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0 B Introduction




GSA in support to metamodel construction W

» In all four work packages, there is a need to construct metamodels for high-dimensional design problems.

« LetX :=[Xy,..,X ] be arandom vector with independent components (d = 100).

* LetY := g(X)where g: X; X -+ X X4 = Y is a computationally-expensive simulation code.
« Z = (X,Y) is the augmented vector containing the input and output variables.

A The design of experiments (DoE) consists of a number of input-output observations.

> The metamodel g is constructed from Z ¢ == {(X©@, YO)} . with Ngir, < 10d - SMALL DATA.
» For a nice coverage of the input domain of variation, the DoE must be space-filing = GIVEN DATA.

A Classical metamodeling techniques (such as GP regression) cannot be used directly.
Curse of dimensionality - too many GP hyperparameters have to be optimized!

@ Many existing strategies (screening, additive and ANOVA models, linear and nonlinear embeddings).
~ = Binois & Wycoff (2022) for a comprehensive review.

Focus on SCREENING -> preliminary GSA for variable selection (and thus dimension reduction).




GSA in support to metamodel construction

Nim-sample of Y = g(X)

Uncertain parameters

X1 PX
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Simulation code g(-)

- BLACKBOX .
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2. SENSITIVITY ANALYSIS
Screening of input variables

Xq

d

Selection of the subset X

» Steps 2 and 3 of the ICSCREAM methodology - looss & Marrel (2019) or Marrel et al. (2020)
v" Identification of penalizing Configurations using SCREening And Metamodel

> Performing a preliminary GSA has two main advantages.
= Screening-oriented GSA - (crude) dimension reduction by discarding non-influential input variables.




GSA in support to metamodel construction

Nim-sample of Y = g(X)

Uncertain parameters
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2. SENSITIVITY ANALYSIS
Ranking of input variables

Xd PX

d

Prioritization among the subset X

» Steps 2 and 3 of the ICSCREAM methodology - looss & Marrel (2019) or Marrel et al. (2020)
v" Identification of penalizing Configurations using SCREening And Metamodel

> Performing a preliminary GSA has two main advantages.
= Screening-oriented GSA - (crude) dimension reduction by discarding non-influential input variables.
= Ranking-oriented GSA - sequential building process of the GP metamodel.




Summary

1. A few concepts related to kernels

Sensitivity measures based on the HSIC

A bridge between two opposite worlds: HSIC-ANOVA indices

Is it relevant to talk about interactions for HSIC-ANOVA indices?

More about Sobolev kernels and their properties
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Does all this benefit independence testing?
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A few concepts
related to kernels

1.
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Fundamentals of reproducing kernel theory W

n Kernel mean embeddings | - Muandet et al. (2017)

- Let MT(2) be the space of all probability measures defined on Z < RP.
- LetK: Z X Z — R be akernel and let H be the induced RKHS.

> Any probability measure v € M (2Z) can be represented by a (well-defined) function p,, € 7.

Uy Z2 — R Assumptions

z +— u(2z) =E, [K(z, Z)} — /ZK(Z’C) dv(¢) * K must be measurable

- E,[JK(Z 2Z)] <

» K is said to be a characteristic kernel if the map v = p, is injective.

Space of all probability distributions RKHS

» The dissimilarity between v; and v, can be measured through the distance in € between ., and u,, .
v Definition of a kernel-based dissimilarity measure on M'{ (2).
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Fundamentals of reproducing kernel theory W

n Kernel mean embeddings | - Muandet et al. (2017)

- Let MT(2) be the space of all probability measures defined on Z < RP.
- LetK: Z X Z — R be akernel and let H be the induced RKHS.

> Any probability measure v € M (2Z) can be represented by a (well-defined) function p,, € 7.

