

Towards more interpretable kernel-based sensitivity analysis

Gabriel Sarazin (DES/ISAS/DM2S/SGLS/LIAD)

- > Service de Génie Logiciel pour la Simulation
- > Laboratoire d'Intelligence Artificielle et de sciences des Données

Joint work with research partners from the **SAMOURAI** project:

•	<u>CEA</u> :	Amandine Marrel	(DES/IRESNE/DER/SESI/LEMS)
•	<u>CREST-ENSAI</u> :	Sébastien Da Veiga	(Statistics Team)
•	EDF R&D :	Vincent Chabridon	(PRISME Department)

SAMOURAI Final Workshop – Work Package 1

December 10-11, 2024, at Institut Henri Poincaré, Paris.

cea

2

GSA in support to metamodel construction

- > In all four work packages, there is a need to construct **metamodels** for **high-dimensional design problems**.
 - Let $X := [X_1, ..., X_d]$ be a random vector with **independent** components ($d \approx 100$).
 - Let Y := g(X) where $g: \mathcal{X}_1 \times \cdots \times \mathcal{X}_d \to \mathcal{Y}$ is a **computationally-expensive** simulation code.
 - Z = (X, Y) is the **augmented vector** containing the input and output variables.

The design of experiments (DoE) consists of a number of input-output observations.

- ➤ The metamodel \hat{g} is constructed from $Z_{obs} \coloneqq \{(X^{(i)}, Y^{(i)})\}_{1 \le i \le N_{sim}}$ with $N_{sim} \le 10d \Rightarrow$ SMALL DATA.
- > For a nice coverage of the input domain of variation, the DoE must be space-filling \rightarrow GIVEN DATA.

Classical metamodeling techniques (such as **GP regression**) cannot be used directly. **Curse of dimensionality** \rightarrow too many **GP hyperparameters** have to be optimized!

Many existing strategies (screening, additive and ANOVA models, linear and nonlinear embeddings). → Binois & Wycoff (2022) for a comprehensive review.

Focus on **SCREENING** → preliminary GSA for **variable selection** (and thus **dimension reduction**).

GSA in support to metamodel construction

- > Steps 2 and 3 of the ICSCREAM methodology \rightarrow looss & Marrel (2019) or Marrel *et al.* (2020)
 - ✓ Identification of penalizing Configurations using SCREening And Metamodel
- > Performing a **preliminary GSA** has **two main advantages**.
 - Screening-oriented GSA \rightarrow (crude) <u>dimension reduction</u> by discarding non-influential input variables.

GSA in support to metamodel construction

- > Steps 2 and 3 of the ICSCREAM methodology \rightarrow looss & Marrel (2019) or Marrel *et al.* (2020)
 - ✓ Identification of penalizing Configurations using SCREening And Metamodel
- > Performing a **preliminary GSA** has **two main advantages**.
 - Screening-oriented GSA \rightarrow (crude) <u>dimension reduction</u> by discarding non-influential input variables.
 - Ranking-oriented GSA → <u>sequential building process</u> of the GP metamodel.

Summary

- **1. A few concepts related to kernels**
- 2. Sensitivity measures based on the HSIC
- 3. A bridge between two opposite worlds: HSIC-ANOVA indices
- 4. Is it relevant to talk about interactions for HSIC-ANOVA indices?
- 5. More about Sobolev kernels and their properties
- 6. Does all this benefit independence testing?

A few concepts related to kernels

7

Kernel mean embeddings \rightarrow Muandet *et al.* (2017)

- \rightarrow Let $\mathcal{M}^+_1(\mathcal{Z})$ be the space of all probability measures defined on $\mathcal{Z} \subseteq \mathbb{R}^p$.
- \rightarrow Let $K: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
- Any probability measure $\nu \in \mathcal{M}_1^+(\mathcal{Z})$ can be represented by a (well-defined) function $\mu_{\nu} \in \mathcal{H}$.

 $\mu_{\nu}: \mathcal{Z} \longrightarrow \mathbb{R}$ $z \longmapsto \mu_{\nu}(z) = \mathbb{E}_{\nu} \left[K(z, Z) \right] = \int_{\mathcal{Z}} K(z, \zeta) \, \mathrm{d}\nu(\zeta) \quad \bullet \quad K \text{ must be measurable}$ $\bullet \quad \mathbb{E}_{\nu} \left[\sqrt{K(Z, Z)} \right] < \infty$

Assumptions

- \succ K is said to be a **characteristic kernel** if the map $\nu \mapsto \mu_{\nu}$ is **injective**.

- The **dissimilarity** between ν_1 and ν_2 can be measured through the **distance** in \mathcal{H} between μ_{ν_1} and μ_{ν_2} .
 - Definition of a <u>kernel-based dissimilarity measure</u> on $\mathcal{M}_1^+(\mathcal{Z})$. \checkmark

Kernel mean embeddings \rightarrow Muandet *et al.* (2017)

- → Let $\mathcal{M}_1^+(\mathcal{Z})$ be the space of all probability measures defined on $\mathcal{Z} \subseteq \mathbb{R}^p$.
- → Let $K: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
- ▶ Any probability measure $\nu \in \mathcal{M}_1^+(\mathcal{Z})$ can be represented by a (well-defined) function $\mu_{\nu} \in \mathcal{H}$.

 $\mu_{\nu}: \mathcal{Z} \longrightarrow \mathbb{R}$ $z \longmapsto \mu_{\nu}(z) = \mathbb{E}_{\nu} \left[K(z, Z) \right] = \int_{\mathcal{Z}} K(z, \zeta) \, \mathrm{d}\nu(\zeta)$

Assumptions

• *K* must be measurable

•
$$\mathbb{E}_{\nu}\left[\sqrt{K(Z,Z)}\right] < \infty$$

 \succ *K* is said to be a **characteristic kernel** if the map $\nu \mapsto \mu_{\nu}$ is **injective**.

