

Importance measures with dependent inputs: linear and non-linear cases

30/01/2025

L. Clouvel, B. Iooss, V. Chabridon EDF R&D

Plan

1. The linear case

Uncertainty quantifiation context in neutronic Basics of multivariate linear regression Multicolinearity illustration with a two-input regression model Variance-based Importance Measures : LMG and Johnson Sensitivity analysis in a neutronic study

2. The non-linear case Cooperative game theory

Shapley effects Proportional marginal effects Application to an optical filter model

3. Conclusion

Uncertainty quantifiation context in neutronic

Calculation model :

 $\vec{\Omega}.\vec{\nabla}\psi(\vec{r},E,\vec{\Omega}) + \mathbf{\Sigma}_{\mathbf{t}}(\vec{r},E)\psi(\vec{r},E,\vec{\Omega}) = \int_{0}^{\infty} dE' \int_{4\pi} d^{2}\vec{\Omega}' \mathbf{\Sigma}_{\mathbf{S}}(\vec{r},E' \to E,\vec{\Omega}.\vec{\Omega}')\psi(\vec{r},E',\vec{\Omega}') + \mathbf{Q}(\vec{r},E,\vec{\Omega})$

Interest variable :

• ψ the neutron flux.

Input variables :

 $\blacktriangleright~\sim$ 2000 variables : large size and correlations.

Approached model :

Linear regression model

The linear case : Context of our presentation

Article in press in the journal SESMO [Clo+25]

An overview of variance-based importance measures in the linear regression context: comparative analyses and numerical tests

Laura Clouvel¹, Bertrand Iooss², Vincent Chabridon², Marouane II Idrissi², and Frédérique Robin¹

¹EDF R&D, PERICLES Department, Saclay, France ²EDF R&D, PRISME Department, Chatou, France & SINCLAIR AI Lab., Saclay, France

Basics of multivariate linear regression

Framework and notations

Experimental design

 n observations (R-valued) of an explained random variable Y and of d explanatory random variables X = (X₁,...,X_d) :

$$\left(\mathbf{X}^{n},\mathbf{y}^{n}\right) = \left(\mathbf{x}_{1}^{(i)},\ldots,\mathbf{x}_{d}^{(i)},y^{(i)}\right)_{i=1,\ldots,n}$$

Assumption. without any loss of generality

$$\mathbb{E}[X_j] = 0$$
 for $j = 1, ..., d$ and $\mathbb{E}[Y] = 0$

Basics of multivariate linear regression

Framework and notations

Multivariate linear regression model

 $Y = \boldsymbol{X}\beta + \varepsilon.$

• where $\beta = (\beta_1, \dots, \beta_d)^\top \in \mathbb{R}^d$ is the vector of coefficients,

 \blacktriangleright ε is a random error assumed to be Gaussian and centered.

Assumption. $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ and $\mathbb{E}[\varepsilon | \mathbf{X}] = 0$.

For each observation i = 1, ..., n, $y^{(i)} = x^{(i)}\beta + \varepsilon^{(i)}$ where for all i = 1, ..., n, the $\varepsilon^{(i)}$ s are independent and identically distributed with the same law as ε . Therefore, determine :

$$\mathbb{E}\left[\boldsymbol{Y}|\boldsymbol{X} = \left(\mathbf{x}_{1}^{(i)}, \dots, \mathbf{x}_{d}^{(i)}\right)\right] = \mathbf{x}^{(i)}\boldsymbol{\beta}.$$

Basics of multivariate linear regression

Framework and notations

Estimating model coefficients β

Hypothesis. The sample size is large enough $(n \gg d)$, and the matrix $\mathbf{X}^{n\top}\mathbf{X}^{n}$ is positive-definite.