Uy Z2 — R Assumptions

z +— u(2z) =E, [K(z, Z)} — /ZK(Z’C) dv(¢) * K must be measurable

- E,[JK(Z 2Z)] <

» K is said to be a characteristic kernel if the map v = p, is injective.

n Maximum Mean Discrepancy (MMD) | = Gretton et al. (2006)

MMD?(v1, 1) = ||ty — pr I3, v Definition resulting from the embedding mechanism

— Eu1®V1 [K(Za Z,)] + EV2®V2 [K(Z, Z,)} - 2IE:‘1/1‘8)"’2 [K(Z’ Z’)}

v" Alternative formula paving the way to a simple estimation procedure



2
Fundamentals of reproducing kernel theory W

Feature maps | = Chapter 4 in Steinwart & Christmann (2008)

- LetK: Z X Z — R be akernel and let 2 be the induced RKHS.
» Letus assume that there exist a Hilbert space F and a map ¢: Z — F such that:

Vz,2' € Z, K(2,7') = (0(2),0(z')) ,

F is called a feature space. ¢ is called a feature map. Any object ¢ (2) is called a feature function.

> Existence of at least one feature map.

v" The canonical feature map 6 : Z — # is thus defined by 6(z) := K(-,z) forany z € Z.
> Non-unicity of the feature map.

v" There may exist a feature space where the kernel action is much easier to understand.

LF When F is an Euclidean space or a sequence space,
"€ an explicit characterization of the RKHS can be derived.

/A Mostoften, 6(-) is NOT informative!

domain of variation 9( )
RKHS = canonical feature space
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Fundamentals of reproducing kernel theory W

n Feature-based characterization of the RKHS | - Chapter 4 in Steinwart & Christmann (2008)

@ First, let us examine two particular kernels!

Example 1 | > The polynomial kernel with position parameter ¢ > 0 and exponent m € N*,

initial definition

Kpoly(z,2") = (zx' +c)™

- kz:) (7}?) ¥ (a)k mH

— <90p01y(ﬂ3)a99p01y(33’)>Rm+1 with ‘Ppoly(a?): [(\/E)m—k (?;;)xk]

0<k<m

finite number of polynomial features

v’ The binomial theorem reveals a feature map ¢}, from R to the Euclidean space R™*1,
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Fundamentals of reproducing kernel theory W

n Feature-based characterization of the RKHS | - Chapter 4 in Steinwart & Christmann (2008)

@ First, let us examine two particular kernels!

Example 2 | > The Gaussian kernel with scale parameter y > 0.

initial definition

o) i e ) | AP () 5 0 (o) (2

= <997(37)7907(33’)>@ with goﬁ{(m) =€ 3(%)

k>0

infinite number of damped polynomial features

v’ The Taylor series expansion reveals a feature map ¢,, from R into the Hilbert space £2(N).
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Fundamentals of reproducing kernel theory W

n Feature-based characterization of the RKHS | - Chapter 4 in Steinwart & Christmann (2008)

» As shown in these two examples, a kernel expansion allows to identify a feature map.
v" More importantly, it provides all-in-one characterization of the RKHS.

- LetK:Z X Z — R be akernel and let H be the induced RKHS.
> Itis assumed that it can be expanded as a sum (or series) of symmetric and separable functions.

Vz,2 € Z, K(z,2')= Zgi(z) gi(z')| Polynomial kernel > I = {0, ..., m}
iel Gaussian kernel > [ = N

v" The functions (g;);c; are the features. They must be linearly independent (in the £2-sense).

O #H-= {hERZ Za@gl ) with (ai)ier € £2(1, R)}
el
O (), M . " R
(M6 =S wat) .« ma() =L b)) — Sahy
iel iel el

® The functions (g;);; form an orthonormal basis (ONB) of #£.



based on the HSIC

2 . Sensitivity measures
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Several views on HSIC indices

n Kernel-based dependences measures | - Da Veiga (20195)

* Py —> Joint distribution of (X;,Y) - True influence of X; on Y
* [Py, ®Py > Independence within (X;,Y) > Hypothetical lack of influence

R >

SA = A(Px,y,Px, @ Py) &

 K;:X;xXX; - Rassigned to X;

* Ky:YXY—->R assignedto Y

Dependence

]P)Xi ® ]P)Y

Independence

c K;,QKy used to handle (X;,Y)

s H:=H,QH, inducedby K;QKy

space of all probability distributions RKHS
for the input-output pair (X;, ¥)

HSIC(X,,Y) := MMD? (Px,y, Px, @ Py) = |[tpy.y — 12y wpy ||,

R

&



Several views on HSIC indices

Bl Efiicient estimation | > Gretion et al. (2005, 2007) and Serfing (2009

NN

> The alternative formula of the MMD allows to rewrite the HSIC only in terms of kernel-based moments.

