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Shapley effects

@ Originally defined in game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members
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Shapley effects

@ Originally defined in game theory (Shapley, 1953)

@ Attribute the value produced by a joint team to its individual
members

o Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).
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Figure: Illustration of Shapley effects (Lopez, 2021)
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Shapley effects

Adapted by Owen (2014) to variable importance in supervised machine
learning:

@ member of the team = input variable

@ value function = explained output variance
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Shapley effects

Adapted by Owen (2014) to variable importance in supervised machine
learning:

@ member of the team = input variable

@ value function = explained output variance

Regression setting
e input vector X = (XM, ... X)) c RP
e output Y € R
e dataset D, = {(X;, Yi),i = 1,...,n}, where (X;, Y;) ~ Px y.
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Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh*(X(j)) _ 1 <p|_ 1> 71V[]E[Y|X(UU{J.})]] _ V[]E[Y|X(U)]]'

U| VY]
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Shapley effects

Formally, the Shapley effect of the j-th variable is defined by
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Main property: equitably allocate contributions due to dependence and
interactions across input variables
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Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh*(X(j)) _ 1 <p|_ 1> 71V[]E[Y|X(UU{J.})]] _ V[]E[Y|X(U)]]'

D Y
e gy PN 1Y VIY]

Main property: equitably allocate contributions due to dependence and
interactions across input variables

Two obstacles arise to estimate Shapley effects:

@ the computational complexity is exponential with the dimension p
Literature: Monte-Carlo methods

Q V[E[Y|X(U)]] requires a fast and accurate estimate for all variable
subsets U C {1,...,p}
Literature: strong approximation of the conditional distributions

Objective: use random forests to improve these two features.
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Random Forests

Random forests
@ learning algorithm introduced by Breiman (2001)
@ state-of-the-art on a wide range of problems
@ ensemble method: aggregation of a large number of weak learners

@ weak learner: randomized CART tree
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CART tree

CART tree
@ piecewise constant estimate
@ construction: recursive partition of the input space

X1
X X,
Xo <ty
R, Ry, R |7W
Ry Rs
Fig Example of a decision tree and th d d fi f



Randomized CART Tree

{(X;,Y;),i € @5}

%
2¢c0lY

Double randomization:

0 = (019, 0V)
o data resampling: ©(°)
e tree optimization: ©(Y)

7/26



© Introduction

© SHAFF Algorithm
@ Algorithm
@ Convergence
@ Experiments
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@ Algorithm
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

@ sample many subsets U (typically a few hundreds) using importance
sampling
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

@ sample many subsets U (typically a few hundreds) using importance
sampling

@ estimate V[E[Y|X(Y)]] with the projected forest algorithm

© solve a weighted linear regression problem to recover Shapley effects
(Lundberg and Lee, 2017)
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

@ sample many subsets U, typically a few hundreds, based on their
occurrence frequency pum, n(U) in the random forest
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

@ sample many subsets U, typically a few hundreds, based on their
occurrence frequency pum, n(U) in the random forest

@ estimate V[E[Y|X(Y)]] with the projected forest algorithm for all
selected U and their complementary sets {1,...,p} \ U: ¥ (V)
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Figure: Partition of [0,1]? by a random tree (left side) projected on the
subspace span by X(V) = x() (right side), for p =2 and U = {1}.
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

© sample many subsets U, typically a few hundreds, based on their
occurrence frequency py n(U) in the random forest

@ estimate V[E[Y|X(Y)]] with the projected forest algorithm for all
selected U and their complementary sets {1,...,p} \ U: ¥n (V)

© solve a weighted linear regression problem to recover Shapley effects
S}w,m,, by minimizing in 3

eM,n(ﬂ)z% > () (G a(U) — BT,

Uelt, x pM,n(U)

. p—1 . .
where w(U) = (A=) and /(U) is the binary vector of

dimension p where the j-th component takes the value 1 if j € U
and 0 otherwise.
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© SHAFF Algorithm

@ Convergence
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Assumptions

The response Y € R follows
Y=m(X)+e

where
o X=(XM, . .. xP)elo,1]?

e X admits a density f such that ¢; < f(x) < ¢, with constants
c,c >0

@ m is continuous

@ the noise € is sub-Gaussian and centered
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(A2): the random forest algorithm is slightly modified to converge
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Assumptions

(A2): the random forest algorithm is slightly modified to converge

@ A node split is constrained to generate child nodes with at least a
small fraction -y > 0 of the parent node observations.

@ The split selection is slightly modified: at each tree node, the
number mtry of covariates drawn to optimize the split is set to
mtry = 1 with a small probability 6 > 0. Otherwise, with probability
1 — 6, the default value of mtry is used.