The unbiased maximum likelihood estimator (Ordinary Least Squares [Chr90]) :

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{n\top}\mathbf{X}^{n})^{-1}\mathbf{X}^{n\top}\mathbf{y}^{n}.$$

Coefficient of determination

• Quantify the **output variability captured** by the linear regression model : $R^{2} = R^{2}_{Y(X)} := 1 - \frac{\mathbb{E}\left[\mathbb{V}(Y|X)\right]}{\mathbb{V}(Y)} = \frac{\mathbb{V}(\mathbb{E}[Y|X])}{\mathbb{V}(Y)}.$

The R^2 decomposition

The Variance-based importance measures (VIM) describe the impact of input data on **output dispersion** and are equivalent to partition R^2 among the *d* inputs

Criteria for R^2 decomposition

Four basic desirability criteria can be sought after for a VIM (according to Grothendieck [Gro07]) :

- (C₁) Proper decomposition : the sum of all shares should be equal to the total variance;
- ▶ (C₂) Non-negativity : all shares should be nonnegative ;
- (C_3) *Exclusion* : if $\beta_j = 0$, then the share of X_j should be zero;
- (C_4) Inclusion : if $\beta_j \neq 0$, then the share of X_j should be nonzero.

An additional criterion that is sometimes mentioned in the literature, but more related to regularization-based techniques [ZH05; Wal19] :

• (C_5) Grouping : shares tend to equate for highly correlated inputs.

Multicolinearity illustration

Two-input regression model

An illustrative example :

Two-input regression model

Consider the linear regression model (for d = 2) of the output Y with X_1 and X_2 .

$$b_1 := \beta_1 \sigma_1, \quad b_2 := \beta_2 \sigma_2, \text{ and } r := r_{X_1, X_2}.$$

The coefficient of determination is :

$$R^{2} = \frac{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2}}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}}$$

Metrics to deal with multicollinearity

Venn diagrams illustrating the challenges of the multicollinearity framework :

9/42

Shapley Values in regression model :

- inspired from the cooperative game [Sha53],
- measure the average marginal contribution of each variable X_j to all possible combinations of variables in a regression model :

$$\psi_j = \frac{1}{d!} \sum_{\pi \in \mathcal{S}_D} \Delta_{\pi}(X_j)$$

where :

- S_D is the set of all permutations of $D = \{1, \ldots, d\}$,
- $\Delta_{\pi}(X_j) = c(v \cup j) c(v)$ the marginal performance difference of the model between the permutation π with and without X_j ,
- v the list of indices preceding j in the order π .

Owen[Owe14] proposes to set the function c such as :

$$c(v) = rac{\mathbb{V}(\mathbb{E}[Y|oldsymbol{X}_v])}{\mathbb{V}(Y)}$$

In the linear regression context, Lindeman-Merenda-Gold indices [LMG80] :

► LMG_j average the additional explanatory power of X_j in each subset X_{v∪{j}} defined for all the permutations of D = {1,...,d}:

$$\mathsf{LMG}_j = \frac{1}{d!} \sum_{\pi \in \mathcal{S}_D} r_{Y,(X_j | \boldsymbol{x}_\pi)}^2$$

where

- the squared SPCC $r_{Y,(X_j|\mathbf{X}_{\pi})}^2 = R_{Y(\mathbf{X}_{\nu \cup \{j\}})}^2 R_{Y(\mathbf{X}_{\nu})}^2$
- gives the additional explanatory power of X_j in the model $Y(X_{v \cup \{j\}})$.

$$LMG_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \qquad LMG_{2} = \frac{b_{2}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{1}^{2} - b_{2}^{2})}{b_{2}^{2} + 2b_{1}b_{2}r + b_{1}^{2} + \sigma_{\varepsilon}^{2}} = \frac{a + b/2}{a + b + c + \sigma_{\varepsilon}^{2}}$$

LMG redistributes b equally between the portions attributed to X_1 and X_2 .

