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Figure 6 Hurricane Katrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Istrow: I panel: MSLP analysis for 12 UTC of 29 Aug

2™ panel: MSLP t+84h T;511L60 forecast started ar 00 UTC of 26 Aug

3 panel: MSLP 1+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255140 forecast started at 00 UTC of 26 Aug.

The conrour interval is 5 hPa, with shading parters for MSLP values lower than 990 hPa.

ECMWEF, Technical Report 499, 2006
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FAQ 12.1, Figure 1 | Global mean temperature change averaged across all Coupled Model Intercomparison Project Phase 5 (CMIP5) models (relative to 1986—-2005)
for the four Representative Concentration Pathway (RCP) scenarios: RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange) and RCP8.5 (red); 32, 42, 25 and 39
models were used respectively for these 4 scenarios. Likely ranges for global temperature change by the end of the 21st century are indicated by vertical bars. Note that
these ranges apply to the difference between two 20-year means, 2081-2100 relative to 1986—2005, which accounts for the bars being centred at a smaller value than
the end point of the annual trajectories. For the highest (RCP8.5) and lowest (RCP2.6) scenario, illustrative maps of surface temperature change at the end of the 21st
century (2081-2100 relative to 1986—2005) are shown for two CMIP5 models. These models are chosen to show a rather broad range of response, but this particular
set is not representative of any measure of model response uncertainty.

Fifth Assessment Report, Intergovernmental Panel on Climate Change, October
2013



- The case of Assimilation of Observations

- The case of Prediction. Ensemble Prediction



Assimilation of Observations originated

from the need of defining initial conditions for
Numerical Weather Predictions



ECMWEF Data Coverage (All obs DA) - Temp
16/Apr/2014; 00 UTC
Total number of obs = 619

5 SHIP . 0 MOEILE

613 LAND . 1 DROPSONDE

e
JEE LTS IR R \Kff o

11w 120 "W 2w oW 0w are e L3 e mare 1me=
=
:.:a‘ :‘:. ': .
8

= . : | .
BN DRyt o re

W

by s T8
Sl
\

=
|
bq:? --'Q_E.
e T M
1maW 20w .-w 1w 0w a-E E aE aE E nE




ECMWEF Data Coverage (All obs DA) - AMSU-A
16/Apr/2014; 00 UTC
Total number of obs = 706920
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Number of data used per day (millions)

ECMWF
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Value as of early 2013 : around 25 millions per day




Physical laws governing the flow

= (Conservation of mass

Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

=  Conservation of momentum
DU/Dt + (1/p) gradp - g+ 2 QAU=F

= Equation of state
f(papae)zo (p/,O=I’T,e=CvD

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + q divU =S

Physical laws available in practice in the form of a discretized (and necessarily
imperfect) numerical model 9



Schematic of of an atmospheric model
(L. Fairhead /LMD-CNRS)




Centre Européen pour les Prévisions Météorologiques a Moyen
Terme (CEPMMT, Reading, GB)

(European Centre for Medium-range Weather Forecasts, ECMWF)
En avril 2014 :

Troncature triangulaire T1279 (résolution horizontale = 16 kilomeétres)
137 niveaux dans la direction verticale (0 - 80 km)

Dimension du vecteur d’état correspondant = 2,3 10°

Pas de discrétisation temporelle : 10 minutes



Assimilation of Observations

Purpose of assimilation : reconstruct as accurately as possible the state
of the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

» The observations proper, which vary in nature, resolution and accuracy,
and are distributed more or less regularly in space and time.

» The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

=  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.



Echanti!lo-nnage de la circulation océanique par les missions altimétriques sur 10 jours :
combinaison Topex-Poseéidon/ERS-1

S. Louvel, Doctoral Dissertation, 1999




Longitude

N
o
1

387

Latitude

FiGc. 1 - Bassin méditerranéen occidental: réseau d’observation tomographique de ['ex-

périence Thétis 2 et limites du domaine spatial utilis€ pour les expériences numériques
d’assimilation.

E. Rémy, Doctoral Dissertation, 1999



Assimilation 1s one of many °‘inverse problems’ encountered
in many fields of science and technology

 solid Earth geophysics

e plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10%-10° parameters to be
estimated, p = 1-3.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Both observations and ‘model’ are affected with some uncertainty = uncertainty on the
estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 2007,
Probability Theory: The Logic of Science, Cambridge University Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,
knowing everything we know (see Tarantola, A., 2005, Inverse Problem Theory and
Methods for Model Parameter Estimation, SIAM).

