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Uncertainty quantifiation context in neutronic

— i —>
Input data ——> Calculation model j——> Output Variable
— Y = f(X) —

I

Calculation model :

Sensitivity analysis

QVU(7, E.Q) + By(F EY(7 B, Q) = [ dE' [, *Q'Ss(F B — B, Q)R E', ) + Q(F. E., ()

Interest variable :

» ) the neutron flux.
Input variables :

» ~ 2000 variables : large size and correlations.
Approached model :

» Linear regression model
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The linear case : Context of our presentation

Article in press in the journal SESMO [Clo+25]

Socio-Environmental Systems Modelling

SESMD| An International, Community Driven, Open Access Journal

An overview of variance-based importance measures in the
linear regression context: comparative analyses and
numerical tests

Laura Clouvel', Bertrand Tooss?, Vincent Chabridon?, Marouane 11 Idrissi?, and Frédérique Robin!

'EDF R&D, PERICLES Department, Saclay, France
2EDF R&D, PRISME Department, Chatou, France & SINCLAIR Al Lab., Saclay, France
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Basics of multivariate linear regression

Framework and notations

Experimental design

» 1 observations (R-valued) of an explained random variable Y and of d
explanatory random variables X = (X1,..., Xq) :

(Xn7yn) = (xgl)7"'7xg)?y(l))l_1 n?

=1,...,

Assumption. without any loss of generality

E[Xj] =0for j=1,...,d and E[Y] =0
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Basics of multivariate linear regression

Framework and notations

Multivariate linear regression model

Y = X5 +e.

> where 8= (B1,...,84)" € R? is the vector of coefficients,

» < is a random error assumed to be Gaussian and centered.

Assumption. & ~ N(0,02) and E [¢|X] = 0.

> For each observation i = 1,..., n, y D = x4 e where foralli=1,...,n,
the (s are independent and identically distributed with the same law as ¢.
Therefore, determine :

E [Y|X - (x(li), - ,xfj))} — xg,

¢
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Basics of multivariate linear regression

Framework and notations

Estimating model coefficients /3

Hypothesis. The sample size is large enough (n > d), and the matrix X" TX" s
positive-definite.

» The unbiased maximum likelihood estimator (Ordinary Least Squares
[Chr90]) :
,6 _ (XnTXn)flanyn.

Coefficient of determination
» Quantify the output variability captured by the linear regression model :
R2_ g2 ._q_ EIVIYIX))] _ V(E[Y]X])
o v(Y) v(Y) -
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The R? decomposition

The Variance-based importance measures (VIM) describe the impact of input data
on output dispersion and are equivalent to partition R?> among the d inputs

Criteria for R?> decomposition

Four basic desirability criteria can be sought after for a VIM (according to
Grothendieck [Gro07]) :

» (C1) Proper decomposition : the sum of all shares should be equal to the
total variance;

» (C2) Non-negativity : all shares should be nonnegative;
» (C3) Exclusion : if 5; = 0, then the share of X; should be zero;

» (Ca) Inclusion : if B; # 0, then the share of Xj should be nonzero.

An additional criterion that is sometimes mentioned in the literature, but more
related to regularization-based techniques [ZHO5; Wal19] :

» (Cs) Grouping : shares tend to equate for highly correlated inputs.
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Multicolinearity illustration

Two-input regression model

An illustrative example :

Two-input regression model

Consider the linear regression model (for d = 2) of the output Y with Xy and Xz.

b1 = 310'1, bz = 520'2, and r := Xy, X2+
The coefficient of determination is :

> b242bibor+ b2
b2+ 2bybor + b2 402’

[
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Metrics to deal with multicollinearity

Venn diagrams illustrating the challenges of the multicollinearity framework :

C
. b
4 ) a 02
O¢
(a) r=0,b=0 (b) r£0,b#0

» Three circles :

» the variance of Y ; the variance of X; ; the variance of X5 .