With correlated inputs : $r \neq 0$

$$\mathsf{LMG}_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \quad \mathsf{LMG}_{2} = \frac{b_{2}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{1}^{2} - b_{2}^{2})}{b_{2}^{2} + 2b_{1}b_{2}r + b_{1}^{2} + \sigma_{\varepsilon}^{2}}$$

\mathcal{C}_{1}	Proper decomposition	$\sum_{j} IM_{j} = R^{2}$	YES
\mathcal{C}_{2}	Non-negativity	for all $j, IM_j \ge 0$	YES
\mathcal{C}_{3}	Exclusion	$if \beta_j = 0, IM_j = 0$	NO if $r \neq 0$
\mathcal{C}_4	Inclusion	$if eta_j eq 0, IM_j eq 0$	YES
\mathcal{C}_{5}	Grouping	shares equate for high correlations	YES
			$LMG_1 = LMG_2$, if $r = 1$

Johnson indices

Drawback of LMG :

▶ its exponential complexity : one needs to perform 2^d - 1 different linear regressions.

The Johnson indices [Joh66; Joh00] :

Xⁿ ∈ ℝ^{n×d} is transformed in an orthogonal matrix Zⁿ ∈ ℝ^{n×d} in the least square sense. It consists in finding Zⁿ and W ∈ ℝ^{d×d} such as :

$$\begin{cases} \mathbf{X}^{n} = \mathbf{Z}^{n} \mathbf{W} \\ (\mathbf{Z}^{n})^{\top} \mathbf{Z}^{n} = \mathbf{I} \\ \mathbf{Z}^{n} = \operatorname{arg\,min}_{\mathbf{\Pi}^{n}} \operatorname{Tr} (\mathbf{X}^{n} - \mathbf{\Pi}^{n})^{\top} (\mathbf{X}^{n} - \mathbf{\Pi}^{n}) \end{cases}$$

The Johnson indices [Joh66; Joh00] :

▶ Johnson shows that the solution is to define $P^n \in \mathbb{R}^{n \times d}$ and $Q \in \mathbb{R}^{d \times d}$ thanks to the singular value decomposition of X^n :

$$\mathbf{X}^n = \mathbf{P}^n \mathbf{\Delta} \mathbf{Q}^\top.$$

and compute the orthogonal matrix Zⁿ and the weight matrix W thanks to the following equations :

$$\mathbf{Z}^n = \mathbf{P}^n \mathbf{Q}^\top$$
 and $\mathbf{W} = \mathbf{Q} \mathbf{\Delta} \mathbf{Q}^\top$.

Johnson indices

The **Johnson index** associated with the input X_j is finally expressed as :

- A first least square regression of yⁿ on Zⁿ gives the vector of the standardized regression coefficient α^{*} of the model Y(Z).
- The d linear combinations between Xⁿ and Zⁿ gives the weights W* allowing to come back to the initial observations Xⁿ.

With a linear relation hypothesis between Y and X:

The Johnson indices are equal to the LMG indices in the case of a two-input model.

$$J_1 = LMG_1 = \frac{b_1^2 + b_1b_2r + \frac{r^2}{2}(b_2^2 - b_1^2)}{b_1^2 + 2b_1b_2r + b_2^2 + \sigma_{\varepsilon}^2} \quad J_2 = LMG_2 = \frac{b_2^2 + b_1b_2r + \frac{r^2}{2}(b_1^2 - b_2^2)}{b_2^2 + 2b_1b_2r + b_1^2 + \sigma_{\varepsilon}^2}$$

► They give empirically similar results for a higher-dimensional input data (d ≥ 3).

Assessment of the neutron irradiation contributing to the aging of the reactor vessel [Clo19]

- ▶ The neutron flux is calculated to be compared with the measured flux.
- The calculation gives a prediction of the neutron flux received by the vessel, which is not measured.

Calculation model :

 $\vec{\Omega}.\vec{\nabla}\psi(\vec{r},E,\vec{\Omega}) + \mathbf{\Sigma_t}(\vec{r},E)\psi(\vec{r},E,\vec{\Omega}) = \int_0^\infty dE' \int_{4\pi} d^2 \vec{\Omega}' \mathbf{\Sigma_S}(\vec{r},E' \to E,\vec{\Omega}.\vec{\Omega}')\psi(\vec{r},E',\vec{\Omega}') + \mathbf{Q}(\vec{r},E,\vec{\Omega})$

Interest variable :

 $\blacktriangleright \psi$ the neutron flux.