HSIC(X;,Y) = E|K; (Xi, X)) Ky (V,Y") | + E|K; (X, X)) Ky (Y",Y"")

— 2K, (X, X)) Ky (v,Y")]

/A (X, Y) L (XY L(x/,Y") L (X", Y"") follow the joint input-output distribution P .

> U-statistics and V-statistics are well-adapted to estimate HSIC indices from a given DoE.

Ngim = n

1<p#q#r<n

~ 1 1
B =on Y KXk (Or0) o 3 k() R (v, v )
(n)2 1<p#q<n ()4 1<p#q#r#s<n
2 n
_ Ki(x.(f’),x.(q))f{ (Y(P>,Y("'">) ith — pl
(n)s 2 P )Y vith -y =21

HY denotes the U-statistic estimator of HSIC(X;,Y) = no bias BUT no guarantee of positivity.
HY denotes the V-statistic estimator of HSIC(X;, Y) = positivity BUT bias.

Consistency and existence of a CLT - convergence at rate 1//n.

Low computational complexity = only O (n?) operations are required to compute estimates.



WA
Several views on HSIC indices

Independence testing | > Gretton et al. (2007)

- Theinputkemel K; : X; x X; — Ris assumed to be characteristic to M7 (X;).
- The outputkernel Ky : Y x Y — R is assumed to be characteristic to M ().

» Testing independence between X; and Y is equivalent to testing the nullity of the HSIC.
(Ho) X HSIC(X%,Y) =0 wvs. (Hl) X HSIC(X@,Y) >0

= Test statistic > either 7 or A
= Test procedure - selected according to the sample size and the chosen test statistic
v Asymptotic test procedure —> Sejdinovic et al. (2013) and Zhang et al. (2018)
v Permutation-based test procedure —> De Lozzo & Marrel (2016)
v’ Sequential permutation-based test procedure > El Amri & Marrel (2022)
v Non-asymptotic Gamma test procedure —> El Amri & Marrel (2024)
= Theoretical guarantees - control of the type-l error + minimization of the type-ll error
v" Type-l error controlled even when n is small. —> Albert et al. (2022)
v" Type-ll error vanishing asymptotically. —> Gretton et al. (2007) and Pfister et al. (2018)



WA
Sobol’ indices vs. HSIC indices

» HSIC indices perfectly meet the needs of screening-oriented GSA.
v The use of characteristic kernels allows to detect any type of input-output dependence.
v" Inference is an easy task (no need for specific data, big data or density estimation).

VXIS SIXIS
VXX XSS
XSS S X
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Still room to improve HSIC indices? %%

» HSIC indices lack interpretability and they are not tailored to perform ranking-oriented GSA.

A Sum not equal to 1. A No universal bound. A Different MMD scales.

e How to do better
@ on that point?

VXX XSS
XSS S X
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Taking inspiration from standard ANOVA... W

» ANOVA decomposition for Sobol’ indices = Sobol’ (1993)
v The output variance V(Y) is apportioned between all subsets of inputs.

V(Y) = Z V— > Y MV | X)) A XL L X,

uC{1,..., uC{l,...,d} vCu

> First-order and total-order Sobol’ indices
v' First-order Sobol’ indices (S;)1<j<4 —> main effects only!
v" Total-order Sobol’ indices (T;)1<i<q —> main effects + interactions.

VEN X)) o n_ VEY X))

1<i< =
VIETES AT T | V(Y)

» Constraints imposed on the sub-functions of the Sobol’-Hoeffding decomposition

g(x) = Z Nu(Ty)  such that Vi€ u, / N () dPx, (z;) =0
X




... and bringing ANOVA into the HSIC paradigm

» HISC-ANOVA decomposition - Da Veiga (2021)
v The quantity HSIC(X, Y) is apportioned between all subsets of inputs.

