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Shapley effects

Originally defined in game theory (Shapley, 1953)
Attribute the value produced by a joint team to its individual
members

Difference of produced value between a subset of the team and the
same subteam with an additional member (averaged over all possible
subteams).

Figure: Illustration of Shapley effects (Lopez, 2021)
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Shapley effects

Adapted by Owen (2014) to variable importance in supervised machine
learning:

member of the team = input variable
value function = explained output variance

Regression setting
input vector X = (X (1), . . . ,X (p)) ∈ Rp

output Y ∈ R
dataset Dn = {(Xi ,Yi ), i = 1, . . . , n}, where (Xi ,Yi ) ∼ PX,Y .
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Shapley effects

Formally, the Shapley effect of the j-th variable is defined by

Sh⋆(X (j)) =
∑

U⊂{1,...,p}\{j}

1
p

(
p − 1
|U|

)−1V[E[Y |X(U∪{j})]]− V[E[Y |X(U)]]

V[Y ]
.

Main property: equitably allocate contributions due to dependence and
interactions across input variables

Two obstacles arise to estimate Shapley effects:

1 the computational complexity is exponential with the dimension p

Literature: Monte-Carlo methods

2 V[E[Y |X(U)]] requires a fast and accurate estimate for all variable
subsets U ⊂ {1, . . . , p}

Literature: strong approximation of the conditional distributions

Objective: use random forests to improve these two features.
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Random Forests

Random forests
learning algorithm introduced by Breiman (2001)
state-of-the-art on a wide range of problems
ensemble method: aggregation of a large number of weak learners
weak learner: randomized CART tree
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CART tree
CART tree

piecewise constant estimate
construction: recursive partition of the input space

Figure: Example of a decision tree and the associated estimated function for
p = 2 (Friedman et al., 2001).

6 / 26



Randomized CART Tree

Double randomization:
Θ = (Θ(S),Θ(V ))

data resampling: Θ(S)

tree optimization: Θ(V )

{(Xi ,Yi ), i ∈ Θ(S)}

2 ∈ Θ
(V )
1

X (2) < 0.3 X (2) ≥ 0.3

1 ∈ Θ
(V )
3

X (1) < 0.6

X (1) ≥ 0.6

1 ∈ Θ
(V )
2

X (1) < 0.4

X (1) ≥ 0.4
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1 Introduction

2 SHAFF Algorithm
Algorithm
Convergence
Experiments
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SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

1 sample many subsets U (typically a few hundreds) using importance
sampling

2 estimate V[E[Y |X(U)]] with the projected forest algorithm

3 solve a weighted linear regression problem to recover Shapley effects
(Lundberg and Lee, 2017)

10 / 26



SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

1 sample many subsets U (typically a few hundreds) using importance
sampling

2 estimate V[E[Y |X(U)]] with the projected forest algorithm

3 solve a weighted linear regression problem to recover Shapley effects
(Lundberg and Lee, 2017)

10 / 26



SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

1 sample many subsets U (typically a few hundreds) using importance
sampling

2 estimate V[E[Y |X(U)]] with the projected forest algorithm

3 solve a weighted linear regression problem to recover Shapley effects
(Lundberg and Lee, 2017)

10 / 26



SHAFF: SHApley efFects via random Forests

SHAFF proceeds in three steps:

1 sample many subsets U, typically a few hundreds, based on their
occurrence frequency p̂M,n(U) in the random forest

2 estimate V[E[Y |X(U)]] with the projected forest algorithm for all
selected U and their complementary sets {1, . . . , p} \ U: v̂M,n(U)

3 solve a weighted linear regression problem to recover Shapley effects
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Figure: Partition of [0, 1]2 by a random tree (left side) projected on the
subspace span by X(U) = X (1) (right side), for p = 2 and U = {1}.
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ℓM,n(β) =
1
K

∑
U∈Un,K

w(U)

p̂M,n(U)
(v̂M,n(U)− βT I (U))2,

where w(U) = p−1
( p
|U|)|U|(p−|U|)

and I (U) is the binary vector of

dimension p where the j-th component takes the value 1 if j ∈ U
and 0 otherwise.
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Assumptions

(A1)

The response Y ∈ R follows

Y = m(X) + ε

where
X = (X (1), . . . ,X (p)) ∈ [0, 1]p

X admits a density f such that c1 < f (x) < c2, with constants
c1, c2 > 0
m is continuous
the noise ε is sub-Gaussian and centered
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Assumptions

(A2): the random forest algorithm is slightly modified to converge

(A2)

A node split is constrained to generate child nodes with at least a
small fraction γ > 0 of the parent node observations.
The split selection is slightly modified: at each tree node, the
number mtry of covariates drawn to optimize the split is set to
mtry = 1 with a small probability δ > 0. Otherwise, with probability
1 − δ, the default value of mtry is used.