Input variables :

the power of 25 assemblies

Approached model :

Linear regression model

The SRC² indices (blue) of the assemblies A9, B10, B11 are the highest.
 The SRC² indices only explain 75% of the output variance.

The variables with a stronger correlation with A9, B10, B11 have a higher Johnson/Shapley index than the associated SRC² index.

- The power map is based on calculation and measures. Some powers are measured and the value of the other variables are reconstructed thanks to measured assemblies.
- The variables positioned next to a measured and influential power in the model have a higher Johnson/Shapley index than that of SRC².

22/42

Plan

1. The linear case

Uncertainty quantifiation context in neutronic Basics of multivariate linear regression Multicolinearity illustration with a two-input regression model Variance-based Importance Measures : LMG and Johnson Sensitivity analysis in a neutronic study

2. The non-linear case Cooperative game theory

Shapley effects Proportional marginal effects Application to an optical filter model

3. Conclusion

The nonlinear case : Context of our presentation

Article in SIAM/ASA JUQ [Hér+24]

SIAM/ASA J. UNCERTAINTY QUANTIFICATION Vol. 12, No. 2, pp. 667–692 © 2024 Society for Industrial and Applied Mathematics and American Statistical Association

Proportional Marginal Effects for Global Sensitivity Analysis*

Margot Herin[†], Marouane II Idrissi^{\$}, Vincent Chabridon^{\$}, and Bertrand Iooss^{\$}

Pitch

Given random inputs X_1, \ldots, X_d and a random output $G(X_1, \ldots, X_d)$, how much each input contribute to $\mathbb{V}(G(X_1, \ldots, X_d))$?

G is a deterministic black-box model :

- Numerical model (e.g., simulation codes)
- Learned ML/DL models (e.g., post-hoc interpretations).

The inputs X_1, \ldots, X_d are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the **Shapley effects** [Owe14; IP19].

Pitch

Given random inputs X_1, \ldots, X_d and a random output $G(X_1, \ldots, X_d)$, how much each input contribute to $\mathbb{V}(G(X_1, \ldots, X_d))$?

G is a deterministic black-box model :

- Numerical model (e.g., simulation codes)
- Learned ML/DL models (e.g., post-hoc interpretations).

The inputs X_1, \ldots, X_d are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the **Shapley effects** [Owe14; IP19].

However, exogenous inputs can be granted a non-zero contribution. Can we build interpretable indices that circumvent this drawback? Solution : Use a different allocation than the Shapley values.

"Cooperative game theory = The art of cutting a cake".

Formally, given :

A set of players $D = \{1, \dots, d\}$, and the subsequent set of coalitions $\mathcal{P}(D)$.

A value function $v : \mathcal{P}(D) \to \mathbb{R}$ quantifying the value produced by each coalition.

(D, v) defines a cooperative game.

Main question : How can we redistribute v(D) among the players?

Cooperative game theory Cooperative game theory

"Cooperative game theory = The art of cutting a cake".

Formally, given :

A set of players $D = \{1, \dots, d\}$, and the subsequent set of coalitions $\mathcal{P}(D)$.

A value function $v : \mathcal{P}(D) \to \mathbb{R}$ quantifying the value produced by each coalition.

(D, v) defines a cooperative game.

Main question : How can we redistribute v(D)among the players? Answer : By using

allocations!

Allocation : description of the "cake-cutting" process.

Random order allocations

Allocating "the whole cake and nothing but the cake" is ensured by two criteria : Efficiency : $\sum_{i=1}^{d} \phi_i = v(D)$ (The whole cake). Nonnegativity : $\forall i \in D$, $\phi_i \ge 0$ (Nothing but the cake).

Random order allocations

Allocating "the whole cake and nothing but the cake" is ensured by two criteria : Efficiency : $\sum_{i=1}^{d} \phi_i = v(D)$ (The whole cake). Nonnegativity : $\forall i \in D$, $\phi_i \ge 0$ (Nothing but the cake).

