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Gaussian process regression

• Regression problem: Let  be some unknown function of interest. we 
have access to data  where: 

• Two main assumptions:

f : 𝒳 → ℝ
{xi, yi}n

i=1

yi = f(xi) + ϵi

ϵi ∼ N(0,σ2)

f ∼ GP(m, k) “Prior”

“Likelihood/
Observation 
Model”
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Why Gaussian processes?

1. A very flexible and interpretable model through the choice of prior 
mean function  and covariance  function (e.g. smoothness, 
periodicity, sparsity, etc…).

m k

2. We get a posterior on f which quantifies epistemic uncertainty.

3. We can do exact conditioning through Gaussian conjugacy! We 
therefore don’t need to do any approximation of the posterior!



A synthetic problem
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GP regression on the synthetic problem
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Regression in the “real world”
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Existing work

• There are two main categories:

1. Extended models: i.e. use more flexible likelihood model to ensure that 
the outliers are well modelled. Examples include Student-t, mixtures, 
Laplace, etc… 

2. Outlier detection/removal: i.e. find the outliers, remove them, then fit a 
standard GP model (with Gaussian observations) to the rest of the data.

ϵ ∼ P ≠ N(0,σ2)
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Being Gaussian for convenience…
I would argue most practitioners just ignore that they have a 
misspecified likelihood and run with it anyway!

“This raises a question which could have been asked 
by Gauss […] What happens if the true distribution 
deviates slightly from the assumed normal one?”

Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73–101.

“Gauss was fully aware that his main reason for 
assuming an underlying normal distribution […] was 
mathematical, i.e. computational, convenience”



This talk:

Appeared as a spotlight paper (top 3% of papers) at ICML 2024!



• In standard GP regression, we do:

Bayesian inference for 
regression

p(f |y, x) ∝ p(y | f, x) × p(f |x)

Posterior PriorLikelihood

f = ( f(x1), …, f(xn))⊤
x = (x1, …, xn)⊤

y = (y1, …, yn)⊤



• In standard GP regression, we do: 

• We take a generalised Bayesian approach and do:

Generalised Bayesian inference 
for regression

p(f |y, x) ∝ p(y | f, x) × p(f |x)

pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

Posterior PriorLikelihood

PriorLoss function

Generalised 
Posterior



Standard vs Generalised 
Bayesian inference
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Standard vs Generalised 
Bayesian inference

pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

• Standard Bayes is recovered by taking Ln(f, y, x) = −
1
n

log p(y | f, x)

• This is optimal, but only when the model is well-specified; i.e. when 
!ϵ ∼ N(0,σ2)

Key Question: What should we do when this is not the case??
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Generalised Bayesian inference
pL(f |y, x) ∝ exp (−nLn(f, y, x)) × p(f |x)

Knoblauch, J., Jewson, J., & Damoulas, T. (2022). An optimization-centric view on Bayes’ rule: reviewing 
and generalizing variational inference. Journal of Machine Learning Research, 23(132), 1–109.

Bissiri, P., Holmes, C., & Walker, S. (2016). A general framework for updating belief distributions. Journal of 
the Royal Statistical Society Series B: Statistical Methodology, 78, 1103–1130.

• We can choose the loss function to induce robustness to mild model 
misspecification.

• In this talk, we will also choose the loss 
function for computational convenience!

• Common choice is a loss based on a divergence: 𝒟 ( 1
n

n

∑
i=1

δyi
, pf)

Data-generating process; 
here a Gaussian



• The score-matching divergence is given by:

Score-matching and generalisations

[1] Hyvärinen, A. (2006). Estimation of non-normalized statistical models by 
score matching. Journal of Machine Learning Research, 6, 695–708.

D(p | |q) := 𝔼Y∼q[∥∇ylog p(Y ) − ∇ylog q(Y )∥2
2]



• The score-matching divergence is given by:

Score-matching and generalisations

[1] Hyvärinen, A. (2006). Estimation of non-normalized statistical models by 
score matching. Journal of Machine Learning Research, 6, 695–708.

D(p | |q) := 𝔼Y∼q[∥∇ylog p(Y ) − ∇ylog q(Y )∥2
2]

• We consider a weighted generalisation:

D(p | |q) := 𝔼Y∼q[∥w(Y )(∇ylog p(Y ) − ∇ylog q(Y ))∥2
2]

[2] Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., & Mackey, L. (2019). 
Minimum Stein discrepancy estimators. Neural Information Processing 
Systems, 12964–12976.