» Two overlapping area - the additional explanatory power :
> of X1 on the regression model Y(X): a=b3(1—r?),

> of X on the regression model Y(X): ¢ = b3(1—r?).
» Thearea b: b= b2r? +2bibor + b3r?.
q
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Variance-based Importance Measures
LMG

Shapley Values in regression model :

» inspired from the cooperative game [Sha53],
» measure the average marginal contribution of each variable X; to all possible
combinations of variables in a regression model :

1
Vi = a1 Z A (X))

TESp

where :
> Sp is the set of all permutations of D = {1,...,d},
> A(Xj) = c(vUj)— c(v) the marginal performance difference of the model
between the permutation 7 with and without X;,
» v the list of indices preceding j in the order 7.
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Variance-based Importance Measures
LMG

Owen[Owel4] proposes to set the function ¢ such as :

v(Y)

In the linear regression context, Lindeman-Merenda-Gold indices [LMG80] :

> LMG; average the additional explanatory power of X; in each subset X, ;;
defined for all the permutations of D = {1,...,d} :

1
LMGJ = E Z I’\Z/V(ij(w)

TE€Sp

where
> the squared SPCC r\Z/,(xj\x,,) = Ri(xw{j}) - R¥x,)
> gives the additional explanatory power of X; in the model Y (X,uj).
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Variance-based Importance Measures

LMG
r2 r2
b2 + bybor + ?(bg—bf) b3 + bybor + E(bf—bg)
LMG; = — 5 LMGy = — 5
bf + 2bybar + b3 + o2 b3 + 2bybar + b7 + o2
a+b/2 - c+b/2
" at+btcto? " atbtcto?

LMG redistributes b equally between the portions attributed to X and X>.

[
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Variance-based Importance Measures

LMG

With correlated inputs : r £ 0

C1
Ca
C3
Ca
Cs

LMG; =

2
b2 + bybyr + %(bg -

LMGy =

Proper decomposition
Non-negativity
Exclusion

Inclusion

Grouping

b% + 2b1bor + bg -‘rO'g

2
b2 + bybor + %(bf — b3)

>, IM; = R?

for all j,IM; >0
if3; = 0,IM; =0
if3; #0,IM; # 0

shares equate for high correlations

bg + 2bybor + b% aF O'g

YES

YES

NO if r £ 0

YES

YES

LMGy = LMGy, if r =1
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Variance-based Importance Measures

Johnson indices

Drawback of LMG :

> its exponential complexity : one needs to perform 29 — 1 different linear
regressions.

The Johnson indices [Joh66 ; Joh0O0] :

> X" € R"*? is transformed in an orthogonal matrix Z" € R"*? in the least
square sense. It consists in finding Z" and W € R?*9 such as :

X" = Z'W
(z"'z" = |
Z" = argmin Tr (X" —II") T (X" — II")
r[n

[ J
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Variance-based Importance Measures

Johnson indices

The Johnson indices [Joh66; Joh0O0] :

» Johnson shows that the solution is to define P” € R"*¢ and Q € R?*¢ thanks
to the singular value decomposition of X" :

X"=P'AQ".

» and compute the orthogonal matrix Z" and the weight matrix W thanks to
the following equations :

Z"=P"'Q" and W=QAQ".
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15/42 : :EDF



Variance-based Importance Measures

Johnson indices

The Johnson index associated with the input X; is finally expressed as :

» A first least square regression of y” on Z" gives the vector of the standardized
regression coefficient a™ of the model Y (Z).

» The d linear combinations between X" and Z" gives the weights W* allowing
to come back to the initial observations X".
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Variance-based Importance Measures

Johnson indices

With a linear relation hypothesis between Y and X :

» The Johnson indices are equal to the LMG indices in the case of a two-input
model.

b2+b1b2r+ (b2—b2) b2+b1b2r+ (bz—bz)

Ji = LMG Jp = LMG
! b b§+2b1bzr+b2+ oz Z °

b3 +2b1b2r+ b2 + 02

» They give empirically similar results for a higher-dimensional input data

(d > 3).
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Sensitivity analysis in a neutronic study

Assessment of the neutron irradiation contributing to the aging of the reactor vessel

Clo19

Vessel

Capsules

Fuel assembly

» The neutron flux is calculated to be compared with the measured flux.
» The calculation gives a prediction of the neutron flux received by the vessel,
which is not measured.
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Sensitivity analysis in a neutronic study

—> i —>
Input data ——> Calculation model j——> Output Variable
— Y = f(X) —

I

Calculation model :

Sensitivity analysis

GV, E.Q) + Bo(F EY(7 B, Q) = [CdE' [, d&*G'Ss(F B — E,.Q0)0(F E', ) + Q(F. E, ()

Interest variable :

» ) the neutron flux.
Input variables :

» the power of 25 assemblies
Approached model :

» Linear regression model
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Sensitivity
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» The SRC? indices (blue) of the assemblies A9, B10, B11 are the highest.
> The SRC? indices only explain 75% of the output variance.
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Sensitivity

Assemblies where the F
power is directly measured r
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025
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» The variables with a stronger correlation with A9, B10, B11 have a higher
Johnson/Shapley index than the associated SRC? index.
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Sensitivity

Assemblies where the F
power is directly measured r
0.3
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» The power map is based on calculation and measures. Some powers are
measured and the value of the other variables are reconstructed thanks to
measured assemblies.

