-le-Châtel

Integration of failure device

- • $R_4 = 10 \,\Omega$ is the input impedance of a specific device
- Devices may differ from each other due to manufacturing conditions
- Therefore, a set of devices could be represented by a probability density function (PDF) of failure

Thus, a reliability analysis of an electromagnetic system would consist in taking into account the *probability that the interfering current exceeds a certain threshold* and the *probability of having a device failure if the current reaches this threshold value*.



18

Integration of failure device

Input variables uniformly distributed

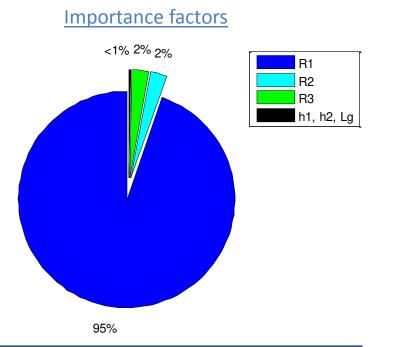
$$R_{1}(\Omega) \in [1-10] \qquad R_{2}, R_{3} (k\Omega) \in [10-100] \\ h_{1}, h_{2} (cm) \in [1.5-2.5] \qquad Lg (m) \in [9.5-10.5]$$

- In blue, 10,000 evaluations of the maximum of $I_2(Lg)$ obtained by Monte Carlo simulation - In red, failure Gaussian Probability Density Function (PDF) of the device: N(80, 6)

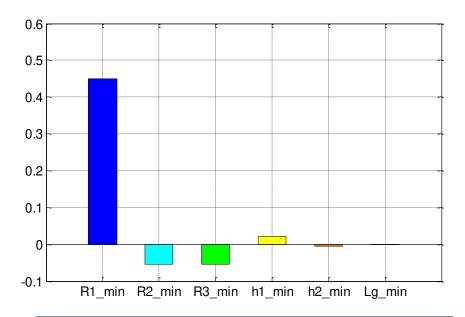
Supélec

UNIVERSITÉ DE NANTES

	FORM	SORM	IS	SS	MCS
$P_{f,\mathrm{system}}$ (%)	3.26	1.97	[1.67 – 2.11]	[1.66 –2.36]	[2.00 - 2.19]
Number of calls to the numerical model	1113	135*	1100	1800	10,000
* In addtion to FORM					


Larbi et. al – Reliability approaches in EMC. DAM Forum, October 1-2, 2014, Bruyères-le-Châtel

I. Introduction II. Reliability analysis of a system III. Crosstalk problem IV. Estimation of probability of failure by reliability methods



Local sensitivity analysis from FORM for the threshold value: $I_t = 60 \text{ mA} = -24.44 \text{ dBA}$

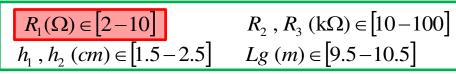
• Importance factors show that R1 is the most important variable on exceeding 60 mA. Other variables are negligible

Elasticity of lower bounds of each random variable

 Elasticity of lower bounds of each random variable show that an increasing of the lower bound of R1 will cause a decreasing of the probability on exceeding 60 mA

➤ Integration of failure device

Input variables uniformly distributed

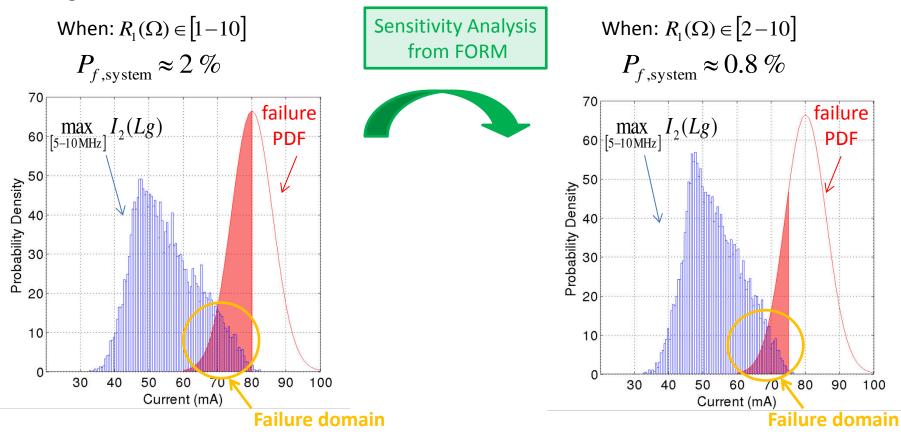

$$R_{1}(\Omega) \in [1-10] \qquad R_{2}, R_{3} (k\Omega) \in [10-100] \\ h_{1}, h_{2} (cm) \in [1.5-2.5] \qquad Lg (m) \in [9.5-10.5]$$

	FORM	SORM	IS	SS	MCS
$P_{f,\mathrm{system}}$ (%)	3.26	1.97	[1.67 – 2.11]	[1.66 –2.36]	[2.00 - 2.19]
Number of calls to the numerical model	1113	135	1100	1800	10,000

(e.g. $I_t = 60 \text{ mA} = -24.44 \text{ dBA}$: $P(\max_{[5-10 \text{ MHz}]} I_2(Lg) \ge 60 \text{ mA}) \approx 30 \%$)

After exploitation of Sensitivity Analysis from FORM

Input variables uniformly distributed


	FORM	SORM	IS	SS	MCS
$P_{f,\mathrm{system}}$ (%)	1.36	0.74	[0.67 – 0.85]	[0.53 – 0.94]	[0.73 – 0.80]
Number of calls to the numerical model	984	108	900	1558	10,000

(e.g. $I_t = 60 \text{ mA} = -24.44 \text{ dBA}$: $P(\max_{[5-10 \text{ MHz}]} I_2(Lg) \ge 60 \text{ mA}) \approx 22\%$

Integration of failure device

- In blue, 10,000 evaluations of the maximum of $I_2(Lg)$ obtained by Monte Carlo simulation
- In red, failure Gaussian Probability Density Function (PDF) of the device: N(80, 6)

- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

Supélec

UNIVERSITÉ DE NANTES

Summary Table on reliability methods, +++ indicates a very efficient method contrary to - - -

Method	Efficiency (Accuracy / Computational cost)	Remarks
Monte Carlo simulation (MCS)		Can deal with any type of problem but the computational cost is too high
FORM- SORM	++	Requires a validation of the results since some non-linear case (resonance) can cause problems
Importance Sampling (IS)	+++	Requires a validation of the results since some non-linear case (resonance) can cause problems – More robust than FORM-SORM
Subset Simulation (SS)	+++	Simulation Method introduced for estimation of failure probability in high dimensions – More robust than IS

- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

- Reliability analysis (probability of failure)
 - Application to a real case more complex (Increasing of the number of random variables for a 3D EMC problem: interaction field/cables)

- I. Introduction
- II. Reliability analysis of a system
- III. Crosstalk problem
- IV. Estimation of probability of failure by reliability methods
- V. Conclusions about reliability methods
- VI. Outlook
- VII. References

- J.-M. Bourinet, C. Mattrand, and V. Dubourg, *A review of recent features and improvements added to FERUM software*, in Proc. of the 10th International Conference on Structural Safety and Reliability (ICOSSAR 2009), Osaka, Japan, 2009.
- M. Lemaire, *Structural reliability*, John Wiley & Sons, 2010.
- B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models Contributions to structural reliability and stochastic spectral methods, Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, 2007.

Thank you for your attention

DGA UM NBC

Larbi et. al – Reliability approaches in EMC. DAM Forum, October 1-2, 2014, Bruyères-le-Châtel