Random order allocations (or the Weber set [Web88]) are a **class of allocations** that are **always efficient**. They can be written $\forall i \in D$, as :

$$\phi_i = \sum_{\pi \in \mathcal{S}_D} p(\pi) \left[v \left(C_{\pi(i)}(\pi) \right) - v \left(C_{\pi(i)-1}(\pi) \right) \right].$$

where S_D is the set of permutations of D and : $C_{\pi(i)-1}(\pi)$ is the set of players **before** i in π . $C_{\pi(i)}(\pi) = C_{\pi(i)-1}(\pi) \cup \{i\}$

 $p(\pi)$ assigns a probability to every permutation $\pi \in S_D$.

Random order allocations

Allocating "the whole cake and nothing but the cake" is ensured by two criteria : Efficiency : $\sum_{i=1}^{d} \phi_i = v(D)$ (The whole cake). Nonnegativity : $\forall i \in D$, $\phi_i \ge 0$ (Nothing but the cake).

Random order allocations (or the Weber set [Web88]) are a **class of allocations** that are **always efficient**. They can be written $\forall i \in D$, as :

$$\phi_i = \sum_{\pi \in \mathcal{S}_D} p(\pi) \left[v \left(C_{\pi(i)}(\pi) \right) - v \left(C_{\pi(i)-1}(\pi) \right) \right].$$

where S_D is the set of permutations of D and : $C_{\pi(i)-1}(\pi)$ is the set of players **before** i in π . $C_{\pi(i)}(\pi) = C_{\pi(i)-1}(\pi) \cup \{i\}$

 $p(\pi)$ assigns a **probability to every permutation** $\pi \in S_D$.

A choice of $p \implies$ An efficient allocation

Shapley effects Shapley values

The Shapley values is a random order allocation with the choice :

$$p(\pi) = rac{1}{d!}, \quad orall \pi \in \mathcal{S}_D,$$

and they can be interpreted as

"[...] an a priori assessment of the situation, based on either ignorance or disregard of the social organization of the players." - L. S. Shapley [Sha53]

They are a **uniform prior on the underlying redistribution process**, leading to an **egalitarian allocation principle.**

Shapley effects Shapley effects

By analogy between players and inputs, [Owe14] proposed to study the game :

$$(D, S^{T}), \text{ where } \forall A \in \mathcal{P}(D), \quad S_{A}^{T} = \frac{\mathbb{E}[\mathbb{V}(\mathcal{G}(X) \mid X_{\overline{A}})]}{\mathbb{V}(\mathcal{G}(X))}.$$

The **Shapley effects** are the Shapley values of (D, S^T) [SNS16].

Shapley effects Shapley effects

By analogy between players and inputs, [Owe14] proposed to study the game :

$$(D, S^{\mathsf{T}}), \text{ where } \forall A \in \mathcal{P}(D), \quad S_{A}^{\mathsf{T}} = \frac{\mathbb{E}[\mathbb{V}(\mathcal{G}(X) \mid X_{\overline{A}})]}{\mathbb{V}(\mathcal{G}(X))}$$

The **Shapley effects** are the Shapley values of (D, S^T) [SNS16].

Since S^{T} is monotonic and $S_{D}^{T} = 1$, the **Shapley effects are efficient and nonnegative** : They can be interpreted as shares of variance allocated to each input. They are a suitable solution for importance quantification with dependent inputs.

Shapley effects Shapley effects

By analogy between players and inputs, [Owe14] proposed to study the game :

$$(D, S^{T}), \text{ where } \forall A \in \mathcal{P}(D), S_{A}^{T} = \frac{\mathbb{E}[\mathbb{V}(G(X) \mid X_{\overline{A}})]}{\mathbb{V}(G(X))}$$

The **Shapley effects** are the Shapley values of (D, S^T) [SNS16].

Since S^{T} is monotonic and $S_{D}^{T} = 1$, the **Shapley effects are efficient and** nonnegative : They can be interpreted as shares of variance allocated to each input. They are a suitable solution for importance quantification with dependent inputs.

However, they do not detect exogenous inputs :

$$G(X) = X_1 + X_2, \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \rho \\ 0 & 1 & 0 \\ \rho & 0 & 1 \end{pmatrix} \right),$$

Sh₁ = 0.5 - $\rho^2/4$, Sh₂ = 0.5, Sh₃ = $\rho^2/4 > 0$ if $\rho \neq 0$.