» The variables positioned next to a measured and influential power in the

model have a higher Johnson/Shapley index than that of SRCZ. [ ]
/ 22/42 ::EDF



Plan

1. The linear case
Uncertainty quantifiation context in neutronic
Basics of multivariate linear regression
Multicolinearity illustration with a two-input regression model
Variance-based Importance Measures : LMG and Johnson
Sensitivity analysis in a neutronic study

2. The non-linear case
Cooperative game theory
Shapley effects
Proportional marginal effects
Application to an optical filter model

3. Conclusion

23/42

s
* S €DF



The nonlinear case : Context of our presentation

Article in SIAM/ASA JUQ [Hér+24]

SIAM/ASA J. UNCERTAINTY QUANTIFICATION () 2024 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 667-602 and American Statistical Association

Proportional Marginal Effects for Global Sensitivity Analysis*

Margot Herin’, Marouane Il IdrissitiY, Vincent Chabridonf!, and Bertrand loossiY
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Pitch

Given random inputs Xi, ..., Xy and a random output G(Xi, ..., Xy), how
much each input contribute to V(G(X,...,Xy))?

G is a deterministic black-box model :

» Numerical model (e.g., simulation codes)
» Learned ML/DL models (e.g., post-hoc interpretations).

The inputs Xi, ..., Xy are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the Shapley effects
[Owel4; IP19].
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Pitch

Given random inputs Xi, ..., Xy and a random output G(Xi, ..., Xy), how
much each input contribute to V(G(X,...,Xy))?

G is a deterministic black-box model :

» Numerical model (e.g., simulation codes)
» Learned ML/DL models (e.g., post-hoc interpretations).

The inputs Xi, ..., Xy are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the Shapley effects
[Owel4; IP19].

However, exogenous inputs can be granted a non-zero contribution.

Can we build interpretable indices that circumvent this drawback ?
Solution : Use a different allocation than the Shapley values.
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Cooperative game theory

Cooperative game theory

“Cooperative game theory = The art of cutting a cake”.

Formally, given :
A set of players D = {1,...,d}, and the subsequent set of coalitions P (D).

A value function v : P (D) — R quantifying the value produced by each coalition.

(D, v) defines a cooperative game.

Main question : How can we redistribute v(D)
among the players?

[ J
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Cooperative game theory

Cooperative game theory

“Cooperative game theory = The art of cutting a cake”.

Formally, given :
A set of players D = {1,...,
A value function v : P (D) — R quantifying the value produced by each coalition.

d}, and the subsequent set of coalitions P (D).

(D, v) defines a cooperative game.
Values

Main question : How can we redistribute v(D) - .
among the players ? Answer : By using Players .~~~ Zg;g ">~ Allocation
1 : b1
i | : v({d}) :
allocations ! d u((1.2) .
Allocation : description of the “cake-cutting” N v((DY) o

process.
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Cooperative game theory

Random order allocations

Allocating “the whole cake and nothing but the cake” is ensured by two criteria :
Efficiency : 27:1 @i = v(D) (The whole cake).
Nonnegativity : Vi € D, ¢; > 0 (Nothing but the cake).

[ J
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Cooperative game theory

Random order allocations

Allocating “the whole cake and nothing but the cake” is ensured by two criteria :
Efficiency : Z?:l @i = v(D) (The whole cake).
Nonnegativity : Vi € D, ¢; > 0 (Nothing but the cake).

Random order allocations (or the Weber set [Web88]) are a class of allocations that are
always efficient. They can be written Vi € D, as :

6i =D p(m) [v (Can(m) = v (Cegy-1(m))]

TESP

where Sp is the set of permutations of D and :
Cr(iy—1(m) is the set of players before i in 7.
Cr(iy(m) = Cr(iy—1(m) U {i}

p(7) assigns a probability to every permutation m € Sp.

[ J
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Cooperative game theory

Random order allocations

Allocating “the whole cake and nothing but the cake” is ensured by two criteria :
Efficiency : 27:1 @i = v(D) (The whole cake).
Nonnegativity : Vi € D, ¢; > 0 (Nothing but the cake).