2 Maximum Mean Discrepancy (MMD) \rightarrow Gretton *et al.* (2006)

$$MMD^{2}(\nu_{1},\nu_{2}) = \|\mu_{\nu_{1}} - \mu_{\nu_{2}}\|_{\mathcal{H}}^{2} \checkmark$$

Definition resulting from the embedding mechanism

$$= \mathbb{E}_{\nu_1 \otimes \nu_1} \left[K(Z, Z') \right] + \mathbb{E}_{\nu_2 \otimes \nu_2} \left[K(Z, Z') \right] - 2 \mathbb{E}_{\nu_1 \otimes \nu_2} \left[K(Z, Z') \right]$$

 \checkmark Alternative formula paving the way to a simple estimation procedure

- **Feature maps** \rightarrow **Chapter 4** in Steinwart & Christmann (2008)
- → Let $K: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
- \succ Let us assume that there exist a **Hilbert space** \mathcal{F} and a **map** $\varphi: \mathcal{Z} \to \mathcal{F}$ such that:

 $\forall z, z' \in \mathcal{Z}, \ K(z, z') = \left\langle \varphi(z), \varphi(z') \right\rangle_{\mathcal{F}}$

 \mathcal{F} is called a feature space. φ is called a feature map. Any object $\varphi(z)$ is called a feature function.

- Existence of at least one feature map.
 - ✓ The canonical feature map θ : Z → H is thus defined by $\theta(z) := K(\cdot, z)$ for any $z \in Z$.
- Non-unicity of the feature map.
 - ✓ There may exist a feature space where the kernel action is **much easier to understand**.

Feature-based characterization of the RKHS → Chapter 4 in Steinwart & Christmann (2008)

First, let us examine two particular kernels!

Example 1

> The **polynomial kernel** with position parameter $c \ge 0$ and exponent $m \in \mathbb{N}^*$.

initial definition

$$K_{\text{poly}}(x,x') := (xx'+c)^m = \sum_{k=0}^m \binom{m}{k} x^k (x')^k c^{m-k}$$
$$= \langle \varphi_{\text{poly}}(x), \varphi_{\text{poly}}(x') \rangle_{\mathbb{R}^{m+1}} \quad \text{with} \quad \left[\varphi_{\text{poly}}(x) = \left[\left(\sqrt{c} \right)^{m-k} \sqrt{\binom{m}{k}} x^k \right]_{0 \le k \le m} \right]$$

finite number of polynomial features

✓ The **binomial theorem** reveals a feature map φ_{poly} from ℝ to the **Euclidean** space ℝ^{*m*+1}.

Feature-based characterization of the RKHS → Chapter 4 in Steinwart & Christmann (2008)

First, let us examine two particular kernels!

Example 2 > The Gaussian kernel with scale parameter $\gamma > 0$.

initial definition

$$\frac{K_{\gamma}(x,x') := e^{-\frac{1}{2}\left(\frac{x-x'}{\gamma}\right)^2}}{= e^{-\frac{1}{2}\left(\frac{x}{\gamma}\right)^2} e^{-\frac{1}{2}\left(\frac{x'}{\gamma}\right)^2} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{x}{\gamma}\right)^k \left(\frac{x'}{\gamma}\right)^k} = \langle \varphi_{\gamma}(x), \varphi_{\gamma}(x') \rangle_{\ell^2} \quad \text{with} \quad \left[\varphi_{\gamma}(x) := e^{-\frac{1}{2}\left(\frac{x}{\gamma}\right)^2} \left[\frac{1}{\sqrt{k}} \left(\frac{x}{\gamma}\right)^k\right]_{k \ge 0}\right]$$

infinite number of damped polynomial features

✓ The **Taylor series expansion** reveals a feature map φ_{γ} from \mathbb{R} into the **Hilbert** space $\ell^2(\mathbb{N})$.

- **4** Feature-based characterization of the RKHS \rightarrow Chapter 4 in Steinwart & Christmann (2008)
- > As shown in these two examples, a **kernel expansion** allows to identify a **feature map**.
 - ✓ More importantly, it provides **all-in-one characterization** of the RKHS.
- → Let $K: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
- > It is assumed that it can be expanded as a sum (or series) of **symmetric** and **separable** functions.

$$\forall z, z' \in \mathcal{Z}, \quad K(z, z') = \sum_{i \in I} g_i(z) g_i(z')$$

Polynomial kernel $\rightarrow I = \{0, ..., m\}$ Gaussian kernel $\rightarrow I = \mathbb{N}$

✓ The functions $(g_i)_{i \in I}$ are the **features**. They must be <u>linearly independent</u> (in the ℓ^2 -sense).

$$\mathbf{1} \quad \mathcal{H} = \left\{ h \in \mathbb{R}^{\mathcal{Z}} \middle| h(\cdot) = \sum_{i \in I} a_i g_i(\cdot) \text{ with } (a_i)_{i \in I} \in \ell^2(I, \mathbb{R}) \right\}$$

$$\mathbf{2} \quad \langle \cdot, \cdot \rangle_{\mathcal{H}} : \qquad \mathcal{H} \qquad \times \qquad \mathcal{H} \qquad \longrightarrow \qquad \mathbb{R} \\ \left(h_1(\cdot) = \sum_{i \in I} a_i g_i(\cdot) \ , \ h_2(\cdot) = \sum_{i \in I} b_i g_i(\cdot) \right) \longmapsto \sum_{i \in I} a_i b_i$$

3 The functions $(g_i)_{i \in I}$ form an **orthonormal basis (ONB)** of \mathcal{H} .

2 Sensitivity measures based on the HSIC

cea

Several views on HSIC indices

 \rightarrow Joint distribution of (X_i, Y) \mathbb{P}_{X_iY}

 $S_i^{\Delta} := \Delta \big(\mathbb{P}_{X_i Y}, \mathbb{P}_{X_i} \otimes \mathbb{P}_Y \big)$

 $\mathbb{P}_{X_i} \otimes \mathbb{P}_Y \rightarrow \text{Independence within } (X_i, Y)$ \rightarrow Hypothetical lack of influence

to measure the discrepancy? t about using the MMD?

 \rightarrow True influence of X_i on Y

 $\operatorname{HSIC}(X_i, Y) := \operatorname{MMD}^2(\mathbb{P}_{X_iY}, \mathbb{P}_{X_i} \otimes \mathbb{P}_Y) = \left\| \mu_{\mathbb{P}_{X_iY}} - \mu_{\mathbb{P}_{X_i} \otimes \mathbb{P}_Y} \right\|_{\mathcal{H}}^2$

How to estimate HSIC indices from a given dataset?

Several views on HSIC indices

Efficient estimation \rightarrow Gretton *et al.* (2005, 2007) and Serfling (2009)

The alternative formula of the MMD allows to rewrite the HSIC only in terms of kernel-based moments.

