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Uncertainty quantifiation context in neutronic

fleche Calculation model :

fleche Interest variable :
▶ ψ the neutron flux.

fleche Input variables :
▶ ∼ 2000 variables : large size and correlations.

fleche Approached model :
▶ Linear regression model
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The linear case : Context of our presentation

fleche Article in press in the journal SESMO [Clo+25]
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Basics of multivariate linear regression
Framework and notations

fleche Experimental design
▶ n observations (R-valued) of an explained random variable Y and of d

explanatory random variables X = (X1, . . . ,Xd) :

(Xn, yn) =
(
x(i)1 , . . . , x

(i)
d , y

(i)
)
i=1,...,n

,

Assumption. without any loss of generality

E[Xj ] = 0 for j = 1, ..., d and E[Y ] = 0
.
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Basics of multivariate linear regression
Framework and notations

fleche Multivariate linear regression model

Y = Xβ + ε.

▶ where β = (β1, . . . , βd)
⊤ ∈ Rd is the vector of coefficients,

▶ ε is a random error assumed to be Gaussian and centered.

Assumption. ε ∼ N (0, σ2
ε) and E [ε|X ] = 0.

▶ For each observation i = 1, ..., n, y (i) = x(i)β + ε(i) where for all i = 1, . . . , n,
the ε(i)s are independent and identically distributed with the same law as ε.
Therefore, determine :

E
[
Y |X =

(
x(i)1 , . . . , x

(i)
d

)]
= x(i)β.
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Basics of multivariate linear regression
Framework and notations

fleche Estimating model coefficients β

Hypothesis. The sample size is large enough (n ≫ d), and the matrix Xn⊤Xn is
positive-definite.

▶ The unbiased maximum likelihood estimator (Ordinary Least Squares
[Chr90]) :

β̂ = (Xn⊤Xn)−1Xn⊤yn.

fleche Coefficient of determination
▶ Quantify the output variability captured by the linear regression model :

R2 = R2
Y (X ) := 1 − E [V(Y |X ))]

V(Y )
=

V(E[Y |X ])

V(Y )
.
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The R2 decomposition

The Variance-based importance measures (VIM) describe the impact of input data
on output dispersion and are equivalent to partition R2 among the d inputs

fleche Criteria for R2 decomposition
fleche Four basic desirability criteria can be sought after for a VIM (according to

Grothendieck [Grö07]) :
▶ (C1) Proper decomposition : the sum of all shares should be equal to the

total variance ;

▶ (C2) Non-negativity : all shares should be nonnegative ;

▶ (C3) Exclusion : if βj = 0, then the share of Xj should be zero ;

▶ (C4) Inclusion : if βj ̸= 0, then the share of Xj should be nonzero.

fleche An additional criterion that is sometimes mentioned in the literature, but more
related to regularization-based techniques [ZH05 ; Wal19] :
▶ (C5) Grouping : shares tend to equate for highly correlated inputs.
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Multicolinearity illustration
Two-input regression model

fleche An illustrative example :

Two-input regression model
Consider the linear regression model (for d = 2) of the output Y with X1 and X2.

b1 := β1σ1, b2 := β2σ2, and r := rX1,X2 .

The coefficient of determination is :

R2 =
b2
1 + 2b1b2r + b2

2
b2
1 + 2b1b2r + b2

2 + σ2
ε

.
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Metrics to deal with multicollinearity
fleche Venn diagrams illustrating the challenges of the multicollinearity framework :

(a) r = 0, b = 0 (b) r ̸= 0, b ̸= 0

fleche ▶ Three circles :
▶ the variance of Y ; the variance of X1 ; the variance of X2 .

▶ Two overlapping area - the additional explanatory power :
▶ of X1 on the regression model Y (X ) : a = b2

1(1 − r2) ,

▶ of X2 on the regression model Y (X ) : c = b2
2(1 − r2) .