17



ratio of supercomputer costs:
1 day's assimilation / 1 day forecast

100
Computer power increased by 1M in 30 years.
Only 0.04% of the Moore’s Law increase over this time
went into improved DA algorithms, rather than improved
resolution!
10
1
1985 1990 1995 2000 2005 2010

Courtesy A. Lorenc



Bayesian Estimation

Data of the form

Z=FX+C, C~MH9S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX=n
I'’known (mxn)-matrix,  unknown ‘error’

Then conditional probability distribution is

P(x | 2) = N[xe, Pq]

where

x4 = (FT S-lr)-l R u]
Pa=(I'TS'N)!

Determinacy condition : rankl = n. Requires m > n.

19



Variational form.

Conditional expectation x* minimizes following scalar objective function, defined
on state space X

EE X —= A& = (1) [IE- (zw]" SIE- (z-w)]

Pi=[9°7/0&]"

20



If data still of the form

z=1Ix+ ¢,

but ‘error’ £ , which still has expectation u and covariance S, is not
Gaussian, expressions

= (TS D' TSz - u]
Pe=(I'T Sy}

do not achieve Bayesian estimation, but define least-variance linear
estimate of x from z (Best Linear Unbiased Estimator, BLUE), and
associated estimation error covariance matrix.

21



Sequential Assimilation

= (Observation vector at time k

V= Hx + & k=0, ...

E(g) =0 ; E(gg") =R, G

H, linear

= Evolution equation

Xy = Mix + m, k=0, ...

E(n) =0 ; E(qn') =0, 6
M, linear

= E(nksz) =0 (errors uncorrelated in time)



At time k, background x?, and associated error covariance matrix P”, known

Analysis step
x4 =xh + PO HT HPYHE + R (3 - Hx)
Forecast step

xbk+l = M, x9
PP = M, PYM,T+ Q,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x’,, P?,)



Variational form (exactly equivalent to Kalman filter in linear case)

(5o» E15 r S) =
J(Eos &1 s Ek)
= (172) (xg” - &) [P"1! (%" - &)
+(1/2) 21, ki - HEL R [y - Hi&l
+(112) B gealGr - MG O[S - Mi&id
Four-Dimensional Variational Assimilation (4D-Var)

Commonly used in strong constraint form (Q,=0)
Can include nonlinear M, and/or H,.



Heuristic extensions to (not too strongly) nonlinear cases :

e Ensemble Kalman Filter (EnKF , Evensen and others)

Uncertainty 1s represented, not by a covariance matrix, but by
an ensemble of point estimates in state space that are meant to

sample the conditional probability distribution for the state of

the system (dimension N = O(10-100)).

Forecast step. Ensemble is evolved in time through the full
model (eliminates any need for linear hypothesis as to the
temporal evolution).

Analysis step. Uses formula® for the BLUE



Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)
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Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior

analysis in terms of root-mean square difference averaged over the entire month
26

(Meng and Zhang 2007c, MWR, in review )



Many variants exist for Ensemble Kalman Filter, which has become,
together with Variational Assimilation, one of the two powerful classes of
algorithms used in numerical modeling of the atmospheric and oceanic

flow.

Dimension N = O(10-100). Stability of filter requires N to be at least as
large as number of unstable directions in the system (Hoang, Trevisan

and Palatella).

27



Bayesian properties of Ensemble Kalman Filter ?

Very little is known.

Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf
defined by the filter, in the limit of infinite sample size N, tends to the
bayesian gaussian pdf.

No result for finite size (note that ensemble elements are not mutually
independent)

In the nonlinear case, the discrete pdf tends to a limit which is in
general not the bayesian pdf.

28



Exact bayesian estimation ?

Particle filters

Predicted ensemble at time 7 : {x* ,n =1, ..., N }, each element with its
own weight (probability) P(x?)

Observation vector at same time : y = Hx + ¢

Bayes’ formula
PGP, [y) ~ POYlx?,) P(x",)

Defines updating of weights



Bayes’ formula
PGt Jy) ~ POI,) P(:",)

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.

Problem originates in the ‘curse of dimensionality’ Large dimension pdf’s
are very diffuse, so that very few particles (if any) are present in areas
where conditional probability (‘likelihood’) P(y|x) is large.



Behavior of max w*

> N, =103 N, =10,30,100; 103 realizations

g 150
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. =25

o= 127
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0.2

0.4 06 0B 1
max WI

C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/

Snyder.pdf
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Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev.,
4089-4114)

Importance Sampling.

Use a proposal density that is closer to the new observations than the density
defined by the predicted particles (for instance the density defined by
EnKF, after the latter has used the new observations). Independence
between observations is then lost in the computation of likelihood P(y|x)
(or 1s it not ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002).
Idea : use observations performed at time k to resample ensemble at
some timestep anterior to k, or ‘nudge’ integration between times k-1 and
k towards observation at time k.