4
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(A3): tree partition is not too complex with respect to n
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Assumptions

(A2): the random forest algorithm is slightly modified to converge

@ A node split is constrained to generate child nodes with at least a
small fraction -y > 0 of the parent node observations.

@ The split selection is slightly modified: at each tree node, the
number mtry of covariates drawn to optimize the split is set to
mtry = 1 with a small probability 6 > 0. Otherwise, with probability
1 — 6, the default value of mtry is used.

(A3): tree partition is not too complex with respect to n

The asymptotic regime of a,,, the size of the subsampling without

replacement, and the number of terminal leaves t, is such that

a, <n—2,a,/n<1—k fora fixed k >0, lim a, =00, lim t, = oo,
n— o0

n—o0
and lim 2t (og@)® _ o
n—oo an .
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(A4): The number of trees and the number of Monte-Carlo sampling
grows with n

The number of Monte-Carlo sampling K, and the number of trees M,
grow with n, such that M,, — oo and n.M,/K, — 0.
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SHAFF consistency

If Assumptions (A1), (A2), (A3), and (A4) are satisfied, then SHAFF is
consistent, that is

Shu,.n - Sh*.

@ valid when inputs are dependent

@ most other Shapley algorithms are inconsistent (except brute force
approaches)
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If Assumptions (A2) and (A3) are satisfied, for all U C {1,...,p}, we
have

P (pm,,n(U) > 0) — 1.

V.

If Assumptions (A1) and (A2) are satisfied, the PRF is consistent, that is,
for all M e N* and U C {1,...,p},

Om,n(U) 2 VIE[Y XN/ VY] < v ().
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Proof

If Assumptions (A1), (A2), and (A3) are satisfied, we have

def

tmn(8) = El(v'(Z) = BT1(2))%] = ¢*(B),

where Z is a discrete random variable such that
e ZC{l,...,p}
e for UcC{l1,...,p},P(Z=U) = w(U).

A
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© SHAFF Algorithm

@ Experiments
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Competitors

@ Williamson and Feng (2020)

o Monte-Carlo sample of the variable subsets U
e brute force retraining of the forest for each U

@ SAGE (Covert et al., 2020)

o Monte-Carlo sample of the variable subsets U (using permutations)
e sample from conditional distributions assuming variable independence
o only use forest predictions to estimate V[E[Y|X)]]
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Experiment 1: a linear case

correlated centered Gaussian input vector of dimension 11
linear model: Y =38TX +¢

V[e] = 0.05 x V[Y]

X®) are appended to the data as X(12) and X(13)

two dummy Gaussian variables X(*) and X(1%) are also added.
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Experiment 1: a linear case

correlated centered Gaussian input vector of dimension 11
linear model: Y =38TX +¢

V[e] = 0.05 x V[Y]

X®) are appended to the data as X(12) and X(13)

two dummy Gaussian variables X(*) and X(1%) are also added.

’ Algorithm ‘Experiment 1‘

SHAFF 0.25
Williamson 0.64
SAGE 0.33

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.
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Experiment 1: a linear case
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Figure: Shapley effects for a linear case. Red crosses are the theoretical Shapley
effects.
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Experiment 1b: high dimension

Extension to p = 100 with noisy variables.

’ Algorithm ‘Experiment 1a‘Experiment 1b

SHAFF 0.25 0.80
Williamson 0.64 1.17
SAGE 0.33 1.16

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.
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Experiement 2: high-order interactions.

o Correlated centered Gaussian input vector of dimension 10
@ 5 noisy Gaussian variables are also added
e V[e] = 0.05 x V[Y]

Y =3v3 x XWXy 0 4+ V3 x XBXO 4
+3x XOXD 1y + XOXOV 0 g+,
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Experiement 2: high-order interactions.

o Correlated centered Gaussian input vector of dimension 10
@ 5 noisy Gaussian variables are also added
e V[e] = 0.05 x V[Y]

Y =3v3 x XWXy 0 4+ V3 x XBXO 4
+3x XOXD 1y + XOXOV 0 g+,

Algorithm ‘Experiment 2‘

SHAFF 0.15
Williamson 0.24
SAGE 0.18

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.

24 /26



Conclusion

@ SHAFF: consistent Shapley effect estimate for random forests

e Bénard, C., Biau, G., Da Veiga, S., & Scornet, E. (2022, May).
SHAFF: Fast and consistent SHApley eFfect estimates via random
Forests. In International Conference on Artificial Intelligence and
Statistics (pp. 5563-5582). PMLR.

o R/C++ package shaff
(available online: https://gitlab.com/drti/shaff)
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https://gitlab.com/drti/shaff
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