Proportional values

Is it possible to find a suitable *p*, whose **indices detect exogenous inputs**?

Proportional values

Is it possible to find a suitable p, whose indices detect exogenous inputs?

Yes with the **proportional values** [Ort00], based on a **proportional allocation principle** for **positive games**. If $\forall A \in \mathcal{P}(D)$, v(A) > 0, the choice of *p* is :

$$p(\pi) = \frac{L(\pi)}{\sum_{\sigma \in \mathcal{S}_D} L(\sigma)}, \quad L(\pi) = \left(\prod_{j \in D} v\left(C_j(\pi)\right)\right)^{-1} = \exp\left(-\sum_{j \in D} \log v\left(C_j(\pi)\right)\right)$$

Proportional values

Is it possible to find a suitable p, whose indices detect exogenous inputs?

Yes with the **proportional values** [Ort00], based on a **proportional allocation principle** for **positive games**. If $\forall A \in \mathcal{P}(D)$, v(A) > 0, the choice of *p* is :

$$p(\pi) = \frac{L(\pi)}{\sum_{\sigma \in \mathcal{S}_D} L(\sigma)}, \quad L(\pi) = \left(\prod_{j \in D} v\left(C_j(\pi)\right)\right)^{-1} = \exp\left(-\sum_{j \in D} \log v\left(C_j(\pi)\right)\right)$$

This is the unique allocation $\phi((D, v))$ satisfying efficiency and ratio preservation [Ort00] :

$$\forall A \in \mathcal{P}(D), \frac{\phi_i(A, v)}{\phi_i(A \setminus \{j\}, v)} = \frac{\phi_j(A, v)}{\phi_j(A \setminus \{i\}, v)}$$

"...each player gains in equal proportion to that which could be obtained by each alone" [Fel00]

Remark : Shapley's allocation satisfies efficiency and equal contribution property : $\forall A \in \mathcal{P}(D), \phi_i(A, v) - \phi_i(A \setminus \{j\}, v) = \phi_j(A, v) - \phi_j(A \setminus \{i\}, v)$

A linear variance-based importance measure

The proportional marginal variance decomposition

The proportional marginal variance decomposition [Fel05] :

use of sequential sum of squares, but differ from the LMG on the averaging process over the different orderings of inputs :

$$\mathsf{PMVD}_{j} = \sum_{\pi \in \mathcal{S}_{D}} \frac{L(\pi)}{\sum_{\pi} L(\pi)} r_{Y,(X_{j}|\boldsymbol{X}_{\pi})}^{2} ,$$

where :

$$L(\pi) = \prod_{i=1}^{d-1} \left[r_{Y,(\mathbf{X}_{\pi_{i+1},\ldots,\pi_d} | \mathbf{X}_{\pi_1,\ldots,\pi_i})} \right]^{-1}.$$

A linear variance-based importance measure

The proportional marginal variance decomposition

$$\mathsf{PMVD}_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \qquad = \frac{\mathbf{a}[1 + \mathbf{b}/(\mathbf{a} + \mathbf{c})]}{\mathbf{a} + \mathbf{b} + \mathbf{c} + \sigma_{\varepsilon}^{2}}$$

Criterion fulfilled. (C_1 -Proper decomposition), (C_2 -Non-negativity), (C_3 -Exclusion), (C_4 -Inclusion) **Criterion not fulfilled**. (C_5 -Grouping)

Proportional marginal effects

We extended the proportional values to nonnegative value functions [Hér+24].

The **proportional marginal effects (PME)** are the (extended) proportional values of the game (D, S^T) .

Proposition (Exogeneity detection [Hér+24]). Let $E \in \mathcal{P}(D)$. If X_E is the largest set of exogenous inputs, then : $\forall i \in E, \quad PME_i = 0, \quad \forall j \in \overline{E}, \quad PME_j > 0.$

They are **efficient** and **nonnegative** : **interpretation as shares of the output variance.**

Proportional marginal effects Estimation

Estimating the PME/Shapley effects \iff Estimating S_A^T for every $A \in \mathcal{P}(D)$.