Particle filters are actively studied
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Fic. 12. Comparison of rms error (m* s ') between ensemble mean
and independent observations (dotted line) and the std dev in the
ensemble (solid line). The excellent agreement shows that the SIRF
15 working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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Ensemble Variational Assimilation (work done with Mohamed
Jardak)

Data of the form

z=Ix+¢ E~Nu.S)
Conditional probability distribution is

P(x | z) = N x4, P
with

x4 = ([‘Ts-l[)-l r'rs'(z- u]
Pa = ([‘TS-ID-I

34



Ready recipe for determining Monte-Carlo sample of
conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability
distribution

z >7'=z+6,  6~N0,S]
and compute

xXC=TSTDT TStz - ul
x*@is distributed according to A [x¢, P4]

35



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x‘“ being computed by standard
variational assimilation (optimization)

36



The Lorenz96 model

@ Forward model

dx
d—tk = (;Ek_|.1 —;Ek_Q):Ek_l —xzx+F for k=1,--- N

e Set-up parameters :

©Q the index k is cyclic so that xx—N = Tk+N = k.
©Q F' = 8, external driving force.
© —x,, a damping term.
Q N = 40, the system size.
©@ Nens = 30, number of ensemble members.

1
° A
Q At = 0.05 = 6hours, the time step.
Q frequency of observations : every 12 hours.
Q@ number of realizations : 9000 realizations.

~ 2.5days, A\ nax the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




14 ensemble optimal control, reference and observations
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Nonlinear Lorenz’96. 5 days
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Evaluation ?

There is no general objective criterion for Bayesianity, and we use instead the weaker property
of reliability.

Reliability is statistical consistency between predicted probabilities of occurrence, and
observed frequencies of occurrence (it rains with frequency 40% in the circumstances when I have
predicted 40% probability for the occurrence of rain). More generally, for any probability
distribution F, observed reality is distributed with frequency distribution F in the circumstances
when I have predicted F.

Bayesianity implies reliability, the converse not being true.

39



rank histogram . reliability diagram
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU)
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Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T] with T= N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 T
—

4D-Var over [0 21] starting from the minimizer found above
—
0 2t

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : the non-linear Lorenz96 model 18 days with
QSVA
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various
probability distributions)

- Ensembles produced by EnsVar are very close to
Gaussian, even in strongly nonlinear cases.

44



- Comparison Ensemble Kalman Filter (EnKF) and
Particle Filters (PF)

Both of these algorithms being sequential, comparison is fair only

at end of assimilation window

Results produced by ENSVar are at least as good as results

produced by EnKF or PF

45



DA procedure ,
Assimilation | Forecasting
method
EnsVAR 0.2193510 1.49403506
EnKF 0.2449690 1.67176110
PF 0.7579790 | 2.62461295

RMS errors in the ensemble means at the end of 5-day assimilations

and 5-day forecasts

46



Weak constraint EnsVar

e define the objective function.

1 a2
Iz, m,m2,- - MIN-1,N) = 5{(w—$b)TB z—azp)} +

lolr—

© B background error covariance matrix and R observation error
covariance matrix.

© (Q model error covariance matrix.

Q@ H : Re'*** 5 R°** observation operator.

©Q , background state vector and y; observation vector at time t = ¢,.

© 7: model error vector at t = ¢; with x(¢;) = My, v, (x(tiz1)) + 7

2 Z {(yi — Hi(:))" Ry (y: — Hi(<:))}

o find the optimal control variable (zJ?*, %", n5%*, - -+ .;%F*) and the

optimal trajectory z°P?.

( opt _opt opt opt) -

sTh T2 5" NN min 3(1'33771,7723"'JIN)

I,mni1,Mn2, " -MN €A

i = gﬁti —ti_1 (mts 182" (gﬁtﬂ—t (mtl o (‘Eopt)'l' Opt) OPL‘) +”?Opt )+770pt

0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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| Summary —

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

e Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of {(probably not) bayesian pdf

O <« > «=» E 9HQQ
0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : Pros and cons —

e Easy to implement when having a 4D-Var code
e Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.
@ Cycling of the process (work in progress).

0. Talagrand & M. Jardak Optimization for Bayesian Estimation



Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has
progressively extended to many diverse applications

. Oceanography

. Atmospheric chemistry (both troposphere and stratosphere)

. Oceanic biogeochemistry

. Ground hydrology

. Terrestrial biosphere and vegetation cover

. Glaciology

. Magnetism (both planetary and stellar)

. Plate tectonics

. Planetary atmospheres (Mars, ...)