 $HSIC(X_i, Y) = \mathbb{E}\left[K_i(X_i, X'_i) K_Y(Y, Y')\right] + \mathbb{E}\left[K_i(X_i, X'_i) K_Y(Y'', Y''')\right]$ $-2\mathbb{E}\left[K_i(X_i, X'_i) K_Y(Y, Y'')\right]$

 $(X_i, Y) \perp (X'_i, Y') \perp (X''_i, Y'') \perp (X''_i, Y'')$ follow the joint input-output distribution \mathbb{P}_{X_iY} .

> **U-statistics** and **V-statistics** are well-adapted to estimate HSIC indices from a given DoE.

 $N_{\rm sim} = n$

$$\widehat{H}_{i}^{U} = \frac{1}{(n)_{2}} \sum_{1 \le p \ne q \le n} K_{i} \left(X_{i}^{(p)}, X_{i}^{(q)} \right) K_{Y} \left(Y^{(p)}, Y^{(q)} \right) + \frac{1}{(n)_{4}} \sum_{1 \le p \ne q \ne r \ne s \le n} K_{i} \left(X_{i}^{(p)}, X_{i}^{(q)} \right) K_{Y} \left(Y^{(r)}, Y^{(s)} \right)$$
$$- \frac{2}{(n)_{3}} \sum_{1 \le p \ne q \ne r \le n} K_{i} \left(X_{i}^{(p)}, X_{i}^{(q)} \right) K_{Y} \left(Y^{(p)}, Y^{(r)} \right) \quad \text{with} \quad (n)_{p} = p! \binom{n}{p}$$

- \widehat{H}_i^U denotes the <u>U-statistic</u> estimator of HSIC(X_i, Y) \rightarrow no bias BUT no guarantee of positivity.
- \widehat{H}_i^V denotes the <u>V-statistic</u> estimator of HSIC(X_i, Y) \rightarrow positivity BUT bias.
- Consistency and existence of a CLT \rightarrow convergence at rate $1/\sqrt{n}$.
- Low computational complexity \rightarrow only $\mathcal{O}(n^2)$ operations are required to compute estimates.

Several views on HSIC indices

Independence testing \rightarrow Gretton *et al.* (2007) 3

- The input kernel $K_i : \mathcal{X}_i \times \mathcal{X}_i \to \mathbb{R}$ is assumed to be <u>characteristic</u> to $\mathcal{M}_1^+(\mathcal{X}_i)$.
- → The output kernel $K_Y : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is assumed to be <u>characteristic</u> to $\mathcal{M}_1^+(\mathcal{Y})$.

$$X_i \perp Y \iff \operatorname{HSIC}(X_i, Y) = 0$$

Testing independence between X_i and Y is equivalent to **testing the nullity** of the HSIC.

 (H_0) : HSIC $(X_i, Y) = 0$ vs. (H_1) : HSIC $(X_i, Y) > 0$

- **Test statistic** \rightarrow either \hat{H}_i^U or \hat{H}_i^V
- **Test procedure** \rightarrow selected according to the **sample size** and the chosen **test statistic**
 - ✓ Asymptotic test procedure
 - ✓ Permutation-based test procedure
 - ✓ Sequential permutation-based test procedure
 - ✓ Non-asymptotic Gamma test procedure
- **Theoretical guarantees** \rightarrow control of the type-I error + minimization of the type-II error
 - \checkmark **Type-I error** controlled even when *n* is small.
 - **Type-II error** vanishing asymptotically. \checkmark

- \rightarrow Sejdinovic *et al.* (2013) and Zhang *et al.* (2018)
- \rightarrow De Lozzo & Marrel (2016)
- \rightarrow El Amri & Marrel (2022)
- \rightarrow El Amri & Marrel (2024)
- \rightarrow Albert *et al.* (2022)
- \rightarrow Gretton *et al.* (2007) and Pfister *et al.* (2018)

Sobol' indices vs. HSIC indices

- > HSIC indices perfectly meet the needs of **screening-oriented** GSA.
 - ✓ The use of characteristic kernels allows to detect any type of input-output dependence.
 - ✓ Inference is an easy task (no need for specific data, big data or density estimation).

GSA requirements	S _i	T _i	$HSIC(X_i, Y)$
ANOVA decomposition → RANKING	\checkmark	\checkmark	×
Characterize independence → SCREENING	X	\checkmark	
Estimation from GIVEN DATA	\checkmark	X	
Estimation from SMALL DATA	\checkmark	X	
Compatibility with DEPENDENT inputs	X	X	\checkmark
INVARIANCE through monotonic transformations	\checkmark	\checkmark	X

Still room to improve HSIC indices?

> HSIC indices **lack interpretability** and they are not tailored to perform **ranking-oriented** GSA.

 \bigwedge Sum not equal to 1. \bigwedge No universal bound. \bigwedge Different MMD scales.

GSA requirements	S _i	T _i	$HSIC(X_i, Y)$	
ANOVA decomposition → RANKING	\checkmark	\checkmark	X	
Characterize independence → SCREENING	X	\checkmark		
Estimation from GIVEN DATA	\checkmark	X	\checkmark	
Estimation from SMALL DATA	\checkmark	X	\checkmark	
Compatibility with DEPENDENT inputs	X	X	\checkmark	
INVARIANCE through monotonic transformations	\checkmark	\checkmark	X	

How to do better on that point?

A bridge between two opposite worlds: HSIC-ANOVA indices

Cea

Taking inspiration from standard ANOVA...

✓ The output variance V(Y) is apportioned between all subsets of inputs.

$$\mathbb{V}(Y) = \sum_{\boldsymbol{u} \subseteq \{1, \dots, d\}} V_{\boldsymbol{u}} = \sum_{\boldsymbol{u} \subseteq \{1, \dots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}} (-1)^{|\boldsymbol{u}| - |\boldsymbol{v}|} \mathbb{V}\Big(\mathbb{E}\Big[Y \mid X_{\boldsymbol{u}}\Big]\Big)$$

$$\bigwedge X_1 \perp \cdots \perp X_d$$

- First-order and total-order Sobol' indices
 - ✓ First-order Sobol' indices $(S_i)_{1 \le i \le d}$ → main effects only!
 - ✓ Total-order Sobol' indices $(T_i)_{1 \le i \le d}$ → main effects + interactions.

$$\forall 1 \le i \le d, \quad S_i = \frac{\mathbb{V}(\mathbb{E}[Y \mid X_i])}{\mathbb{V}(Y)} \quad \text{and} \quad T_i = 1 - \frac{\mathbb{V}(\mathbb{E}[Y \mid \mathbf{X}_{-i}])}{\mathbb{V}(Y)}$$