HSIC(X,Y) = Z H,

2 2

1)l#-IYIHSIC(X,, V)

> First-order and total-order HSIC-ANOVA indices

v’ First-order HSIC-ANOVA indices (SFS‘C)1<l<d
v' Total-order HSIC-ANOVA indices (TS'¢)

1<i<d

—> main effects only!

- main effects + interactions.

NN

A X L

Vi<i<d, SHSIC.—

HSIC(X;,Y)

HSIC(X,Y)

and THSIC .—

 HSIC(X_.,Y)

HSIC(X,Y)

» Constraints imposed on the input kernels

v" Each input kernel K; must be an ANOVA kernel (=~

Ki(xi,x)) =1+ ki(x;, x})

with VCL‘@ € X@',

a constant kernel + an orthogonal kernel).

i

/ ki(wi, o)) dPx, (24) = 0
X,

v H; =R D G; where G; is only composed of zero-mean functions (with respect to Py ).

1 X,



How to find ANOVA kernels?

A For most parametric families of distributions, there is no well-known characteristic ANOVA kernel.

R >

&

1. Transform each input distribution [Py into a standard uniform distribution U([0,1]).

U; = Fx,(Xi)
Probability Integral Transform (PIT)

A 4

L 1 L
0 0.5 1
X

<Y

Density of the i-th input variable Density of the uniform distribution

2. Assign a Sobolev kernel K}, to each new input variable U; = Fy, (X;).

T (u i’U;’ _1y\r+1 .
Vol € [0.1), Ky (u,u) = 14 30 P02 o B By ()

v' r € N"is an integer parameter indicating the degree of smoothness of the RKHS.

v" The functions (B;);s; are the Bernoulli polynomials -> fol B;(u) du = 0.
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A grey area around HSIC-ANOVA indices? %%

1. How do they measure sensitivity? How to distinguish between main effects and interactions?
2. Are they able to characterize independence?
@) =

HSIC(X;, Y)

=3
as
L
o

VX IXIXISNIS |-
SE

XX&&®®E
™

XXK\®®

XIS SN X




Is it relevant to talk

4. about interactions for

HSIC-ANOVA indices?



Focus on HSIC-ANOVA interactions

A For most benchmark test cases, HSIC-ANOVA interactions are not significant.

Example | = the Ishigami function

Y = g(Xy, X5, %) = sin(X,) +sin?(X,) + X: sin(X;) with X; ~U([-m, 7])

» Strong interaction between X; and ¥ in the variance-based ANOVA framework.

» No interaction between X; and ' in the HSIC-ANOVA framework.

Counterexample | - Hand-made pathological functions (only for d = 2)

CLEAR
ACTIVATION

Hull function

g(z1,r2) = —tan [(2\/5)@

r1+ a0 — 1

V2

S{ISIC — S%-ISIC =17%

e O THSIC — THSIC — 830

A No clear explanation on why those functions lead to strong HSIC-ANOVA interactions.

@ The feature-based viewpoint on the HSIC allows to break the deadlock.

N
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A detour through cross-covariance operators W

BB tisic indices | > Gretion et al. (2005)

« LetK;: X; X X; = R be the i-th input kernel (with RKHS denoted by #;).
 LetKy : Y XY — R be the output kernel (with RKHS denoted by H'y).

> The knowledge of #; and 3y allows to rewrite HSIC(X;, Y) as a kind of generalized covariance.

v; an ONB of H;
HSIC(X,,Y) = ZZ |Cov (vik (X:), wi(Y))|? [with (it )
(w;); an ONB of Hy
sum of covariances for different patterns catalogues of transformations

v" Aggregation of covariance terms obtained after applying sequences of preliminary basis transformations.
v’ Each pair of non-linear functions (Uik ©) ,wl(-)) corresponds to a non-linear dependence pattern.