It can be achieved :

Via **Monte Carlo sampling** [SNS16] : no bias but requires O(d!(d-1)) model evaluations and the simulation of any inputs' combinations conditionally to any other inputs' combinations !

Given-data (i.i.d. input-output sample) via :

- a nearest-neighbor procedure [BBD20] : no new model evaluation but provides bias and requires 2^d estimates.
- SHAFF : no bias but no error estimates at this stage.

These methods are time-consuming and do not scale with the number of inputs, but the estimates can be recycled to compute Shapley and PME at once.

Ishigami Model - Exogeneity detection

The (modified) Ishigami model is given by

$$G(X) = \sin(X_1) + 7\sin^2(X_2) + 0.1X_3^4 \sin(X_1)$$

where

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} (\pi/3)^2 & 0 & 0 & \rho \\ 0 & (\pi/3)^2 & 0 & 0 \\ 0 & 0 & (\pi/3)^2 & 0 \\ \rho & 0 & 0 & (\pi/3)^2 \end{pmatrix} \right).$$

where X_4 is exogenous.

Estimation using Monte Carlo sampling, 200 repetitions.

Proportional marginal effects Ishigami Model - Exogeneity detection

36/42 **CDF**

Application to an optical filter model Feature selection

Quantification of the **transmittance performance** of an **optical filter** composed of 13 consecutive layers [Vas+10].

The inputs I_1, \ldots, I_{13} represent the **refractive index error** of each filter ($\mathcal{U}([-0.05, 0.05]))$

These errors are (highly) correlated due to the manufacturing process (Gaussian copula, $\rho = 0.95$).

The black-box model computes the **transmittance error w.r.t. the "perfect filter"** over several wavelengths.

Optical Filter

We only have access to an i.i.d. input-output sample (n = 1000).

The indices are computed using the nearest-neighbors approach (6 neighbors).

Application to an optical filter model Feature selection

Remark : Due to the estimation bias, PME cannot be pushed to zero (as would be physically expected)

Application to an optical filter model

Feature selection

Scenario : We want to build a surrogate model (Gaussian process*) of this numerical model.

Using the whole dataset : $Q^2 = 99.48\%$.

Feature selection :

- First threshold : 2.5% importance.
 - Shapley effects : No features removed.
 - **PME** : I_1 and I_3 are removed, $Q^2 = 99.14\%$.

Second threshold : 5% importance.

- Shapley effects : No features removed.
- **PME** : 7 inputs are removed, $Q^2 = 98.79\%$.

<u>Conclusion</u> : Useless inputs have been correctly identified (the strong reduction dimension only reduces to a negligible loss in Q^2)

* 5/2 Matérn covariance kernel, constant trend.

Plan

1. The linear case

Uncertainty quantifiation context in neutronic Basics of multivariate linear regression Multicolinearity illustration with a two-input regression model Variance-based Importance Measures : LMG and Johnson Sensitivity analysis in a neutronic study

2. The non-linear case Cooperative game theory

Shapley effects Proportional marginal effects Application to an optical filter model

3. Conclusion

Cooperative game theory for GSA of non-linear models :

- **Random order allocations :** reduce the allocation problem to a choice of *p*.
- Shapley : Equalize importance & Shapley's joke/correlation distortion [VW23]
 PME : Discriminative power & exogenous input detection

<u>Software</u> : R package sensitivity : LMG/Johnson/PMVD, Shapley/PME.

Perspectives :

- SHAFF-type estimation for solving the estimation cost issues
- ► High-dimensional linear model : Johnson-type approximation for PMVD

41/42

Extension of Johnson indices to nonlinear models [IC23]

Merci de votre attention !