▶ The area b : b = b2
1r

2 + 2b1b2r + b2
2r

2.
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Variance-based Importance Measures
LMG

fleche Shapley Values in regression model :
▶ inspired from the cooperative game [Sha53],
▶ measure the average marginal contribution of each variable Xj to all possible

combinations of variables in a regression model :

ψj =
1
d!

∑
π∈SD

∆π(Xj)

fleche where :
▶ SD is the set of all permutations of D = {1, . . . , d},
▶ ∆π(Xj) = c(v ∪ j)− c(v) the marginal performance difference of the model

between the permutation π with and without Xj ,
▶ v the list of indices preceding j in the order π.
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Variance-based Importance Measures
LMG

fleche Owen[Owe14] proposes to set the function c such as :

c(v) =
V(E[Y |Xv ])

V(Y )

fleche In the linear regression context, Lindeman-Merenda-Gold indices [LMG80] :
▶ LMGj average the additional explanatory power of Xj in each subset Xv∪{j}

defined for all the permutations of D = {1, . . . , d} :

LMGj =
1
d!

∑
π∈SD

r2
Y ,(Xj |Xπ)

fleche where
▶ the squared SPCC r2

Y ,(Xj |Xπ) = R2
Y (Xv∪{j})

− R2
Y (Xv )

▶ gives the additional explanatory power of Xj in the model Y (Xv∪{j}).
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Variance-based Importance Measures
LMG

LMG1 =
b2
1 + b1b2r +

r2

2
(b2

2 − b2
1)

b2
1 + 2b1b2r + b2

2 + σ2
ε

LMG2 =
b2
2 + b1b2r +

r2

2
(b2

1 − b2
2)

b2
2 + 2b1b2r + b2

1 + σ2
ε

=
a+ b/2

a+ b + c + σ2
ε

=
c + b/2

a+ b + c + σ2
ε

fleche LMG redistributes b equally between the portions attributed to X1 and X2.
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Variance-based Importance Measures
LMG

fleche With correlated inputs : r ̸= 0

LMG1 =
b2
1 + b1b2r +

r2

2
(b2

2 − b2
1)

b2
1 + 2b1b2r + b2

2 + σ2
ε

LMG2 =
b2
2 + b1b2r +

r2

2
(b2

1 − b2
2)

b2
2 + 2b1b2r + b2

1 + σ2
ε

C1 Proper decomposition
∑

j IMj = R2 YES

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 NO if r ̸= 0

C4 Inclusion if βj ̸= 0, IMj ̸= 0 YES

C5 Grouping shares equate for high correlations YES

LMG1 = LMG2, if r = 1
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Variance-based Importance Measures
Johnson indices

fleche Drawback of LMG :
▶ its exponential complexity : one needs to perform 2d − 1 different linear

regressions.

fleche The Johnson indices [Joh66 ; Joh00] :
▶ Xn ∈ Rn×d is transformed in an orthogonal matrix Zn ∈ Rn×d in the least

square sense. It consists in finding Zn and W ∈ Rd×d such as :
Xn = ZnW

(Zn)⊤Zn = I
Zn = argmin

Πn
Tr (Xn −Πn)⊤(Xn −Πn)
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Variance-based Importance Measures
Johnson indices

fleche The Johnson indices [Joh66 ; Joh00] :
▶ Johnson shows that the solution is to define Pn ∈ Rn×d and Q ∈ Rd×d thanks

to the singular value decomposition of Xn :

Xn = Pn∆Q⊤.

▶ and compute the orthogonal matrix Zn and the weight matrix W thanks to
the following equations :

Zn = PnQ⊤ and W = Q∆Q⊤.
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Variance-based Importance Measures
Johnson indices

fleche The Johnson index associated with the input Xj is finally expressed as :

Jj =
d∑

i=1

α∗2

i w∗2

ij .

▶ A first least square regression of yn on Zn gives the vector of the standardized
regression coefficient α∗ of the model Y (Z).