Example | > HSIC indices computed with Gaussian kernels > K; = Ky, = K,

= ng(z)gk(zf) with gk( )0(8_5(5)2 zk

damped polynomial feature

K (z) =€

HSIC(X, V) =303 Cov(g(X:) (Y))‘Q

k=0 [=0

o Infinitely many damped polynomial transformations are applied to both X; and Y.



A detour through cross-covariance operators

IEY) Hisic-ANOVA indices GHSIC | GHSIC | AHSIC

1

» For the sake of clarity, it is assumed that d = 2.

v No loss of generality. Everything remains true in higher dimension!

NN



A detour through cross-covariance operators

IEX) HsiC-ANOVA indices GHSIC 4 gHSIC . AHSIC _
(uli)i an ONB of gl
SHSIC Cov (u1;(X1), we(Y 2 with
! Z@:Zk] ( SN ))‘ {(wk)k an ONB of Hy
dependence patterns captured by k; and K,
(u15); an ONB of Gy
A%SIC X Z Z Z |COV (ulz(Xl) U2; (Xg), wk(Y)) |2 with (Uzj)j an ONB of gg
AL (w)r an ONB of Hy

dependence patterns captured by k; ®k, and Ky

NN



A detour through cross-covariance operators

IEX) HsiC-ANOVA indices GHSIC 4 gHSIC . AHSIC _
(uli)i an ONB of gl
SHSIC Cov (u1;(X1), we(Y 2 with ®
' Z@:Zk] (1:0), w (V)] {(wk)k an ONB of Hy
dependence patterns captured by k; and K,
(u15); an ONB of Gy
A%SIC X Z Z Z |COV(U,1@'(X1) 'U,gj (Xg), wk(Y)) |2 with (Uzj)j an ONB Of gg ®
i 4k (w)r an ONB of Hy
dependence patterns captured by k; ®k, and Ky
» Remember the simplest solution to compute HSIC-ANOVA indices.
v Uniform inputs > U, LU, ~U(0,1])
v" Sobolev kernels for the inputs > Ky =K, = K¢,
v" Gaussian kernel for the output > Ky =K,
— Bi(u) Bp(u) (=D
! 1], K& Ne= 1 B —
Vu,u € [07 ], Sob(uﬂu) +;; (k!)z + (2r)! QT(lu u l)

R

-

NN
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Sobolev kernels and their feature maps

R >

&
€ Whatis the RKHS #5,,, induced by K& ?
© s K., a characteristic kernel?
€ !s there an explicit and easily interpretable feature map @g,, : [0,1] = Fgop ?

@ How to identify an ONB of g, ? Is there a link with feature maps?

@ How to choose  in practice?
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Sobolev kernels and their feature maps W

R >

&
€@ Whatis the RKHS #%,, induced by K<, ? = see Gu (2013) or Kuo et al. (2010)

> A standard function space: the Sobolev space of order  defined on [0,1] for the L?-norm.

H((0,1)) := {n € RO | W0 <k <r, D' e 12(0,1))}

> A specific inner product:

r—1

(f 93 = > (/01 D" f(x) dx) (fol Dg(x) d:c) +/01 D" f(x) D"g(x) da

k=0
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Sobolev kernels and their feature maps W

&
€ Whatis the RKHS #5,,, induced by K& ?

© s K., a characteristic kernel?

> YES! Simply because H" ([0,1]) is uniformly dense in C([0,1]).

> Major consequence
v The HSIC-ANOVA indices based on Sobolev kernels are able to characterize independence.

X; 1Y < §PC =0 «—= 7=

A This is different from what happens for Sobol’ indices.

S;=0= X; LY| while |X; LY < T, =0
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Sobolev kernels and their feature maps W

&
€ Whatis the RKHS #5,,, induced by K& ?

© s K., a characteristic kernel?

€ !s there an explicit and easily interpretable feature map @g,, : [0,1] = Fgop ?

