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-  The case of Assimilation of Observations 

-  The case of Prediction. Ensemble Prediction 



 Assimilation of Observations originated 
from the need of defining initial conditions for 
Numerical Weather Predictions 
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Physical laws governing the flow	


  Conservation of mass	


	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	


	
 Dq/Dt + q divU  = S	


Physical laws available in practice in the form of a discretized (and necessarily	

imperfect) numerical model	






Centre Européen pour les Prévisions Météorologiques à Moyen 

Terme (CEPMMT, Reading, GB) 

(European Centre for Medium-range Weather Forecasts, ECMWF) 

En avril 2014 : 

Troncature triangulaire T1279 (résolution horizontale ≈ 16 kilomètres) 

137 niveaux dans la direction verticale (0 - 80 km) 

Dimension du vecteur d’état correspondant ≈ 2,3 109  

Pas de discrétisation temporelle  :  10 minutes 



Assimilation of Observations	


	
 Purpose of assimilation : reconstruct as accurately as possible the state 

of the atmospheric or oceanic flow, using all available appropriate 

information. The latter essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, 

and are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in 

practice in the form of a discretized, and necessarily approximate, 

numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 

Although they basically are necessary consequences of the physical laws which govern the 

flow, these properties can usefully be explicitly introduced in the assimilation process. 

	
 	




S. Louvel, Doctoral Dissertation, 1999	




E. Rémy, Doctoral Dissertation, 1999 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	


•  solid Earth geophysics	


•  plasma physics	


•  ‘nondestructive’ probing	


•  navigation (spacecraft, aircraft, ….)	


•  …	


	
 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	


	
 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  1-3.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	


	
 - Non-trivial, actually chaotic, underlying dynamics	




17 

Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the 

estimate. 

 For some reason, uncertainty is conveniently described by probability 

distributions (don’t know too well why, but it works; see, e.g. Jaynes, 2007, 

Probability Theory: The Logic of Science, Cambridge University Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the system, 

knowing everything we know (see Tarantola, A., 2005, Inverse Problem Theory and 

Methods for Model Parameter Estimation, SIAM). 



© Crown copyright   Met Office  	


ratio of supercomputer costs:   

1 day's  assimilation / 1 day forecast
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Computer power increased by 1M in 30 years. 

Only 0.04% of the Moore’s Law increase over this time 
went into improved DA algorithms, rather than improved 
resolution! 

Courtesy A. Lorenc 
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Bayesian Estimation 	


Data of the form	


z = Γx + ζ, 	
 ζ ∼ N [µ, S]	


Known data vector z belongs to data space D, dimD = m,	

Unknown state vector x belongs to state space X, dimX = n 	

Γ known (mxn)-matrix, ζ unknown ‘error’	


Then conditional  probability distribution is	


	
 	
 	
       P(x | z) = N [xa, Pa]	

where	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 [z -  µ]	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


 Determinacy condition : rankΓ = n. Requires m ≥ n.	
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Variational form.	


Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


Pa = [∂2J /∂ξ2]-1  	
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If data still of the form	


z = Γx + ζ, 	
 	


but  ‘error’ ζ  , which still has expectation  µ  and  covariance  S,  is  not 
Gaussian, expressions  	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 [z -  µ]	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


	
 do  not  achieve  Bayesian  estimation,  but  define  least-variance  linear 
estimate  of  x  from  z  (Best  Linear  Unbiased  Estimator,  BLUE),  and 
associated estimation error covariance matrix.    	


	
 	




Sequential Assimilation	


  

  Observation vector at time k	


 yk = Hkxk + εk     k = 0, …, K 

	
 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	


 Hk linear	


	
 	
 	
 	


  Evolution equation	


 xk+1 = Mkxk + ηk    k = 0, …, K-1
	


 E(ηk) = 0   ;  E(ηkηj
T) = Qk δkj 	


	

Mk linear	


	
  	
 	
  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	
 At time k, background xb
k and associated error covariance matrix Pb

k known	


  Analysis step	


	
  xa
k = xb

k + Pb
k Hk

T
 [HkP

b
kHk

T 
 + Rk]-1 (yk - Hkx

b
k)	


	
  Pa
k = Pb

k - Pb
k Hk

T
 [HkP

b
kHk

T 
 + Rk]-1 Hk P

b
k	


  Forecast step 

  xb
k+1 =  Mk x

a
k	


	
  P
b
k+1 = Mk P

a
k Mk

T + Qk  

	
 Kalman filter (KF, Kalman, 1960)	


	
 Must be started from some initial estimate (xb
0, Pb

0)	




	
 Variational form (exactly equivalent to Kalman filter in linear case)	

	
 	


	
 (ξ0, ξ1, ..., ξK) → 	


	
 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	


	
 	
     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 	
     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  

 Four-Dimensional Variational Assimilation (4D-Var)	


	
 Commonly used in strong constraint form (Qk=0)	


	
 Can include nonlinear Mk and/or Hk. 

       
	
 	
 	




Heuristic extensions to (not too strongly) nonlinear cases :	


•  Ensemble Kalman Filter (EnKF, Evensen and others)	


 	
 Uncertainty is represented, not by a covariance matrix, but by 
an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension N ≈ O(10-100)).	