Constraints imposed on the sub-functions of the Sobol'-Hoeffding decomposition

$$g(\boldsymbol{x}) = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} \eta_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) \quad \text{ such that } \quad \forall i \in \boldsymbol{u}, \quad \int_{\mathcal{X}_i} \eta_{\boldsymbol{u}}(\boldsymbol{x}_{\boldsymbol{u}}) \, \mathrm{d}\mathbb{P}_{X_i}(x_i) = 0$$

... and bringing ANOVA into the HSIC paradigm

- → HISC-ANOVA decomposition → Da Veiga (2021)
 - \checkmark The quantity HSIC(X, Y) is apportioned between all subsets of inputs.

$$\operatorname{HSIC}(\boldsymbol{X},Y) = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} H_{\boldsymbol{u}} = \sum_{\boldsymbol{u} \subseteq \{1,...,d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}} (-1)^{|\boldsymbol{u}| - |\boldsymbol{v}|} \operatorname{HSIC}(\boldsymbol{X}_{\boldsymbol{v}},Y)$$

$$\bigwedge X_1 \perp \cdots \perp X_d$$

- First-order and total-order HSIC-ANOVA indices
 - ✓ First-order HSIC-ANOVA indices $(S_i^{\text{HSIC}})_{1 \le i \le d}$ → main effects only!
 - ✓ Total-order HSIC-ANOVA indices $(T_i^{\text{HSIC}})_{1 \le i \le d}$ → main effects + interactions.

$$\forall 1 \leq i \leq d, \quad S_i^{\mathrm{HSIC}} := \frac{\mathrm{HSIC}(X_i,Y)}{\mathrm{HSIC}(\mathbf{X},Y)} \quad \mathrm{and} \quad T_i^{\mathrm{HSIC}} := 1 - \frac{\mathrm{HSIC}(\mathbf{X}_{-i},Y)}{\mathrm{HSIC}(\mathbf{X},Y)}$$

- Constraints imposed on the input kernels
 - ✓ Each input kernel K_i must be an **ANOVA** kernel (≈ a constant kernel + an orthogonal kernel).

$$K_i(x_i, x_i') = 1 + k_i(x_i, x_i') \quad \text{with} \quad \forall x_i \in \mathcal{X}_i, \quad \int_{\mathcal{X}_i} k_i(x_i, x_i') \, \mathrm{d}\mathbb{P}_{X_i}(x_i') = 0$$

✓ $\mathcal{H}_i = \mathbb{R} \bigoplus \mathcal{G}_i$ where \mathcal{G}_i is only composed of **zero-mean functions** (with respect to \mathbb{P}_{X_i}).

How to find ANOVA kernels?

For most parametric families of distributions, there is no well-known characteristic ANOVA kernel.

How to implement the HSIC-ANOVA decomposition in practice?

1. Transform each input distribution \mathbb{P}_{X_i} into a standard uniform distribution $\mathcal{U}([0,1])$.

2. Assign a **Sobolev kernel** K_{Sob}^r to each new input variable $U_i \coloneqq F_{X_i}(X_i)$.

$$\forall u, u' \in [0, 1], \quad K_{\text{Sob}}^r(u, u') := 1 + \sum_{i=1}^r \frac{B_i(u) B_i(u')}{(i!)^2} + \frac{(-1)^{r+1}}{(2r)!} B_{2r}(|u - u'|)$$

 \checkmark $r \in \mathbb{N}^*$ is an integer parameter indicating the degree of smoothness of the RKHS.

✓ The functions $(B_i)_{i \ge 1}$ are the **Bernoulli polynomials** → $\int_0^1 B_i(u) \, du = 0$.

A grey area around HSIC-ANOVA indices?

- 1. How do they measure sensitivity? How to distinguish between main effects and interactions?
- 2. Are they able to characterize independence?

GSA requirements	T _i	$HSIC(X_i, Y)$	$S_i^{\rm HSIC}$	$T_i^{\rm HSIC}$
ANOVA decomposition → RANKING	~	X	?	?
Characterize independence → SCREENING		\checkmark	??	$\bigcirc \bigcirc \bigcirc$
Estimation from GIVEN DATA	X	\checkmark	\checkmark	\checkmark
Estimation from SMALL DATA	X	\checkmark	\checkmark	\checkmark
Compatibility with DEPENDENT inputs	X	\checkmark	X	X
INVARIANCE through monotonic transformations	\checkmark	X	X	X

Is it relevant to talk about interactions for HSIC-ANOVA indices?

Cea

Focus on HSIC-ANOVA interactions

For most benchmark test cases, HSIC-ANOVA interactions are not significant.

Example → the **Ishigami** function

2 -

0.2

 $Y = g(X_1, X_2, X_3) = \sin(X_1) + \sin^2(X_2) + X_3^4 \sin(X_1) \quad \text{with} \quad X_i \sim \mathcal{U}([-\pi, \pi])$

> Strong interaction between X_1 and X_3 in the variance-based ANOVA framework.

CLEAR ACTIVATION

> No interaction between X_1 and X_3 in the **HSIC-ANOVA** framework.

Counterexample \rightarrow Hand-made **pathological functions** (only for $d \approx 2$)

Hull function

$$g(x_1, x_2) = -\tan\left[(2\sqrt{2})a\left|\frac{x_1 + x_2 - 1}{\sqrt{2}}\right| - a\right]$$

$$S_1^{\text{HSIC}} = S_2^{\text{HSIC}} = 17\%$$

 $T_1^{\text{HSIC}} = T_2^{\text{HSIC}} = 83\%$

No clear explanation on why those functions lead to strong HSIC-ANOVA interactions.

HSIC indices \rightarrow Gretton *et al.* (2005)

- Let $K_i : \mathbf{X}_i \times \mathbf{X}_i \to \mathbb{R}$ be the *i*-th input kernel (with RKHS denoted by $\mathbf{\mathcal{H}}_i$).
- Let $K_Y : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ be the output kernel (with RKHS denoted by \mathcal{H}_Y).
- > The knowledge of \mathcal{H}_i and \mathcal{H}_Y allows to rewrite $HSIC(X_i, Y)$ as a kind of generalized covariance.

$$\operatorname{HSIC}(X_i, Y) = \sum_k \sum_l \left| \operatorname{Cov}(v_{ik}(X_i), w_l(Y)) \right|^2 \text{ with } \begin{cases} (v_{ik})_k & \text{an ONB of } \mathcal{H}_i \\ (w_l)_l & \text{an ONB of } \mathcal{H}_Y \end{cases}$$

sum of covariances for different patterns

- ✓ Aggregation of covariance terms obtained after applying sequences of preliminary basis transformations.
- ✓ Each pair of non-linear functions $(v_{ik}(\cdot), w_l(\cdot))$ corresponds to a non-linear dependence pattern.