Kgob(xaml) = <80§ob($)aﬂ0§ob >P~

Sob

> Forr = 1, the Mercer expansion of KJ.,, is actually known. - Dick et al. (2014, 2015)

Ki (z,2") =1+ Z (kjr)z cr(z)ep(x’)  with  cx(x) := V2 cos(kmx)
k=1

» Forr > 2, a series expansion of K¢, is also mentioned in the literature. > Baldeaux et al. (2009)

o0

Ko () =1+ ; Bk(ilgllﬁzlc(x’) . }; (%ir)% [czk(az) con (') + sop () Sgk(m’)] with {zzg; z ﬁ Z?jg::i))




Sobolev kernels and their feature maps

R >

&
€ Whatis the RKHS #5,,, induced by K& ?
© s K., a characteristic kernel?
€ !s there an explicit and easily interpretable feature map @g,, : [0,1] = Fgop ?
How to identify an ONB of H¢,,? Is there a link with feature maps?
Sob*
! G ]‘ !
> Mercer expansion of KJ,,, > K@) =1+ ) on)? ck(z) cx(2')
k=1
k(")
k>1
" Bp(x) By (x = 1
> Seriesexpansion of KZ,, > | Kiwlea) = 142 S M; g [eak(0) o) ) s o)
( Bx(") A eal’) o sax(’)
» ONB of the RKHS #¢, -> {1, ( X )199, ((2’”)“’“)@1 , ((Qkﬁ)’"




Sobolev kernels and their feature maps

R >

&
€ Whatis the RKHS #5,,, induced by K& ?
© s K., a characteristic kernel?
€ !s there an explicit and easily interpretable feature map @g,, : [0,1] = Fgop ?
@ How to identify an ONB of g, ? Is there a link with feature maps?
@ How to choose  in practice?

» Taking r = 1 is recommended!
» Forr =2, K, (x,x") = 1+ kjj,(x,x") > poor numerical performance for screening!



Sobolev kernels and their feature maps

R >

&
€ Whatis the RKHS #5,,, induced by K& ?
© s K., a characteristic kernel?
€ !s there an explicit and easily interpretable feature map @g,, : [0,1] = Fgop ?
@ How to identify an ONB of g, ? Is there a link with feature maps?
@ How to choose  in practice?
;;

> Remember the pure interaction term A21C.

> Apply with K; = K, = K, now that an ONB of #5,,, is explicitly known.

AIl_IQSIC X ZZZ‘COV(uli(Xl)UQJ'(XQ),'UJ[C(Y))’2 =
i 7 k

»»> ij; |Cov(ci(X1) ¢ (X2), wi(Y)) [
ik

O This provides the hint to design a toy case.



How to exacerbate HSIC-ANOVA interactions? %%

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, Us) = ishigami(Xy, X, ¥3) + v cos(nU;) cos(nU,) with X, = m(2U; — 1)

» Design parameter

w | * R2-HSIC indices
\/ y — 0 a B First-order HSIC-ANOVA indices
4 Total-order HSIC-ANOVA indices
> Estimation of sensitivity measures N
v' Sample size n = 500 o
v" RZHSIC indices + HSIC-ANOVA indices . Lo N
I I I
x1 X2 X3

R2-HSIC

First-order

Total-order




How to exacerbate HSIC-ANOVA interactions? %%

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, Us) = ishigami(Xy, X, ¥3) + v cos(nU;) cos(nU,) with X, = m(2U; — 1)

» Design parameter —
— ®* R2-HSIC indices

\/ — 10 B First-order HSIC-ANOVA indices
y - A Total-order HSIC-ANOVA indices

1.5

1.0

> Estimation of sensitivity measures
v Sample size n = 500 = .
v RZHSIC indices + HSIC-ANOVA indices

00
l

R2-HSIC

First-order

Total-order




How to exacerbate HSIC-ANOVA interactions? %%

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, Us) = ishigami(Xy, X, ¥3) + v cos(nU;) cos(nU,) with X, = m(2U; — 1)

> Design parameter —
- * R2-HSIC indices

\/ — 100 B First-order HSIC-ANOVA indices
y & Total-order HSIC-ANOVA indices

1.5

10

> Estimation of sensitivity measures R R
v' Sample size n = 500 o
v" R%HSIC indices + HSIC-ANOVA indices : " R
i x X

R2-HSIC

First-order

Total-order
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How to use HSIC-ANOVA in practice? W

1. How to build a test of independence? How to extend to the existing test procedures?
2. s there any advantage to using the total-order HSIC-ANOVA index?