	
 	


	
 Forecast  step.  Ensemble  is  evolved  in  time  through  the  full 
model  (eliminates  any  need  for  linear  hypothesis  as  to  the 
temporal evolution).	


	
 Analysis step. Uses formulæ for the BLUE 	
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⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 

analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 
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Many  variants  exist  for  Ensemble  Kalman  Filter,  which  has  become, 
together with Variational Assimilation, one of the two powerful classes of 
algorithms used in numerical modeling of the atmospheric and oceanic 
flow.	


Dimension N ≈  O(10-100).  Stability of filter requires N to be at least as 
large as number of unstable directions in the system (Hoang, Trevisan 
and Palatella).	
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Bayesian properties of Ensemble Kalman Filter ?	


Very little is known.	


 Le Gland et al.  (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size N, tends to the 
bayesian gaussian pdf.	


	
 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	


	
 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	




Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its 

own weight (probability) P(xb
n) 	


Observation vector at same time : y = Hx + ε	


Bayes’ formula	


P(xb
n|y) ∼ P(y|xb

n) P(xb
n) 	


Defines updating of weights	




Bayes’ formula	


P(xb
n|y) ∼ P(y|xb

n) P(xb
n) 	


Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	


Problem originates in the ‘curse of dimensionality’ Large dimension pdf’s 
are very diffuse, so that very few particles (if any) are present in areas 
where conditional probability  (‘likelihood’) P(y|x) is large.	






Alternative  possibilities  (review in  van Leeuwen,  2009,  Mon.  Wea.  Rev., 
4089-4114)	


Importance Sampling. 	


Use a proposal density that is closer to the new observations than the density 
defined by the predicted particles (for instance the density defined by 
EnKF,  after  the  latter  has  used  the  new  observations).  Independence 
between observations is then lost in the computation of likelihood P(y|x) 
(or is it not ?)	


In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002). 
Idea  :  use  observations  performed at  time k  to  resample  ensemble  at 
some timestep anterior to k, or ‘nudge’ integration between times k-1 and 
k towards observation at time k.	


Particle filters are actively studied 	
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	
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Ensemble Variational Assimilation (work done with Mohamed 

Jardak) 

Data of the form	


z = Γx + ζ, 	
 ζ ∼ N [µ, S]	


Conditional  probability distribution is	


	
 	
 	
       P(x | z) = N [xa, Pa]	

with	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 [z - µ]	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	
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Ready  recipe  for  determining  Monte-Carlo  sample  of 
conditional pdf P(x | z) : 	


- Perturb data vector z according to its own error probability 
distribution  	


	
 	
 	
     z  → z‘ = z + δ, 	
 δ ∼ N [0, S]	


and compute  	


	
 	


 	
 	
 	
     x‘a = (Γ T S-1Γ)-1 Γ T S-1 [z‘ - µ]	


 x‘a is distributed according to N [xa, Pa] 	
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Ensemble Variational Assimilation (EnsVar) implements that 
algorithm, the expectations x‘a being computed by standard 
variational assimilation (optimization)	
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Evaluation ?	


	
 There  is  no  general  objective  criterion  for  Bayesianity,  and  we  use  instead  the  weaker  property 
of reliability.	


	
 Reliability  is  statistical  consistency  between  predicted  probabilities  of  occurrence,  and 
observed frequencies of occurrence (it rains with frequency 40% in the circumstances when I have 
predicted  40%  probability  for  the  occurrence  of  rain).  More  generally,  for  any  probability 
distribution F, observed reality is distributed with frequency distribution F in the circumstances 
when I have predicted F.   	


	
 Bayesianity implies reliability, the converse not being true.	
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- Results are independent of the Gaussian character of the 

observation errors (trials have been made with various 

probability distributions)  

- Ensembles produced by EnsVar are very close to 

Gaussian, even in strongly nonlinear cases. 
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-  Comparison Ensemble Kalman Filter (EnKF) and 

Particle Filters (PF) 

 Both of these algorithms being sequential, comparison is fair only 

at end of assimilation window 

 Results produced by ENSVar are at least as good as results 

produced by EnKF or PF  
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Assimilation,  which  originated  from  the  need  of  defining  initial  conditions  for  numerical  weather  forecasts,  has 
progressively extended to many diverse applications	


•  Oceanography	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	


•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	


•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	


•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	


•  Palaeoclimatology	

•  Identification of source of tracers	


•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	


•  Validation of models	

•  Sensitivity studies (adjoints)	


•  …	


It has now become a major tool of numerical environmental science 



	
 Ensemble Prediction	


	
 Ensemble  Prediction  Systems  (EPSs)  are  implemented  daily 
in a number of meteorological services. Typically, N model 
states are chosen at initial time, which are meant to sample the 
initial uncertainty on the state of the atmosphere (or to sample 
the components of the uncertainty that matter most). These N 
states  are  evolved  with  the  model  equations,  thereby 
producing N estimates at any forecast time. In some systems, 
perturbations are added in the course of the integrations, in 
order to simulate the effect of errors in the model, considered 
as a simulator of the atmosphere.	