Bibliography

- [Sha53] L.S. Shapley. "A value for n-persons game". In : Contributions to the theory of games II, Annals of mathematic studies. Sous la dir. de H.W. Kuhn et A.W. Tucker. Princeton University Press, Princeton, NJ, 1953.
- [Joh66] R. Johnson. "The minimal transformation to orthonormality". In : *Psychometrika* 31 (1966), p. 61-66.
- [LMG80] R. H. Lindeman, P. F. Merenda et R. Z. Gold. Introduction to bivariate and multivariate analysis. Glenview, IL : Scott Foresman et Company, 1980.
- [Web88] R. J. Weber. "Probabilistic values for games". English. In : The Shapley Value. 1st. Cambridge University Press, oct. 1988, p. 101-120.
- [Fel00] B. Feldman. "The proportional value of a cooperative game". In : Econometric Society World Congress 2000 Contributed papers. 1140. Econometric Society, 2000.
- [Joh00] J.W. Johnson. "A heuristic method for estimating the relative weight of predictor variables in multiple regression". In : *Multivariate Behavioral Research* 35 (2000), p. 1-19.

- [Ort00] K. M. Ortmann. "The proportional value for positive cooperative games". English. In : *Mathematical Methods of Operations Research* (*ZOR*) 51.2 (2000), p. 235-248.
- [Fel05] B. Feldman. "Relative Importance and Value". In : SSRN Electronic Journal (mars 2005). doi : 10.2139/ssrn.2255827.
- [ZH05] Hui Zou et Trevor Hastie. "Regularization and Variable Selection via the Elastic Net". In : Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67.2 (2005), p. 301-320.
- [Grö07] U. Grömping. "Estimators of relative importance in linear regression based on variance decomposition". In : *The American Statistician* 61.2 (2007).
- [Vas+10] Olivier Vasseur et al. "High-dimensional sensitivity analysis of complex optronic systems by experimental design : applications to the case of the design and the robustness of optical coatings". In : Chinese Optics Letters 8(s1) (2010), p. 21-24.
- [Owe14] A.B. Owen. "Sobol' indices and Shapley value". In : *SIAM/ASA Journal on Uncertainty Quantification* 2 (2014), p. 245-251.

- [SNS16] E. Song, B.L. Nelson et J. Staum. "Shapley effects for global sensitivity analysis : Theory and computation". In : SIAM/ASA Journal on Uncertainty Quantification 4 (2016), p. 1060-1083.
- [Clo19] L. Clouvel. Uncertainty quantification of the fast flux calculation for a *PWR vessel*. Thèse de l'Université Paris-Saclay, 2019.
- [IP19] B. looss et C. Prieur. "Shapley effects for sensitivity analysis with dependent inputs : comparisons with Sobol' indices, numerical estimation and applications". In : International Journal for Uncertainty Quantification 9 (2019), p. 493-514.
- [Wal19] H. Wallard. "Grouping Property and Decomposition of Explained Variance in Linear Regression". In : Data Analysis and Applications 1 : Clustering and Regression, Modeling-estimating, Forecasting and Data Mining. Sous la dir. de C.H. Skiadas et J.R. Bozeman. Wiley, 2019, p. 73-89.
- [BBD20] B. Broto, F. Bachoc et M. Depecker. "Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution". In : SIAM/ASA Journal on Uncertainty Quantification 8 (2020), p. 693-716.

- [IC23] B. looss et L. Clouvel. "Une méthode d'approximation des effets de Shapley en grande dimension". In : Actes des 54èmes Journées de Statistique de la Société Française de Statistique (SFdS), July 2023, Brussels, Belgium. 2023.
- [VW23] I. Verdinelli et L. Wasserman. "Feature Importance : A Closer Look at Shapley Values and LOCO". In : Preprint, arXiv :2303.05981 (2023).
- [Hér+24] M. Hérin et al. "Proportional marginal effects for global sensitivity analysis". In : SIAM/ASA Journal of Uncertainty Quantification 12 (2024), p. 667-692.
- [Clo+25] L. Clouvel et al. "An overview of variance-based importance measures in the linear regression context : comparative analyses and numerical tests". In : Socio-Environmental Systems Modelling, In press (2025).
- [Chr90] R. Christensen. *Linear models for multivariate, time series and spatial data*. Springer-Verlag, 1990.