▶ The d linear combinations between Xn and Zn gives the weights W∗ allowing
to come back to the initial observations Xn.
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Variance-based Importance Measures
Johnson indices

fleche With a linear relation hypothesis between Y and X :

fleche ▶ The Johnson indices are equal to the LMG indices in the case of a two-input
model.

J1 = LMG1 =
b2
1 + b1b2r +

r2

2
(b2

2 − b2
1)

b2
1 + 2b1b2r + b2

2 + σ2
ε

J2 = LMG2 =
b2
2 + b1b2r +

r2

2
(b2

1 − b2
2)

b2
2 + 2b1b2r + b2

1 + σ2
ε

fleche ▶ They give empirically similar results for a higher-dimensional input data
(d ≥ 3).

17/42



Sensitivity analysis in a neutronic study

fleche

fleche Assessment of the neutron irradiation contributing to the aging of the reactor vessel
[Clo19]

▶ The neutron flux is calculated to be compared with the measured flux.
▶ The calculation gives a prediction of the neutron flux received by the vessel,

which is not measured.
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Sensitivity analysis in a neutronic study

fleche Calculation model :

fleche Interest variable :
▶ ψ the neutron flux.

fleche Input variables :
▶ the power of 25 assemblies

fleche Approached model :
▶ Linear regression model
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Sensitivity analysis in a neutronic study

fleche ▶ The SRC2 indices (blue) of the assemblies A9, B10, B11 are the highest.
▶ The SRC2 indices only explain 75% of the output variance.
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Sensitivity analysis in a neutronic study

fleche ▶ The variables with a stronger correlation with A9, B10, B11 have a higher
Johnson/Shapley index than the associated SRC2 index.
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Sensitivity analysis in a neutronic study

fleche ▶ The power map is based on calculation and measures. Some powers are
measured and the value of the other variables are reconstructed thanks to
measured assemblies.

▶ The variables positioned next to a measured and influential power in the
model have a higher Johnson/Shapley index than that of SRC2.
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The nonlinear case : Context of our presentation

fleche Article in SIAM/ASA JUQ [Hér+24]
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Pitch

fleche Given random inputs X1, . . . ,Xd and a random output G (X1, . . . ,Xd), how
much each input contribute to V(G (X1, . . . ,Xd)) ?

flecheG is a deterministic black-box model :
▶ Numerical model (e.g., simulation codes)
▶ Learned ML/DL models (e.g., post-hoc interpretations).

fleche The inputs X1, . . . ,Xd are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the Shapley effects
[Owe14 ; IP19].

fleche However, exogenous inputs can be granted a non-zero contribution.
Can we build interpretable indices that circumvent this drawback ?

fleche Solution : Use a different allocation than the Shapley values.

25/42



Pitch

fleche Given random inputs X1, . . . ,Xd and a random output G (X1, . . . ,Xd), how
much each input contribute to V(G (X1, . . . ,Xd)) ?

flecheG is a deterministic black-box model :
▶ Numerical model (e.g., simulation codes)
▶ Learned ML/DL models (e.g., post-hoc interpretations).

fleche The inputs X1, . . . ,Xd are not necessarily mutually independent. Global

sensitivity analysis (GSA) provides an answer : the Shapley effects
[Owe14 ; IP19].

fleche However, exogenous inputs can be granted a non-zero contribution.
Can we build interpretable indices that circumvent this drawback ?

fleche Solution : Use a different allocation than the Shapley values.

25/42



Cooperative game theory
Cooperative game theory

“Cooperative game theory = The art of cutting a cake” .

Formally, given :
flecheA set of players D = {1, . . . , d}, and the subsequent set of coalitions P (D).

flecheA value function v : P (D) → R quantifying the value produced by each coalition.

(D, v) defines a cooperative game.

Main question : How can we redistribute v(D)
among the players ?

Answer : By using

allocations !

