Johnson indices in the context of linear regression with high-dimensional dependent inputs

24/04/2025 - SAMO Conference

L. Clouvel, B. looss, V. Chabridon EDF R&D

Uncertainty quantification context in neutronic

Sensitivity analysis

Calculation model :

 $\vec{\Omega}.\vec{\nabla}\psi(\vec{r},E,\vec{\Omega}) + \mathbf{\Sigma}_{\mathbf{t}}(\vec{r},E)\psi(\vec{r},E,\vec{\Omega}) = \int_{0}^{\infty} dE' \int_{4\pi} d^{2}\vec{\Omega}' \mathbf{\Sigma}_{\mathbf{S}}(\vec{r},E' \to E,\vec{\Omega}.\vec{\Omega}')\psi(\vec{r},E',\vec{\Omega}') + \mathbf{Q}(\vec{r},E,\vec{\Omega})$

Interest variable :

• ψ the neutron flux.

Input variables :

 $\bullet~\sim$ 2000 variables : large size and correlations.

Approached model :

• Linear regression model

Basics of multivariate linear regression

Framework and notations

Experimental design

n observations (R-valued) of an explained random variable Y and of d explanatory random variables X = (X₁,...,X_d):

$$\left(\mathbf{X}^{n},\mathbf{y}^{n}\right) = \left(\mathbf{x}_{1}^{(i)},\ldots,\mathbf{x}_{d}^{(i)},y^{(i)}\right)_{i=1,\ldots,i}$$

Assumption. without any loss of generality

$$\mathbb{E}[X_j] = 0$$
 for $j = 1, ..., d$ and $\mathbb{E}[Y] = 0$

Basics of multivariate linear regression

Framework and notations

Multivariate linear regression model

 $Y = \pmb{X}\beta + \varepsilon$

- where $\beta = (\beta_1, \dots, \beta_d)^\top \in \mathbb{R}^d$ is the vector of coefficients,
- ε is a centered and gaussion random error.

Assumption. $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ and $\mathbb{E}[\varepsilon | \mathbf{X}] = 0$.

• For each observation i = 1, ..., n, $y^{(i)} = \mathbf{x}^{(i)}\beta + \varepsilon^{(i)}$ where for all i = 1, ..., n, the $\varepsilon^{(i)}$ s are independent and identically distributed with the same law as ε . Therefore, determine :

$$\mathbb{E}\left[\boldsymbol{Y}|\boldsymbol{X} = \left(\mathsf{x}_{1}^{(i)}, \dots, \mathsf{x}_{d}^{(i)}\right)\right] = \mathbf{x}^{(i)}\beta$$

Basics of multivariate linear regression

Framework and notations

Estimating model coefficients β

Hypothesis. The sample size is large enough $(n \gg d)$, and the matrix $\mathbf{X}^{n\top}\mathbf{X}^{n}$ is positive-definite.

• The unbiased maximum likelihood estimator (Ordinary Least Squares [chr90]) :

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{n\top}\mathbf{X}^{n})^{-1}\mathbf{X}^{n\top}\mathbf{y}^{n}$$

Coefficient of determination

• Quantify the output variability captured by the linear regression model :

$$R^{2} = R^{2}_{Y(X)} := 1 - \frac{\mathbb{E}\left[\mathbb{V}(Y|X)\right]}{\mathbb{V}(Y)} = \frac{\mathbb{V}(\mathbb{E}[Y|X])}{\mathbb{V}(Y)}$$

The R^2 for constructing importance measures

Variance-based importance measures

Variance-based importance measures (VIM) [kurcoo06]

- describe the impact of input data on output dispersion,
- $\bullet\,$ equivalent to partition R^2 among the d inputs.

Variance decomposition

The R² decomposition

Variance-based importance measures

Criteria for R^2 decomposition

Four basic desirability criteria can be sought after for a VIM (according to [gro07]):

- (C_1) **Proper decomposition** : the sum of all values should be equal to 1;
- (C_2) Non-negativity : all values should be nonnegative ;
- (C_3) *Exclusion* : if $\beta_j = 0$, then the share of X_j should be zero;
- (C_4) Inclusion : if $\beta_j \neq 0$, then the share of X_j should be nonzero.

An additional criterion that is sometimes mentioned in the literature, but more related to regularization-based techniques $[{\tt zouhas05}\,;\,{\tt wal19}]$:

• (\mathcal{C}_5) Grouping : shares tend to equate for highly correlated inputs.

Multicolinearity illustration with Venn diagrams

When the variable tend to be correlated it becomes difficult to **isolate the contribution** of the variables.

· of X_2 on the regression model Y(X) : $c = b_2^2(1 - r^2)$, with $b_2 = \beta_2 \sigma_2$.

7/23

• The area b: $b = b_1^2 r^2 + 2b_1 b_2 r + b_2^2 r^2$.

Shapley Values in regression model

Variance-based Importance Measures

Inspired from the cooperative game [sha53], they measure the **average** marginal contribution of each variable X_j to all possible combinations of variables in a regression model :

$$\psi_j = rac{1}{d!} \sum_{\pi \in \mathcal{S}_D} \Delta_\pi(X_j)$$

where :

- S_D is the set of all permutations of $D = \{1, \ldots, d\}$,
- $\Delta_{\pi}(X_j) = c(v \cup j) c(v)$ the marginal performance difference of the model between the permutation π with and without X_i ,
- v the list of indices preceding j in the order π .