Random order allocations (or the Weber set [Web88]) are a class of allocations that are
always efficient. They can be written Vi € D, as :

6i =D p(m) [v (Can(m) = v (Cegy-1(m))]

TESP

where Sp is the set of permutations of D and :
Cr(iy—1(m) is the set of players before i in 7.
Cr(iy(m) = Cr(iy—1(m) U {i}

p(7) assigns a probability to every permutation m € Sp.

A choice of p — An efficient allocation

[ J
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Shapley effects

Shapley values

The Shapley values is a random order allocation with the choice :
1
p(m) = —, VmeSp,
d!
and they can be interpreted as

“[...] an a priori assessment of the situation, based on either ignorance or disregard
of the social organization of the players.” - L. S. Shapley [Sha53]

They are a uniform prior on the underlying redistribution process, leading to
an egalitarian allocation principle.

[ J
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Shapley effects

Shapley effects

By analogy between players and inputs, [Owel4] proposed to study the game :
E[V(G(X) | X3)]
D,ST), whereVAe P(D), S} =—"—--"+r "AZ
( ) (D). 3a V(G(X))

The Shapley effects are the Shapley values of (D,ST) [SNS16].

[ J
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Shapley effects

Shapley effects

By analogy between players and inputs, [Owel4] proposed to study the game :

E[V(6(X) | Xl
(D,ST), where VA€ P (D), Si= TX))A

The Shapley effects are the Shapley values of (D,ST) [SNS16].

Since ST is monotonic and S/ = 1, the Shapley effects are efficient and
nonnegative : They can be interpreted as shares of variance allocated to
each input. They are a suitable solution for importance quantification with
dependent inputs.

[}
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Shapley effects

Shapley effects

By analogy between players and inputs, [Owel4] proposed to study the game :
E[V(G(X) | Xzl
D,S™), whereVAe P(D), S]=—"— "2 _"AZ
The Shapley effects are the Shapley values of (D,ST) [SNS16].

Since ST is monotonic and S/ = 1, the Shapley effects are efficient and
nonnegative : They can be interpreted as shares of variance allocated to
each input. They are a suitable solution for importance quantification with
dependent inputs.

However, they do not detect exogenous inputs :

X1 0 1 0 »p
G(X):X1+X2, X=1X ~N 0],{0 1 O s
X3 0 p 0 1

Shy = 0.5 —p?/4, Shy =05, Shs=p?/4>0if p+#0.
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Proportional marginal effects

Proportional values

Is it possible to find a suitable p, whose indices detect exogenous inputs ?

[
w: %, T @DF



Proportional marginal effects
Proportional values
Is it possible to find a suitable p, whose indices detect exogenous inputs ?

Yes with the proportional values [Ort00], based on a proportional allocation
principle for positive games. If VA € P (D), v(A) > 0, the choice of p is :

-1

p(w)—z“”), ) = [ T[v(G) ] =ew |3 logv(Gim)

Jjeb JjeD
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Proportional marginal effects

Proportional values
Is it possible to find a suitable p, whose indices detect exogenous inputs ?

Yes with the proportional values [Ort00], based on a proportional allocation
principle for positive games. If VA € P (D), v(A) > 0, the choice of p is :

-1

;L) =[] v(G) =exp | — ) logv (Gi(m))

oeso L(0) jeb jeb

This is the unique allocation ¢((D, v)) satisfying efficiency and ratio preservation [Ort00] :

$i(Av) ¢i(Av)
VA € 'P(D), ¢i(A\ {J}7 v) B ¢j(A\ {i}7 V)

“...each player gains in equal proportion to that which could be obtained by each alone” [Fel00]

Remark : Shapley’s allocation satisfies efficiency and equal contribution property :

VA € P (D), ¢i(A v) = di(A\ {j}, v) = ¢j(A v) — ¢i(A\ {i}, v)

[ J
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A linear variance-based importance measure

The proportional marginal variance decomposition

The proportional marginal variance decomposition [Fel05] :

> use of sequential sum of squares, but differ from the LMG on the averaging
process over the different orderings of inputs :

PMVD; = > Z ¥.061%0) 5

weSp

where :

[ J
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A linear variance-based importance measure

The proportional marginal variance decomposition

2
,
b2 + bibar + — (b3 — b2)
PMVD; — 2 _ 2l +b/(a+c)]

b2 + 2bybor + b3 + 02 a+b+c+o?

Criterion fulfilled. (C1-Proper decomposition), (C2-Non-negativity), (C3-Exclusion), (Ca-
Inclusion)
Criterion not fulfilled. (Cs-Grouping)

[ J
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Proportional marginal effects

Proportional marginal effects

We extended the proportional values to nonnegative value functions [Hér+24].