. Reassimilation of past observations (mostly for climatological purposes, ECMWEF, NCEP/NCAR)
. Palaeoclimatology

. Identification of source of tracers

. Parameter identification

. A priori evaluation of anticipated new instruments

. Definition of observing systems (Observing Systems Simulation Experiments)
. Validation of models

. Sensitivity studies (adjoints)

It has now become a major tool of numerical environmental science

51



Ensemble Prediction

Ensemble Prediction Systems (EPSs) are implemented daily
in a number of meteorological services. Typically, N model
states are chosen at initial time, which are meant to sample the
initial uncertainty on the state of the atmosphere (or to sample
the components of the uncertainty that matter most). These N
states are evolved with the model equations, thereby
producing N estimates at any forecast time. In some systems,
perturbations are added in the course of the integrations, in
order to simulate the effect of errors in the model, considered
as a simulator of the atmosphere.

In present EPSs, N lies in the range 10-50.

There exist both global and local Ensemble Prediction Systems.



Ensemble Prediction

As part of The Observing System Research and Predictability
Experiment (THORPEX), the THORPEX Interactive Grand Global
Ensemble (TIGGE) consists of the (global) forecast ensembles
produced by ten meteorological services (see http://tigge.ecmwi.int/
models.html). The total number of forecasts is about 300. The
forecasts are accessible within a few days of production.



Monday 29 Sepiember 2014 00UTC ECMWF Forecast 1472 VT: Thursday 2 Oclober 2014 00UTC
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Richardson ef al., 2013,
Evaluations of ECMWEF forecasts,
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Figure 11: CPRSS for 500 hPa height (tap) and 530 hPa remparature (bortom) ensemble forecasts
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ensemble day 1-15 forecasts iz shown for wmrers 2012-13 (red), 2011-12 (bluwer, 2010-11
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Size of Ensembles ?

Given the choice, is it better to improve the quality of the
forecast model, or to increase the size of the predicted ensembles ?

0 Observed fact : in ensemble prediction, present scores saturate for
ensemble size N in the range 30-50.
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Brier score
B = E[(p-0)?]
For N-sized finite ensembles

1
B, =B, + NE[p(l - p)l
(Talagrand et al., ECMWF, 1999, Richardson, QJRMS, 2001)

The sharper the distribution of raw predicted probabilities, the more rapid
the saturation of the score.

E[p(1-p)] 1s half the probability that a 2-member ensemble will produce a .5
probability for the occurrence of the event under consideration. Brier score for
infinite ensemble size N can be determined from an infinite number of
realizations of finite ensembles.

No similar formula found for reliability and resolution components separately.
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Scores saturate for ensemble sizes N of the order of
a few tens. The higher the sharpness of the predicted
probabilities, the more rapid the saturation.

In  addition, considerations on  frequencies  of
occurrences show that size of validation sample
necessary to check reliability increases like V.
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Conclusion on ensemble size

Objective scores saturate in the range N = 30-50
because it 1s possible in practice to evaluate only
probabilisic predictions of events or of one-dimensional
variables. Evaluating probabilistic predictions of multi-
dimensional variables would require validating samples

of inaccessible size.

Is there any point in taking larger values of N ?
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Questions and Problems on Ensemble Prediction

e Quantify errors (especially model errors) more accurately

Dispersion of forecasts performed with (exactly) the same model from different
initial conditions is a statistical integrated measure of sensitivity to initial
conditions. Comparison with deviation from observed reality then provides by
difference a statistical integrated measure of model error (idea behind ‘Lorenz
curves’).

* Definition of initial conditions (continuation of ensemble assimilation, or
something else) ?

* Must we tend to a situation where the output of prediction will be a probability
distribution ?
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Uncertainties in Weather Prediction and Climate Models ? (1)

Models are generally considered as being good simulators of the atmosphere as
concerns the ‘dynamics’, namely the effects of gravity, pressure gradient and
rotation (i. e., the thermodynamically reversible processes).

They are considered as much less accurate as concerns the ‘physics’, i. e., the
thermodynamically irreversible processes. This is particularly true of the water
cycle in general, and of the exchanges of momentum, energy and moisture between
the atmosphere and the underlying medium. Many of these processes take place at
spatial (and temporal) scales that are not explicitly resolved by the model, and their
description requires some form of ‘parametrization’.
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Uncertainties in Weather Prediction and Climate Models ? (2)

How to represent associated uncertainties ?

Deterministic models, run in succession with different values of parameters that
are considered as being uncertain ?

Stochastic models, in which uncertainty is represented by random perturbations
in the model equations ?

Or any intermediate approach ?

In any case, evaluation will have to be made on the basis of ensembles. And, as
concerns the future evolution of climate, objective validation can be made only on
past climate (either recent or less recent)
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Uncertainties in Weather Prediction and Climate Models ? (3)

“I believe that the ultimate climatic models will be stochastic, i.e.
random numbers will appear somewhere in the time derivatives”
(Lorenz 1975)
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The End !