Allocation : description of the “cake-cutting”
process.
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Cooperative game theory
Random order allocations

Allocating “the whole cake and nothing but the cake” is ensured by two criteria :
flecheEfficiency :

∑d
i=1 ϕi = v(D) (The whole cake).

flecheNonnegativity : ∀i ∈ D, ϕi ≥ 0 (Nothing but the cake).

Random order allocations (or the Weber set [Web88]) are a class of allocations that are
always efficient. They can be written ∀i ∈ D, as :

ϕi =
∑
π∈SD

p(π)
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
.

where SD is the set of permutations of D and :
flecheCπ(i)−1(π) is the set of players before i in π.
flecheCπ(i)(π) = Cπ(i)−1(π) ∪ {i}

p(π) assigns a probability to every permutation π ∈ SD .

A choice of p =⇒ An efficient allocation
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Shapley effects
Shapley values

The Shapley values is a random order allocation with the choice :

p(π) =
1
d!
, ∀π ∈ SD ,

and they can be interpreted as

“[...] an a priori assessment of the situation, based on either ignorance or disregard
of the social organization of the players.” - L. S. Shapley [Sha53]

They are a uniform prior on the underlying redistribution process, leading to
an egalitarian allocation principle.
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Shapley effects
Shapley effects

By analogy between players and inputs, [Owe14] proposed to study the game :

(D,ST ), where ∀A ∈ P (D) , ST
A =

E[V(G (X ) | XA)]

V(G (X ))
.

The Shapley effects are the Shapley values of (D,ST ) [SNS16].

Since ST is monotonic and ST
D = 1, the Shapley effects are efficient and

nonnegative : They can be interpreted as shares of variance allocated to
each input. They are a suitable solution for importance quantification with
dependent inputs.

However, they do not detect exogenous inputs :

G(X ) = X1 + X2, X =

X1
X2
X3

 ∼ N

0
0
0

 ,

1 0 ρ
0 1 0
ρ 0 1

 ,

Sh1 = 0.5 − ρ2/4, Sh2 = 0.5, Sh3 = ρ2/4 > 0 if ρ ̸= 0.
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Proportional marginal effects
Proportional values

Is it possible to find a suitable p, whose indices detect exogenous inputs ?

Yes with the proportional values [Ort00], based on a proportional allocation
principle for positive games. If ∀A ∈ P (D) , v(A) > 0, the choice of p is :

p(π) =
L(π)∑

σ∈SD
L(σ)

, L(π) =

∏
j∈D

v (Cj(π))

−1

= exp

−
∑
j∈D

log v (Cj(π))


This is the unique allocation ϕ((D, v)) satisfying efficiency and ratio preservation [Ort00] :

∀A ∈ P (D) ,
ϕi (A, v)

ϕi (A \ {j}, v)
=

ϕj (A, v)

ϕj (A \ {i}, v)
“. . .each player gains in equal proportion to that which could be obtained by each alone” [Fel00]

Remark : Shapley’s allocation satisfies efficiency and equal contribution property :

∀A ∈ P (D) , ϕi (A, v)− ϕi (A \ {j}, v) = ϕj (A, v)− ϕj (A \ {i}, v)
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A linear variance-based importance measure
The proportional marginal variance decomposition

fleche The proportional marginal variance decomposition [Fel05] :
▶ use of sequential sum of squares, but differ from the LMG on the averaging

process over the different orderings of inputs :

PMVDj =
∑
π∈SD

L(π)∑
π L(π)

r2
Y ,(Xj |Xπ) ,

where :

L(π) =
d−1∏
i=1

[
r2
Y ,(Xπi+1,...,πd

|Xπ1,...,πi
)

]−1
.
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A linear variance-based importance measure
The proportional marginal variance decomposition

PMVD1 =
b2
1 + b1b2r +

r2

2
(b2

2 − b2
1)

b2
1 + 2b1b2r + b2

2 + σ2
ε

=
a[1 + b/(a+ c)]

a+ b + c + σ2
ε

Criterion fulfilled. (C1-Proper decomposition), (C2-Non-negativity), (C3-Exclusion), (C4-
Inclusion)
Criterion not fulfilled. (C5-Grouping)
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Proportional marginal effects
Proportional marginal effects

We extended the proportional values to nonnegative value functions [Hér+24].