(A3): tree partition is not too complex with respect to n

(A3)

The asymptotic regime of an, the size of the subsampling without
replacement, and the number of terminal leaves tn is such that
an ≤ n − 2, an/n < 1 − κ for a fixed κ > 0, lim

n→∞
an = ∞, lim

n→∞
tn = ∞,

and lim
n→∞

2tn (log(an))
9

an
= 0.
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Assumptions

(A4): The number of trees and the number of Monte-Carlo sampling
grows with n

(A4)

The number of Monte-Carlo sampling Kn and the number of trees Mn

grow with n, such that Mn −→ ∞ and n.Mn/Kn −→ 0.
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SHAFF consistency

Theorem

If Assumptions (A1), (A2), (A3), and (A4) are satisfied, then SHAFF is
consistent, that is

ŜhMn,n
p−→ Sh⋆.

valid when inputs are dependent
most other Shapley algorithms are inconsistent (except brute force
approaches)
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Proof

Lemma

If Assumptions (A2) and (A3) are satisfied, for all U ⊂ {1, . . . , p}, we
have

P
(
p̂Mn,n(U) > 0

)
−→ 1.

Lemma

If Assumptions (A1) and (A2) are satisfied, the PRF is consistent, that is,
for all M ∈ N⋆ and U ⊂ {1, . . . , p},

v̂M,n(U)
p−→ V[E[Y |X(U)]]/V[Y ]

def
= v⋆(U).
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Proof

Lemma

If Assumptions (A1), (A2), and (A3) are satisfied, we have

ℓM,n(β)
p−→ E[(v⋆(Z )− βT I (Z ))2]

def
= ℓ⋆(β),

where Z is a discrete random variable such that
Z ⊂ {1, . . . , p}
for U ⊂ {1, . . . , p},P(Z = U) = w(U).
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Competitors

1 Williamson and Feng (2020)
Monte-Carlo sample of the variable subsets U
brute force retraining of the forest for each U

2 SAGE (Covert et al., 2020)
Monte-Carlo sample of the variable subsets U (using permutations)
sample from conditional distributions assuming variable independence
only use forest predictions to estimate V[E[Y |X(U)]]
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Experiment 1: a linear case

correlated centered Gaussian input vector of dimension 11
linear model: Y = βTX + ε

V[ε] = 0.05 × V[Y ]

X (2) are appended to the data as X (12) and X (13)

two dummy Gaussian variables X (14) and X (15) are also added.

Algorithm Experiment 1

SHAFF 0.25
Williamson 0.64

SAGE 0.33

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.
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Experiment 1: a linear case

Figure: Shapley effects for a linear case. Red crosses are the theoretical Shapley
effects.
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Experiment 1b: high dimension

Extension to p = 100 with noisy variables.

Algorithm Experiment 1a Experiment 1b

SHAFF 0.25 0.80
Williamson 0.64 1.17

SAGE 0.33 1.16

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.
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Experiement 2: high-order interactions.

Correlated centered Gaussian input vector of dimension 10
5 noisy Gaussian variables are also added
V[ε] = 0.05 × V[Y ]

Y =3
√

3 × X (1)X (2)1X (3)>0 +
√

3 × X (4)X (5)1X (3)<0

+ 3 × X (6)X (7)1X (8)>0 + X (9)X (10)1X (8)<0 + ε,

Algorithm Experiment 2

SHAFF 0.15
Williamson 0.24

SAGE 0.18

Table: Cumulative Absolute Error of SHAFF versus State-of-the-art Shapley
Algorithms.
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Conclusion

SHAFF: consistent Shapley effect estimate for random forests
Bénard, C., Biau, G., Da Veiga, S., & Scornet, E. (2022, May).
SHAFF: Fast and consistent SHApley eFfect estimates via random
Forests. In International Conference on Artificial Intelligence and
Statistics (pp. 5563-5582). PMLR.
R/C++ package shaff
(available online: https://gitlab.com/drti/shaff)

25 / 26

https://gitlab.com/drti/shaff


Questions ?
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