Example

→ HSIC indices computed with Gaussian kernels → $K_i = K_Y = K_\gamma$

$$K_{\gamma}(z,z') = e^{-\frac{1}{2}\left(\frac{z-z'}{\gamma}\right)^2} = \sum_{k=0}^{\infty} g_k(z) g_k(z') \text{ with } \frac{g_k(z) \propto e^{-\frac{1}{2}\left(\frac{z}{\gamma}\right)^2} z^k}{\text{damped polynomial feature}}$$
$$\text{HSIC}(X_i,Y) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left| \text{Cov}\left(g_k(X_i), g_l(Y)\right) \right|^2$$

Infinitely many damped polynomial transformations are applied to both X_i and Y.

2 HSIC-ANOVA indices

- > For the sake of clarity, it is assumed that d = 2.
 - ✓ No loss of generality. Everything remains true in higher dimension!

2 HSIC-ANOVA indices

$$S_{1}^{\text{HSIC}} + S_{2}^{\text{HSIC}} + \Delta_{12}^{\text{HSIC}} = 1$$

$$S_{1}^{\text{HSIC}} \propto \sum_{i} \sum_{k} \left| \text{Cov}(u_{1i}(X_{1}), w_{k}(Y)) \right|^{2} \quad \text{with} \quad \begin{cases} (u_{1i})_{i} & \text{an ONB of } \mathcal{G}_{1} \\ (w_{k})_{k} & \text{an ONB of } \mathcal{H}_{Y} \end{cases}$$
dependence patterns captured by k_{1} and K_{Y}

$$\Delta_{12}^{\text{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k} \left| \text{Cov}(u_{1i}(X_{1}) u_{2j}(X_{2}), w_{k}(Y)) \right|^{2} \quad \text{with} \quad \begin{cases} (u_{1i})_{i} & \text{an ONB of } \mathcal{G}_{1} \\ (u_{2j})_{j} & \text{an ONB of } \mathcal{G}_{2} \\ (w_{k})_{k} & \text{an ONB of } \mathcal{H}_{Y} \end{cases}$$

dependence patterns captured by $k_1 \otimes k_2$ and K_Y

2 HSIC-ANOVA indices

$$S_{1}^{\text{HSIC}} + S_{2}^{\text{HSIC}} + \Delta_{12}^{\text{HSIC}} = 1$$

$$S_{1}^{\text{HSIC}} \propto \sum_{i} \sum_{k} \left| \text{Cov}(u_{1i}(X_{1}), w_{k}(Y)) \right|^{2} \quad \text{with} \quad \left\{ \begin{pmatrix} (u_{1i})_{i} & \text{an ONB of } \mathcal{G}_{1} \\ (w_{k})_{k} & \text{an ONB of } \mathcal{H}_{Y} \end{pmatrix} \right\}$$
dependence patterns captured by k_{1} and K_{Y}

$$\Delta_{12}^{\text{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k} \left| \text{Cov}(u_{1i}(X_{1}) u_{2j}(X_{2}), w_{k}(Y)) \right|^{2} \quad \text{with} \quad \left\{ \begin{pmatrix} (u_{1i})_{i} & \text{an ONB of } \mathcal{G}_{1} \\ (u_{2j})_{j} & \text{an ONB of } \mathcal{G}_{2} \\ (w_{k})_{k} & \text{an ONB of } \mathcal{H}_{Y} \end{pmatrix} \right\}$$
dependence patterns captured by $k_{1} \otimes k_{2}$ and K_{Y}

- > Remember the **<u>simplest solution</u>** to compute HSIC-ANOVA indices.
 - ✓ Uniform inputs→ $U_1 \perp U_2 \sim \mathcal{U}([0,1])$ ✓ Sobolev kernels for the inputs→ $K_1 = K_2 = K_{Sob}^r$ ✓ Gaussian kernel for the output→ $K_Y = K_Y$

$$\forall u, u' \in [0, 1], \quad K_{\text{Sob}}^r(u, u') := 1 + \sum_{k=1}^r \frac{B_k(u) B_k(u')}{(k!)^2} + \frac{(-1)^{r+1}}{(2r)!} B_{2r}(|u - u'|)$$

5 More about **5 Sobolev kernels 5 and their properties**

Cea

- Many questions at the beginning of this work...
 - 1 What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
 - **2** Is K_{Sob}^r a characteristic kernel?
 - 3 Is there an explicit and easily interpretable feature map $\varphi_{\text{Sob}}^r : [0,1] \to \mathcal{F}_{\text{Sob}}^r$?
 - 4 How to identify an ONB of \mathcal{H}_{Sob}^{r} ? Is there a link with feature maps?
 - **5** How to choose r in practice?

- **1** What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ? \rightarrow see Gu (2013) or Kuo *et al.* (2010)
- > A standard function space: the Sobolev space of order r defined on [0,1] for the L^2 -norm.

$$H^{r}([0,1]) := \left\{ h \in \mathbb{R}^{[0,1]} \mid \forall \, 0 \le k \le r, \ D^{k}h \in L^{2}([0,1]) \right\}$$

> A specific inner product:

$$\left\langle f,g\right\rangle_{\mathcal{H}^r_{\mathrm{Sob}}} := \sum_{k=0}^{r-1} \left(\int_0^1 D^k f(x) \,\mathrm{d}x\right) \left(\int_0^1 D^k g(x) \,\mathrm{d}x\right) + \int_0^1 D^r f(x) \,D^r g(x) \,\mathrm{d}x$$

- Many questions at the beginning of this work...
- **1** What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
- **2** Is K_{Sob}^r a characteristic kernel?
- > YES! Simply because $H^r([0,1])$ is uniformly dense in C([0,1]).
- > Major consequence
 - ✓ The HSIC-ANOVA indices based on Sobolev kernels are able to characterize independence.

$$X_i \perp Y \iff S_i^{\text{HSIC}} = 0 \iff T_i^{\text{HSIC}} = 0$$

This is different from what happens for **Sobol' indices**.

$$S_i = 0 \not\Longrightarrow X_i \perp Y$$
 while $X_i \perp Y \iff T_i = 0$

- 1 What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
- **2** Is K_{Sob}^r a characteristic kernel?