The proportional marginal effects (PME) are the (extended) proportional
values of the game (D,ST ).

Proposition (Exogeneity detection [Hér+24]).
Let E ∈ P (D). If XE is the largest set of exogenous inputs, then :

∀i ∈ E , PMEi = 0, ∀j ∈ E , PMEj > 0.

They are efficient and nonnegative : interpretation as shares of the output
variance.
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Proportional marginal effects
Estimation

Estimating the PME/Shapley effects ⇐⇒ Estimating ST
A for every

A ∈ P (D).

It can be achieved :
fleche Via Monte Carlo sampling [SNS16] : no bias but requires O(d!(d − 1))

model evaluations and the simulation of any inputs’ combinations
conditionally to any other inputs’ combinations !

fleche Given-data (i.i.d. input-output sample) via :
▶ a nearest-neighbor procedure [BBD20] : no new model evaluation but

provides bias and requires 2d estimates.
▶ SHAFF : no bias but no error estimates at this stage.

These methods are time-consuming and do not scale with the number of
inputs, but the estimates can be recycled to compute Shapley and PME at once.
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Proportional marginal effects
Ishigami Model - Exogeneity detection

The (modified) Ishigami model is given by

G (X ) = sin(X1) + 7 sin2(X2) + 0.1X3
4 sin(X1)

where

X =


X1
X2
X3
X4

 ∼ N


0

...
0

 ,


(π/3)2 0 0 ρ

0 (π/3)2 0 0
0 0 (π/3)2 0
ρ 0 0 (π/3)2


 .

where X4 is exogenous.

Estimation using Monte Carlo sampling, 200 repetitions.
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Proportional marginal effects
Ishigami Model - Exogeneity detection
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Application to an optical filter model
Feature selection

Quantification of the transmittance performance of an
optical filter composed of 13 consecutive layers [Vas+10].

The inputs I1, . . . , I13 represent the refractive index error
of each filter (U([−0.05, 0.05]))

These errors are (highly) correlated due to the
manufacturing process (Gaussian copula, ρ = 0.95).

The black-box model computes the transmittance error
w.r.t. the “perfect filter” over several wavelengths.

We only have access to an i.i.d. input-output sample (n = 1000).

The indices are computed using the nearest-neighbors approach (6 neighbors).
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Application to an optical filter model
Feature selection
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Remark : Due to the estimation bias, PME cannot be pushed to zero (as would be
physically expected)

38/42



Application to an optical filter model
Feature selection

Scenario : We want to build a surrogate model (Gaussian process*) of this
numerical model.

Using the whole dataset : Q2 = 99.48%.

Feature selection :
fleche First threshold : 2.5% importance.

▶ Shapley effects : No features removed.
▶ PME : I1 and I3 are removed, Q2 = 99.14%.

fleche Second threshold : 5% importance.
▶ Shapley effects : No features removed.
▶ PME : 7 inputs are removed, Q2 = 98.79%.

Conclusion : Useless inputs have been correctly identified (the strong reduction
dimension only reduces to a negligible loss in Q2)

* 5/2 Matérn covariance kernel, constant trend.
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Conclusion

fleche Cooperative game theory for GSA of non-linear models :
▶ Random order allocations : reduce the allocation problem to a choice of p.
▶ Shapley : Equalize importance & Shapley’s joke/correlation distortion [VW23]

PME : Discriminative power & exogenous input detection

fleche Software : R package sensitivity : LMG/Johnson/PMVD, Shapley/PME.

fleche Perspectives :
▶ SHAFF-type estimation for solving the estimation cost issues
▶ High-dimensional linear model : Johnson-type approximation for PMVD
▶ Extension of Johnson indices to nonlinear models [IC23]
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https://cran.r-project.org/package=sensitivity


Merci de votre attention !
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