HSIC(X;, Y)

=3
as
2
o

i

VX IXIXISNIS |-
NESE

XX\\®\E
<

XX\\@'\

XIS SN X




Does all this benefit
independence testing?

6-




2
Testing independence with HSIC-ANOVA indices W

> Atest of independence consists in testing the null hypothesis (H§) : X; LY.

X; 1Y «— SHSIC = ¢ — THSC =0
HSIC(X;,Y) =0 HSIC(X,Y) — HSIC(X _;,Y) =0
= =
with Kg ,, @ Ky with KJ, ® ... ® K., ® Ky

Numerator of the first-order index Numerator of the total-order index



2
Testing independence with HSIC-ANOVA indices W

> Atest of independence consists in testing the null hypothesis (H§) : X; LY.

X; Y SHSIC — ¢ = THSC =0
HSIC(X;,Y) =0 HSIC(X,Y) — HSIC(X_;,Y) =0
<~ _ . <= ' . .
with K¢, ® Ky with Kg , ® ... Q Kg , ® Ky
Numerator of the first-order index Numerator of the total-order index
|
\ 4
V-statistic

&(Zobs) — ﬁg‘fév (Xz-; Y)

estimator

Apply existing test procedures with K; = K,

i 4

&
Actually, NO!
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Testing independence with HSIC-ANOVA indices W

> Atest of independence consists in testing the null hypothesis (H§) : X; LY.

X; Y SHSIC — ¢ = THSC =0
HSIC(X;,Y) =0 HSIC(X,Y) — HSIC(X_;,Y) =0
<~ _ . <= ' . .
with K¢, ® Ky with Kg , ® ... Q Kg , ® Ky
Numerator of the first-order index Numerator of the total-order index
|
\ 4
V-statistic

@(Zobs) — ﬁg‘fév (X’M Y)

estimator

Apply existing test procedures with K; = K, :

—
L}

i 4

&

B ——

Actually, NO!

V-statistic [~ —— —
estimator | ¢ = HSIC,(X,Y) — HSIC, (X _;,Y)

Computing this test statistic is slightly more expensive.

L

&

-
o

Let us see!
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Testing independence with the total-order index W

> The distribution of 7°;(Z1,s) under (H}) can be simulated from the available data.

A All the columns of the DoE are required to compute the test statistic.

— ?i(zobs)
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Testing independence with the total-order index

> The distribution of 7°;(Z1,s) under (H}) can be simulated from the available data.

A All the columns of the DoE are required to compute the test statistic.

SR ., "o

Xobs ngs = {Y(G(k))}

1<ksn

> Permuting Y., leads to eliminate dependence between the joint observations (X, y ().
v" This boils down to testing (H,) : X L Y and this is not what is desired!
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Testing independence with the total-order index W

> The distribution of 7°;(Z1,s) under (H}) can be simulated from the available data.

@ Instead, the trick is to permute the observations of the input variable.
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Testing independence with the total-order index

> The distribution of 7°;(Z1,s) under (H}) can be simulated from the available data.

@ Instead, the trick is to permute the observations of the input variable.

obs

s = { (X0, X))

NN
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Testing independence with the total-order index W

> The distribution of 7°;(Z1,s) under (H}) can be simulated from the available data.

@ Instead, the trick is to permute the observations of the input variable.

Permutation-based test procedure

» Step A - Perform a sequence {o}, }, <, <5 Of random permutations on the i-th column of X ;.

Step B > Compute the value 7;°* of the test statistic for each permuted design.
Step C - Derive a non-parametric estimate of the p-value p; := [P’(f‘i > ?i(Zobs)).