3 Is there an explicit and easily interpretable feature map $\varphi_{\text{Sob}}^r : [0,1] \to \mathcal{F}_{\text{Sob}}^r$?

$$K_{\rm Sob}^r(x,x') = \left\langle \varphi_{\rm Sob}^r(x), \varphi_{\rm Sob}^r(x') \right\rangle_{\mathcal{F}_{\rm Sob}^r}$$

▶ For r = 1, the Mercer expansion of K_{Sob}^1 is actually known. → Dick *et al.* (2014, 2015)

$$K_{\text{Sob}}^{1}(x, x') := 1 + \sum_{k=1}^{\infty} \frac{1}{(k\pi)^{2}} c_{k}(x) c_{k}(x') \quad \text{with} \quad c_{k}(x) := \sqrt{2} \cos(k\pi x)$$

▶ For $r \ge 2$, a series expansion of K_{Sob}^r is also mentioned in the literature. → Baldeaux *et al.* (2009)

$$K_{\text{Sob}}^{r}(x,x') := 1 + \sum_{k=1}^{r} \frac{B_{k}(x) B_{k}(x')}{(k!)^{2}} + \sum_{k=1}^{\infty} \frac{1}{(2k\pi)^{2r}} \Big[c_{2k}(x) c_{2k}(x') + s_{2k}(x) s_{2k}(x') \Big] \quad \text{with} \quad \begin{cases} c_{2k}(x) := \sqrt{2} \cos(2k\pi x) \\ s_{2k}(x) := \sqrt{2} \sin(2k\pi x) \end{cases}$$

- Many questions at the beginning of this work...
- 1 What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
- **2** Is K_{Sob}^r a characteristic kernel?
- 3 Is there an explicit and easily interpretable feature map $\varphi_{\text{Sob}}^r : [0,1] \to \mathcal{F}_{\text{Sob}}^r$?

4 How to identify an ONB of \mathcal{H}_{Sob}^{r} ? Is there a link with feature maps?

 \rightarrow

- ➢ Mercer expansion of K_{Sob}^1 →
- \succ ONB of the RKHS $\mathcal{H}^{1}_{\text{Sob}}$ \rightarrow

▷ Series expansion of K_{Sob}^r →

> **ONB** of the **RKHS** \mathcal{H}_{Sob}^{r}

$$K_{\text{Sob}}^{1}(x,x') := 1 + \sum_{k=1}^{\infty} \frac{1}{(k\pi)^{2}} c_{k}(x) c_{k}(x')$$

$$\left\{ \mathbf{1}; \left(\frac{c_{k}(\cdot)}{k\pi}\right)_{k \geq 1} \right\}$$

$$K_{\text{Sob}}^{r}(x,x') := 1 + \sum_{k=1}^{r} \frac{B_{k}(x) B_{k}(x')}{(k!)^{2}} + \sum_{k=1}^{\infty} \frac{1}{(2k\pi)^{2r}} \Big[c_{2k}(x) c_{2k}(x') + s_{2k}(x) s_{2k}(x') \Big]$$

$$\left\{\mathbf{1}; \left(\frac{B_k(\cdot)}{k!}\right)_{1 \le k \le r}; \left(\frac{c_{2k}(\cdot)}{(2k\pi)^r}\right)_{k \ge 1}; \left(\frac{s_{2k}(\cdot)}{(2k\pi)^r}\right)_{k \ge 1}\right\}$$

Sobolev kernels and their feature maps

- Many questions at the beginning of this work...
 - **1** What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
 - **2** Is K_{Sob}^r a characteristic kernel?
 - 3 Is there an explicit and easily interpretable feature map $\varphi_{\text{Sob}}^r : [0,1] \to \mathcal{F}_{\text{Sob}}^r$?
 - 4 How to identify an ONB of \mathcal{H}_{Sob}^{r} ? Is there a link with feature maps?
 - **5** How to choose r in practice?
 - > Taking r = 1 is recommended!
 - ▶ For $r \ge 2$, $K_{\text{Sob}}^r(x, x') \approx 1 + k_{\text{lin}}(x, x') \rightarrow \text{poor numerical performance}$ for screening!

Sobolev kernels and their feature maps

- 1 What is the RKHS \mathcal{H}_{Sob}^r induced by K_{Sob}^r ?
- **2** Is K_{Sob}^r a characteristic kernel?
- 3 Is there an explicit and easily interpretable feature map $\varphi_{\text{Sob}}^r : [0,1] \to \mathcal{F}_{\text{Sob}}^r$?
- 4 How to identify an ONB of \mathcal{H}_{Sob}^{r} ? Is there a link with feature maps?
- **5** How to choose r in practice?

What is the point of these theoretical results?

- > Remember the pure interaction term $\Delta_{12}^{\text{HSIC}}$.
- > Apply with $K_1 = K_2 = K_{\text{Sob}}^1$ now that an ONB of $\mathcal{H}_{\text{Sob}}^1$ is explicitly known.

$$\Delta_{12}^{\text{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k} \left| \text{Cov} \left(u_{1i}(X_1) \, u_{2j}(X_2), w_k(Y) \right) \right|^2 =$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{ij \pi^2} \left| \operatorname{Cov} \left(c_i(X_1) \, c_j(X_2), w_k(Y) \right) \right|^2$$

This provides the hint to design a toy case.

How to exacerbate HSIC-ANOVA interactions?

- Back to the Ishigami function
 - ✓ **Additional term** chosen to boost HSIC-ANOVA interactions.

$$Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2)$$

 $U_i \sim \mathcal{U}([0,1])$ $X_i = \pi(2U_i - 1)$

Design parameter

 $\checkmark \gamma = 0$

- Estimation of sensitivity measures
 - \checkmark Sample size n = 500
 - ✓ R²-HSIC indices + HSIC-ANOVA indices

with

	U ₁	U ₂	U ₃
R ² -HSIC	0.19	0.03	0.01
First-order	0.77	0.13	0.07
Total-order	0.79	0.14	0.08

How to exacerbate HSIC-ANOVA interactions?

- Back to the Ishigami function
 - ✓ **Additional term** chosen to boost HSIC-ANOVA interactions.

$$Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2) \text{ with}$$

 $U_i \sim \mathcal{U}([0,1])$ $X_i = \pi(2U_i - 1)$

Design parameter

 $\checkmark \gamma = 10$

- Estimation of sensitivity measures
 - \checkmark Sample size n = 500
 - ✓ R²-HSIC indices + HSIC-ANOVA indices

	U ₁	U ₂	U ₃
R ² -HSIC	0.05	0.08	0.01
First-order	0.25	0.40	0.02
Total-order	0.56	0.71	0.04

How to exacerbate HSIC-ANOVA interactions?