	
 In present EPSs, N lies in the range 10-50.	


	
 There exist both global and local Ensemble Prediction Systems. 	




Ensemble Prediction	


As  part  of  The  Observing  System  Research  and  Predictability 

Experiment  (THORPEX),  the  THORPEX Interactive  Grand  Global 
Ensemble  (TIGGE)  consists  of  the  (global)  forecast  ensembles 
produced by ten meteorological services (see http://tigge.ecmwf.int/
models.html).  The  total  number  of  forecasts  is  about  300.  The 
forecasts are accessible within a few days of production.	
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Size of Ensembles ?	


	
 Given  the  choice,  is  it  better  to  improve  the  quality  of  the 
forecast model, or to increase the size of the predicted ensembles ?	


	
 	


	
 	


o  Observed fact : in ensemble prediction, present scores saturate for 
ensemble size N in the range 30-50.	
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Impact of ensemble size on Brier Skill Score	

ECMWF, event T850 > Tc Northern Hemisphere	


(Talagrand et al., ECMWF, 1999)	


Theoretical estimate (raw Brier score)	


BN = B∞ +
1

N
p(1− p)g(p)dp

0

1

∫
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 (Talagrand et al., ECMWF, 1999, Richardson, QJRMS, 2001)	


	
 	


	
 The  sharper  the  distribution  of  raw  predicted  probabilities,  the  more  rapid 
the saturation of the score.	


	
 E[p(1-p)]  is  half  the  probability  that  a  2-member  ensemble  will  produce  a  .5 
probability for the occurrence of the event under consideration. Brier score for 
infinite  ensemble  size  N  can  be  determined  from  an  infinite  number  of 
realizations of finite ensembles.	


	
 No similar formula found for reliability and resolution components separately.	


BN = B∞ +
1

N
E[p(1− p)]

Brier score	

	
 	
             B ≡ E[(p-o)2]  

For N-sized finite ensembles 





61 G. Candille, 2009	
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 Scores  saturate  for  ensemble  sizes  N  of  the  order  of 
a  few tens.  The higher the sharpness of  the predicted 
probabilities, the more rapid the saturation.	


	
 In  addition,  considerations  on  frequencies  of 
occurrences  show  that  size  of  validation  sample 
necessary to check reliability increases like N.	




63 Impact of dimension of multidimensional variables (G. Candille, 2008) 
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Conclusion on ensemble size	


	
 Objective  scores  saturate  in  the  range  N  ≈  30-50 
because  it  is  possible  in  practice  to  evaluate  only 
probabilisic predictions of events or of one-dimensional 
variables. Evaluating probabilistic predictions of multi-
dimensional variables would require validating samples 
of inaccessible size.	


	
 Is there any point in taking larger values of N ?	
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Questions and Problems on Ensemble Prediction	


•  Quantify errors (especially model errors) more accurately	


	
 Dispersion  of  forecasts  performed  with  (exactly)  the  same  model  from  different 
initial  conditions  is  a  statistical  integrated  measure  of  sensitivity  to  initial 
conditions.  Comparison  with  deviation  from observed  reality  then  provides  by 
difference  a  statistical  integrated  measure  of  model  error  (idea  behind ‘Lorenz 
curves’).	


  Definition  of  initial  conditions  (continuation  of  ensemble  assimilation,  or 
something else) ?	


  Must we tend to a situation where the output of prediction will be a probability 
distribution ?	
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Uncertainties in Weather Prediction and Climate Models ? (1)	


	
 Models  are  generally  considered  as  being  good  simulators  of  the  atmosphere  as 
concerns  the  ‘dynamics’,  namely  the  effects  of  gravity,  pressure  gradient  and 
rotation  (i. e., the thermodynamically reversible processes).	


	
 They  are  considered  as  much  less  accurate  as  concerns  the  ‘physics’,  i.  e.,  the 
thermodynamically  irreversible  processes.  This  is  particularly  true  of  the  water 
cycle in general, and of the exchanges of momentum, energy and moisture between 
the atmosphere and the underlying medium. Many of these processes take place at 
spatial (and temporal) scales that are not explicitly resolved by the model, and their 
description requires some form of ‘parametrization’.    	
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Uncertainties in Weather Prediction and Climate Models ? (2)	


	
 How to represent associated uncertainties ?	


	
 Deterministic  models,  run  in  succession  with  different  values  of  parameters  that 
are considered as being uncertain ?	


	
 Stochastic  models,  in  which  uncertainty  is  represented  by  random  perturbations 
in the model equations ?	


	
 Or any intermediate approach ?	


	
 In any case,  evaluation will  have to be made on the basis  of  ensembles.  And,  as 
concerns the future evolution of climate, objective validation can be made only on 
past climate (either recent or less recent)    	
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Uncertainties in Weather Prediction and Climate Models ? (3)	


	
 “I believe that the ultimate climatic models will be stochastic, i.e. 

 random numbers will appear somewhere in the time derivatives” 

 (Lorenz 1975)	




  The End ! 