\ 4

Simulation of the test statistic

° . ~ 3
under the null hypothesis Default value: B ~ 10

 Complexity: (d* + 7Bd) n*

. Permutation scheme

1000 1200

800
1

GO0
1

400
|

o

200
|
:l—|

1]
|

e e |y {(x), x®)

0.000 0.0M 0.002 0.003 0.004 0.005 0.006 ObS
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Numerical study of the statistical power W

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, U5) = ishigami(Xy, X5, ) + y cos(nU,) cos(nU,) with U; ~U([0,1])

Xi = 77,'(2 Ui — 1)
> Dej'g" parameter > Separation rate
r=20 v' Distributions of 7;(Z,s) under (HY) et (H})
> Study of the statistical power
v Sample sizen = 50 S _ — Distribution under the null hypothesis
v" Number of replicates M = 200 @ P\ — Distribution under the alternative hypothesis
g0

HSIC

400
1

Total-order

200
1

Ol

[ T T T T I I 1
0.000 0.002 0.004 0006 0.008 0.010 0.012 0.014
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Numerical study of the statistical power W

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, U-) = ishigami(X;, X,, ) + y cos(rly) cos(mly)  with ij"_”n"(’z(,[f.”i])l)
| l
» Design parameter > Separation rate
v y=10 v' Distributions of 7;(Z,s) under (HY) et (H})

> Study of the statistical power
v' Sample size n = 50

S _ — Distribution under the null hypothesis
. 0
v" Number of repllcates M = 200 — Distribution under the alternative hypothesis

o -
o T ¥y
[(s]

HSIC o [l
o -
S

Total-order

200
1

@ Increased power when SHSIC « THSIC j
@ same power when SHSIC ~ THSIC o

[ T T T T I I 1
0.000 0.002 0.004 0006 0.008 0.010 0.012 0.014
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Numerical study of the statistical power W

> Back to the Ishigami function
v" Additional term chosen to boost HSIC-ANOVA interactions.

Y = g(Uy, Uy, ) = ishigami(X;, X5, ;) + ¥ cos(wU,) cos(nU,) with Xqiwn(l&lz(lgq’i]?l)
| l
» Design parameter > Separation rate
v ¥ =100 v Distributions of T°;(Z o) under (H}) et (HE)

> Study of the statistical power
v' Sample size n = 50

S _ — Distribution under the null hypothesis
. 0
v" Number of repllcates M = 200 — Distribution under the alternative hypothesis

o ]
o -
©o I

HSIC o 1
o -
~ =

Total-order

200
1

@ Increased power when SHSIC « THSIC !
@ same power when SHSIC ~ THSIC o

[ T T T T I I 1
0.000 0.002 0.004 0006 0.008 0.010 0.012 0.014
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Benefits brought by HSIC-ANOVA indices in GSA

o HSIC-ANOVA indices are fully transparent sensitivity measures able to perform screening and ranking!

@ In many situations, the test of independence based on THSIC is more powerful!

=3
as
L
o

HSIC(X;,Y) SHSIC

i

VX X XSS5

XIXINISISIS
ﬂ

X XINIS[CS

XIS SN X
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Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the
advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
» The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
> Variable selection can be performed with test procedures based on HSIC-ANOVA indices.

» Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Traditional benchmarks Specific benchmarks

v" Ishigami, Friedman, Morris... v" Hand-made use cases.
v" Test functions in optimization.
v Flexible metafunction framework.

Sl-HSIC < TiHSIC SiHSIC K TiHSIC

Power (§% ) ~ Power (ﬁIC‘ N) ~ Power (ﬁ ) Power (3’;) < Power (ﬁﬁ@ N) < Power (’7\;)
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> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the
advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
» The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
> Variable selection can be performed with test procedures based on HSIC-ANOVA indices.

» Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Publications
> Preprint > https://cea.hal.science/cea-04320711/document
» Conference paper > https://cea.hal.science/cea-03701170v1/document
Codes
» Two dedicated routines the R package sensitivity

v  sensiHSIC > https://rdrr.io/cran/sensitivity/man/sensiHSIC.html

v" testHSIC - https://rdrr.io/cran/sensitivity/man/testHSIC.html



https://cea.hal.science/cea-04320711/document
https://cea.hal.science/cea-03701170v1/document
https://rdrr.io/cran/sensitivity/man/sensiHSIC.html
https://rdrr.io/cran/sensitivity/man/testHSIC.html
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