- Back to the Ishigami function
 - ✓ **Additional term** chosen to boost HSIC-ANOVA interactions.

$$Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2) \text{ with}$$

Design parameter

 $\checkmark \gamma = 100$

- Estimation of sensitivity measures
 - ✓ Sample size n = 500
 - ✓ R²-HSIC indices + HSIC-ANOVA indices

 $U_i \sim \mathcal{U}([0,1])$ $X_i = \pi(2U_i - 1)$

	U ₁	U ₂	U ₃
R ² -HSIC	0.05	0.05	0.01
First-order	0.28	0.23	0.04
Total-order	0.72	0.66	0.05

How to use HSIC-ANOVA in practice?

- 1. How to build a test of independence? How to extend to the existing test procedures?
- 2. Is there any advantage to using the total-order HSIC-ANOVA index?

GSA requirements	T _i	$\mathrm{HSIC}(X_i,Y)$	S_i^{HSIC}	$T_i^{ m HSIC}$
ANOVA decomposition → RANKING		X	\checkmark	\checkmark
Characterize independence → SCREENING	\checkmark	~	</th <th><?</th></th>	</th
Estimation from GIVEN DATA	X	\checkmark	\checkmark	\checkmark
Estimation from SMALL DATA	X	\checkmark	~	\checkmark
Compatibility with DEPENDENT inputs	X	\checkmark	X	X
INVARIANCE through monotonic transformations		X	X	×

6 Does all this benefit independence testing?

Cea

Testing independence with HSIC-ANOVA indices

> A test of independence consists in testing the null hypothesis $(H_0^i): X_i \perp Y$.

Numerator of the first-order index

Numerator of the total-order index

Testing independence with HSIC-ANOVA indices

> A test of independence consists in testing the null hypothesis $(H_0^i): X_i \perp Y$.

Actually, NO!

Testing independence with HSIC-ANOVA indices

A test of independence consists in testing the null hypothesis $(H_0^i) : X_i \perp Y$.

Let us see!

> The distribution of $\hat{T}_i(Z_{obs})$ under (H_0^i) can be simulated from the available data.

All the columns of the DoE are required to compute the test statistic.

> The distribution of $\hat{T}_i(Z_{obs})$ under (H_0^i) can be simulated from the available data.

All the columns of the DoE are required to compute the test statistic.

> Permuting Y_{obs} leads to eliminate dependence between the joint observations $(X^{(k)}, Y^{(k)})$.

✓ This boils down to testing (H_0) : **X** ⊥ **Y** and this is not what is desired!

> The distribution of $\hat{T}_i(Z_{obs})$ under (H_0^i) can be simulated from the available data.

- Instead, the trick is to permute the observations of the input variable.

> The distribution of $\hat{T}_i(Z_{obs})$ under (H_0^i) can be simulated from the available data.

- Instead, the trick is to permute the observations of the input variable.

> The distribution of $\widehat{\mathcal{T}}_i(Z_{obs})$ under (H_0^i) can be simulated from the available data.

- Instead, the trick is to permute the observations of the input variable.

Permutation-based test procedure

- Step A \rightarrow Perform a sequence $\{\sigma_b\}_{1 \le b \le B}$ of **random permutations** on the *i*-th column of X_{obs} .
- **Step B** \rightarrow Compute the value $\hat{\mathcal{T}}_i^{\sigma_b}$ of the test statistic for each permuted design.
- <u>Step C</u> \rightarrow Derive a non-parametric estimate of the p-value $p_i \coloneqq \mathbb{P}(\widehat{T}_i > \widehat{T}_i(Z_{obs}))$.

Simulation of the test statistic under the null hypothesis

•	Default value:	$B \approx 10^3$
•	Complexity:	$(d^2 + 7Bd) n^2$

Numerical study of the statistical power

- Back to the Ishigami function
 - ✓ **Additional term** chosen to boost HSIC-ANOVA interactions.

 $Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2) \quad \text{with} \quad \begin{array}{l} U_i \sim \mathcal{U}([0, 1]) \\ X_i = \pi (2U_i - 1) \end{array}$

Design parameter

 $\checkmark \gamma = 0$

Separation rate

✓ Distributions of $\widehat{\boldsymbol{T}}_i(\boldsymbol{Z}_{obs})$ under (H_0^i) et (H_1^i)

- > Study of the statistical power
 - \checkmark Sample size n = 50
 - ✓ Number of replicates M = 200

	U ₁	U ₂	U ₃
HSIC	0.88	0.07	0.22
Total-order	0.87	0.19	0.19

Numerical study of the statistical power

- Back to the Ishigami function
 - Additional term chosen to boost HSIC-ANOVA interactions. \checkmark

with $X_i = \pi (2U_i - 1)$ $Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2)$

Design parameter

 $\checkmark \gamma = 10$

- Study of the statistical power \geq
 - Sample size n = 50 \checkmark
 - \checkmark Number of replicates M = 200

	U ₁	U ₂	U ₃
HSIC	0.59	0.63	0.05
Total-order	0.92	0.94	0.07

Increased power when $S_i^{\text{HSIC}} \ll T_i^{\text{HSIC}}$ **Same power** when $S_i^{\text{HSIC}} \approx T_i^{\text{HSIC}}$

> Separation rate

✓ Distributions of $\hat{T}_i(Z_{obs})$ under (H_0^i) et (H_1^i)

 $U_i \sim U([0,1])$

Numerical study of the statistical power

- Back to the Ishigami function
 - Additional term chosen to boost HSIC-ANOVA interactions. \checkmark

with $X_i = \pi (2U_i - 1)$ $Y = g(U_1, U_2, U_3) = \text{ishigami}(X_1, X_2, X_3) + \gamma \cos(\pi U_1) \cos(\pi U_2)$

Design parameter

 $\checkmark \gamma = 100$

- Study of the statistical power \geq
 - Sample size n = 50 \checkmark
 - \checkmark Number of replicates M = 200

	U ₁	U ₂	U ₃
HSIC	0.65	0.70	0.07
Total-order	1.00	1.00	0.06

Increased power when $S_i^{\text{HSIC}} \ll T_i^{\text{HSIC}}$ **Same power** when $S_i^{\text{HSIC}} \approx T_i^{\text{HSIC}}$

> Separation rate

✓ Distributions of $\hat{T}_i(Z_{obs})$ under (H_0^i) et (H_1^i)

 $U_i \sim U([0,1])$

Benefits brought by HSIC-ANOVA indices in GSA

HSIC-ANOVA indices are **fully transparent** sensitivity measures **able to perform screening and ranking!**

In many situations, the test of independence based on T_i^{HSIC} is more powerful!