The proportional marginal effects (PME) are the (extended) proportional
values of the game (D, ST).

Proposition (Exogeneity detection [Hér+24]).
Let E € P (D). If Xg is the largest set of exogenous inputs, then :

Vie E, PME =0, VYjcE, PME >0.

They are efficient and nonnegative : interpretation as shares of the output
variance.

[ J
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Proportional marginal effects

Estimation

Estimating the PME/Shapley effects < Estimating S/ for every
A€ P (D).

It can be achieved :
Via Monte Carlo sampling [SNS16] : no bias but requires O(d!(d — 1))
model evaluations and the simulation of any inputs’ combinations
conditionally to any other inputs’ combinations !

Given-data (i.i.d. input-output sample) via :
> a nearest-neighbor procedure [BBD20] : no new model evaluation but
provides bias and requires 27 estimates.
» SHAFF : no bias but no error estimates at this stage.

These methods are time-consuming and do not scale with the number of
inputs, but the estimates can be recycled to compute Shapley and PME at once.

[ J
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Proportional marginal effects

Ishigami Model - Exogeneity detection

The (modified) Ishigami model is given by

G(X) = sin(X1) + 7sin%(Xa) + 0.1X3 sin(X;)

where
X1 0 (7/3)? 0 0 p
X _ 0  (x/32 0 0
X=1x M| o 0 (=32 0
Xa 0 p 0 0 (n/3)?

where X, is exogenous.

Estimation using Monte Carlo sampling, 200 repetitions.

[ J
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Application to an optical filter model

Feature selection

Quantification of the transmittance performance of an
optical filter composed of 13 consecutive layers [Vas+10].

The inputs /1,..., 3 represent the refractive index error
of each filter (¢/([-0.05,0.05)))

These errors are (highly) correlated due to the
manufacturing process (Gaussian copula, p = 0.95).

The black-box model computes the transmittance error
w.r.t. the “perfect filter” over several wavelengths.

Light Beam

/

e
AN

\
LRRRY

We only have access to an i.i.d. input-output sample (n = 1000).

Optical Filter

The indices are computed using the nearest-neighbors approach (6 neighbors).

37/42
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Application to an optical filter model

Feature selection
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Remark : Due to the estimation bias, PME cannot be pushed to zero (as would be

physically expected)
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Application to an optical filter model

Feature selection

Scenario : We want to build a surrogate model (Gaussian process*) of this
numerical model.

Using the whole dataset : Q% = 99.48%.

Feature selection :
First threshold : 2.5% importance.
» Shapley effects : No features removed.
» PME : /; and /5 are removed, @ = 99.14%.

Second threshold : 5% importance.
» Shapley effects : No features removed.
> PME : 7 inputs are removed, Q% = 98.79%.

Conclusion : Useless inputs have been correctly identified (the strong reduction
dimension only reduces to a negligible loss in Q?)

* 5/2 Matérn covariance kernel, constant trend.
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390/42 : :EDF



Plan

1. The linear case
Uncertainty quantifiation context in neutronic
Basics of multivariate linear regression
Multicolinearity illustration with a two-input regression model
Variance-based Importance Measures : LMG and Johnson
Sensitivity analysis in a neutronic study

2. The non-linear case
Cooperative game theory
Shapley effects
Proportional marginal effects
Application to an optical filter model

3. Conclusion

40/42

s
* S €DF



Conclusion [ INPUTS ]

Independent Collinearity [ Dependent ]

diagnostics
Low dimension ] 1 [ Large dimension ]
j=2)
LMG/ §. Johnson /
VIE/ Shapley & ?Johnson-Shapley?
Modéle linéaire / SRC?/
Cas général Sobol’ HSIC, :
copula test =
o
PMVD / 2 o
PME L% H

Cooperative game theory for GSA of non-linear models : '
» Random order allocations : reduce the allocation problem to a choice of p.
» Shapley : Equalize importance & Shapley's joke/correlation distortion [VW23]
PME : Discriminative power & exogenous input detection

Software : R package sensitivity : LMG/Johnson/PMVD, Shapley/PME.

Perspectives :
» SHAFF-type estimation for solving the estimation cost issues
» High-dimensional linear model : Johnson-type approximation for PMVD
> Extension of Johnson indices to nonlinear models [IC23]
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https://cran.r-project.org/package=sensitivity
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