• For regression setting, we need to extend this divergence (now 
):w : 𝒳 × ℝ → ℝ

Score-matching and generalisations

D(p | |q) := 𝔼X∼qx [𝔼Y∼q(⋅|X) [ w(X, Y )(∇ylog p(Y |X) − ∇ylog q(Y |X))
2

2]]



=
1
n

n

∑
i=1

((w(xi, yi)∇ylog p(yi |xi))2 + 2∇y(w(xi, yi)2 ∇ylog p(yi |xi))) + C

• With integration by part and replacing  by our samples, we get that:q

D(p | |qn) = Lw
n (f, y, x) + C

Likelihood

• For regression setting, we need to extend this divergence (now 
):w : 𝒳 × ℝ → ℝ

Score-matching and generalisations

D(p | |q) := 𝔼X∼qx [𝔼Y∼q(⋅|X) [ w(X, Y )(∇ylog p(Y |X) − ∇ylog q(Y |X))
2

2]]



• Suppose  and , then the GP and RCGP posteriors are:f ∼ GP(m, k) ϵ ∼ N(0,σ2In)

RCGPs are conjugate!

p(f |y, x) = N(f; μ, Σ)

μ = m + K(K + σ2In)−1(y − m)

Σ = K(K + σ2In)−1σ2In

Standard GP

Identity matrixKij = k(xi, xj)
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• Suppose  and , then the RCGP posterior is:f ∼ GP(m, k) ϵ ∼ N(0,σ2In)

RCGPs generalise existing GPs

pw(f |y, x) = N(f; μR, ΣR)
μR = m + K(K + σ2Jw)−1(y−mw)
ΣR = K(K + σ2Jw)−1σ2Jw

Jw = diag(w−2) mw = m + σ2 ∇ylog(w2)

Taking  recovers standard GPs.w(x, y) = σ/ 2

Taking  recovers heteroscedastic GPs.w(x, y) = σ(x)/ 2

We will choose  differently to induce robustness….w(x, y)
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Measuring outlier-robustness

PIF(yc
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Dc
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m}D = {xi, yi}n
i=1

• The posterior influence function measures the impact of a single 
outlier on the posterior:



Measuring outlier-robustness

PIF(yc
m, D) = KL (p( f |D), p( f |Dc

m))

Dc
m = (D∖{xm, ym}) ∪ {xm, yc

m}D = {xi, yi}n
i=1

• The posterior influence function measures the impact of a single 
outlier on the posterior:

• Sadly… sup
yc

m

PIFGP(yc
m, D) = ∞



RCGPs are provably outlier-robust

sup
yc

m

PIFRCGP(yc
m, D) < ∞

• Theorem (informal): Suppose  
for some , then RCGPs are robust since:

w(x, y) = (1 + (y − m(x))2/c2)− 1
2

c > 0
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Hyperparameter selection
• The standard approach for selecting hyper parameters is to do empirical Bayes 

and maximise the marginal likelihood.

• This of course does not make sense when the likelihood is wrong!

̂σ2, ̂θ = arg max
σ2,θ {

n

∑
i=1

log pw(yi |x, y−i, θ, σ2)},

• Our alternative is to do leave-one-out cross-validation

• This can be done efficiently through clever linear algebra tricks and gradient-
based optimisation.



Performance when well-specified (MAE)

GPs and RCGPs are comparable when the model is well-specified!



Performance when misspecified (MAE)

RCGPs are robust!



RCGPs are fast!

RCGPs are much faster than other robust alternatives! 

(Time in seconds, incl. hyper parameter optimisation)



RCGPs are roughly as fast as GPs

Most of the difference between GP and RCGP comes down to 
adaptive optimisers for hyper parameter optimisation



Robust Bayesian Optimisation
• In Bayesian optimisation, the GP posterior is used to create an acquisition function. 

Our RCGPs naturally lead to robust acquisition functions!



Robust Bayesian Optimisation
• In Bayesian optimisation, the GP posterior is used to create an acquisition function. 

Our RCGPs naturally lead to robust acquisition functions!

Robust!
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• Sparse Variational GPs (SVGPs) is an approximate GP method which reduces 

significantly the cost of GPs from  to  where  is small. Our approach 
naturally leads to a robust version!

O(n3) O(nm2) m

Fast!

Robust!
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A drawback of the current approach
• It relies heavily on having a good mean function….

• Potential fixes: use a robust parametric model to fit the prior mean function first!

w(x, y) = (1 +
(y−m(x))2

c2 )
− 1

2

!!!!!!



Linear-time spatio-temporal GPs

Paper on arXiv soon….

The cost is  where  is the number of time points + much easier to pick weights!O(n) n
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Conclusion
• With careful choices of loss functions, Generalised Bayes can bring both 

robustness and computational efficiency!

• RCGPs are an example in the case of GP regression where we get both 
robustness and conjugacy, something no other competitor has managed!

• RCGPs can be developed for any case where standard GPs, and could hence 
be used for multi-output GPs, multi-fidelity GPs, GPs with derivative or integral 
information, etc…

• This type of approach is also useful way beyond the GP world….!
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Related work 
(intractable likelihoods)

• Robust and conjugate generalised Bayes for continuous 
doubly intractable models! 

• Robust (non-conjugate but fast!) generalised Bayes for discrete 
doubly intractable models.

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised Bayesian 
inference for intractable likelihoods. JRSBB, 84(3), 997–1022.

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2023). Generalised Bayesian 
inference for discrete intractable likelihood. JASA, to appear.



Any Questions?