GSA requirements	T _i	$HSIC(X_i, Y)$	$S_i^{\rm HSIC}$	T_i^{HSIC}
ANOVA decomposition → RANKING	\checkmark	X	\checkmark	
Characterize independence → SCREENING	\checkmark			
Estimation from GIVEN DATA	X		\checkmark	\checkmark
Estimation from SMALL DATA	X		\checkmark	\checkmark
Compatibility with DEPENDENT inputs	X		X	X
INVARIANCE through monotonic transformations	\checkmark	X	X	X

Conclusion

cea

Conclusion

 \geq

- The very recent **HSIC-ANOVA indices** have enabled **significant progress in GSA** since they combine the advantages of **Sobol' indices** (variance-based GSA) and those of **HSIC indices** (kernel-based GSA).
- > The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
- > The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
- > Variable selection can be performed with test procedures based on HSIC-ANOVA indices.
- ➢ Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Traditional benchmarks

Ishigami, Friedman, Morris...

Specific benchmarks

- ✓ Hand-made use cases.
- ✓ Test functions in optimization.
- ✓ Flexible metafunction framework.

$$S_i^{HSIC} \lesssim T_i^{HSIC}$$

 $\operatorname{Power}(\widehat{\mathcal{S}}_i) \approx \operatorname{Power}(\widehat{\operatorname{HSIC}}_{\mathcal{N}}) \approx \operatorname{Power}(\widehat{\mathcal{T}}_i)$

 $\operatorname{Power}(\widehat{\mathcal{S}}_i) \ll \operatorname{Power}(\widehat{\operatorname{HSIC}}_{\mathcal{N}}) \ll \operatorname{Power}(\widehat{\mathcal{T}}_i)$

Conclusion

- The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
- > The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
- > The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
- > Variable selection can be performed with test procedures based on HSIC-ANOVA indices.
- ▶ Using the total-order HSIC-ANOVA indices leads to **more powerful** test procedures.

Publications

- ➢ Preprint → https://cea.hal.science/cea-04320711/document
- ➢ Conference paper → https://cea.hal.science/cea-03701170v1/document

Codes

- Two dedicated routines the R package sensitivity
 - ✓ sensiHSIC → https://rdrr.io/cran/sensitivity/man/sensiHSIC.html
 - ✓ testHSIC → https://rdrr.io/cran/sensitivity/man/testHSIC.html

Key papers (1/3)

- Albert, M., Laurent, B., Marrel, A. & Meynaoui, A. (2022). Adaptive test of independence based on HSIC measures. The Annals of Statistics, 50(2), 858-879.
- Binois, M. & Wycoff, N. (2022). A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and Optimization, 2(2), 1-26.
- Baldeaux, J. & Dick, J. (2009). QMC rules of arbitrary high order: reproducing kernel Hilbert space approach. Constructive Approximation, 30, 495-527.
- Da Veiga, S. (2015). Global sensitivity analysis with dependence measures. *Journal of Statistical Computation and Simulation*, 85(7), 1283-1305.
- Da Veiga, S. (2021). Kernel-based ANOVA decomposition and Shapley effects Application to global sensitivity analysis. Preprint arXiv:2101.05487.
- De Lozzo, M. & Marrel, A. (2016). New improvements in the use of dependence measures for sensitivity analysis and screening. *Journal of Statistical Computation and Simulation*, 86(15), 3038-3058.
- Dick, J., Nuyens, D. & Pillichshammer, F. (2014). Lattice rules for nonperiodic smooth integrands. Numerische Mathematik, 126, 259-291.
- Dick, J., Hinrichs, A. & Pillichshammer, F. (2015). Proof techniques in quasi-Monte Carlo theory. *Journal of Complexity*, 31(3), 327-371.
- El Amri, M. R. & Marrel, A. (2022). Optimized HSIC-based tests for sensitivity analysis: Application to thermal-hydraulic simulation of accidental scenario on nuclear reactor. *Quality and Reliability Engineering International*, 38(3), 1386-1403.
- El Amri, M. R. & Marrel, A. (2023). More powerful HSIC-based independence tests, extension to space-filling designs and functional data. Preprint available at: <u>https://cea.hal.science/cea-03406956/</u>

Key papers (2/3)

- Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Algorithmic Learning Theory: 16th International Conference, ALT 2005, Singapore, October 8-11, 2005. Proceedings 16 (pp. 63-77). Springer Berlin Heidelberg.
- Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B. & Smola, A. (2006). A kernel method for the two-sampleproblem. Advances in Neural Information Processing Systems, 19.
- Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B. & Smola, A. (2007). A kernel statistical test of independence. Advances in Neural Information Processing Systems, 20.
- Gu, C. (2013). Smoothing Spline ANOVA Models (Vol. 297). Springer Science & Business Media.
- looss, B. & Marrel, A. (2019). Advanced methodology for uncertainty propagation in computer experiments with large number of inputs. *Nuclear Technology*, 205(12), 1588-1606.
- Kuo, F., Sloan, I., Wasilkowski, G. & Woźniakowski, H. (2010). On decompositions of multivariate functions. *Mathematics of computation*, 79(270), 953-966.
- Marrel, A., looss, B. & Chabridon, V. (2022). The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel Applications in thermal-hydraulics. *Nuclear Science and Engineering*, 196(3), 301-321.
- Muandet, K., Fukumizu, K., Sriperumbudur, B. & Schölkopf, B. (2017). Kernel mean embedding of distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2), 1-141.
- Pfister, N., Bühlmann, P., Schölkopf, B. & Peters, J. (2018). Kernel-based tests for joint independence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 80(1), 5-31.
- Serfling, R. J. (2009). Approximation Theorems of Mathematical Statistics. John Wiley & Sons.

Key papers (3/3)

- Sejdinovic, D., Sriperumbudur, B., Gretton, A. & Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. *The Annals of Statistics*, 2263-2291.
- **Sobol', I. M. (1993).** Sensitivity analysis for non-linear mathematical models. *Mathematical Modeling and Computational Experiment*, *1*, 407-414.
- Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Mathematics and Computers in Simulation*, 55(1-3), 271-280.
- Steinwart, I. & Christmann, A. (2008). Support Vector Machines. Springer Science & Business Media.