Owen[owe14] proposes to set the function c such as :

$$c(v) = rac{\mathbb{V}(\mathbb{E}[Y|oldsymbol{X}_{v}])}{\mathbb{V}(Y)}$$

Lindeman-Merenda-Gold indices

In the linear regression context [linmer80] :

LMG_j average the additional explanatory power of X_j in each subset X_{u∪{j}} defined for all the permutations of D = {1,..., d}:

$$\mathsf{LMG}_{j} = \frac{1}{d!} \sum_{\pi \in \mathcal{S}_{D}} r_{Y,(X_{j}|\boldsymbol{X}_{\pi})}^{2}$$

where

• the squared semi-partial correlation coefficient

$$r_{Y,(X_j|\mathbf{X}_{\pi})}^2 = R_{Y(\mathbf{X}_{u\cup\{j\}})}^2 - R_{Y(\mathbf{X}_{u})}^2$$

gives the additional explanatory power of X_j dans le modèle $Y(X_{u \cup \{j\}})$.

Variance-based Importance Measures

Johnson indices

Drawback of LMG :

• its **exponential complexity** : one needs to perform $2^d - 1$ different linear regressions.

The Johnson indices

• equal to the LMG indices in the case of a two-input model.

$$J_{i} = LMG_{i} = \frac{b_{i}^{2} + b_{i}b_{j}r + \frac{r^{2}}{2}(b_{j}^{2} - b_{i}^{2})}{b_{i}^{2} + 2b_{i}b_{j}r + b_{j}^{2} + \sigma_{\varepsilon}^{2}} \text{ with } b_{i} = \beta_{i}\sigma_{i}.$$

• give empirically similar results for a higher-dimensional input data ($d \ge 3$).

Johnson indices

The Johnson indices [johnson66; joh00] :

Xⁿ ∈ ℝ^{n×d} is transformed in an orthogonal matrix Zⁿ ∈ ℝ^{n×d} in the least square sense. It consists in finding Zⁿ and W ∈ ℝ^{d×d} such as :

$$\begin{cases} \mathbf{X}^{n} = \mathbf{Z}^{n} \mathbf{W} \\ (\mathbf{Z}^{n})^{\top} \mathbf{Z}^{n} = \mathbf{I} \\ \mathbf{Z}^{n} = \operatorname*{arg\,min}_{\mathbf{\Pi}^{n}} \operatorname{Tr} (\mathbf{X}^{n} - \mathbf{\Pi}^{n})^{\top} (\mathbf{X}^{n} - \mathbf{\Pi}^{n}) \end{cases}$$

• Solution defined thanks to the singular value decomposition of \mathbf{X}^n :

 $\mathbf{X}^n = \mathbf{P}^n \mathbf{\Delta} \mathbf{Q}^\top$ $\mathbf{Z}^n = \mathbf{P}^n \mathbf{Q}^\top \text{ and } \mathbf{W} = \mathbf{Q} \mathbf{\Delta} \mathbf{Q}^\top$

Johnson indices

The **Johnson index** associated with the input X_i is finally expressed as :

- A first least square regression of y^n on Z^n gives the vector of the standardized regression coefficient α^* of the model Y(Z).
- The *d* linear combinations between X^{*n*} and Z^{*n*} gives the *weights* W^{*} allowing to come back to the initial observations X^{*n*}.

Alternative LMG inspired by Johnson's method

1st step : Expression of the residu of the projection of X_j onto X_u

• as $X_j^{\perp u}$, the component of X_j orthogonal to X_u ,

$$X_{j} = \mathbb{E}[X_{j}|X_{u}] + X_{j}^{\perp u}$$
$$= \underbrace{X_{u}(X_{u}^{t}X_{u})^{-1}X_{u}^{t}X_{j}}_{\text{projection of }X_{j} \text{ onto }X_{u}} + \underbrace{\varepsilon_{X_{j}|X_{u}}}_{\text{orthogonal component of }X_{j}}$$

2nd step : Expression of $r_{Y(X_i|X_u)}$ as a correlation between Y and $X_i^{\perp u}$

$$r_{Y(X_j|\boldsymbol{X}_u)}^2 = \mathsf{COR}^2(Y, \boldsymbol{X}_j^{\perp \boldsymbol{u}})$$

Alternative LMG inspired by Johnson's method

(Proof.)

• Expression of three linear models :

(1):
$$Y = \mathbf{X}_{u}\boldsymbol{\rho}_{u} + \epsilon_{Y|\mathbf{X}_{u}} \qquad \boldsymbol{\rho}_{u} = (\mathbf{X}_{u}^{t}\mathbf{X}_{u})^{-1}\mathbf{X}_{u}^{t}Y$$

(2):
$$Y = \mathbf{X}_{u}\boldsymbol{e}_{u} + X_{j}\boldsymbol{e}_{j} + \epsilon_{Y|\mathbf{X}_{u}\cup X_{j}} \qquad \boldsymbol{e}_{u\cup j} = (\mathbf{X}_{u\cup j}^{t}\mathbf{X}_{u\cup j})^{-1}\mathbf{X}_{u\cup j}^{t}Y$$

(3):
$$Y = \mathbf{X}_{u}\boldsymbol{\rho}_{u} + X_{j}^{\perp u}\boldsymbol{\rho}_{j}^{\perp u} + \epsilon_{Y|\mathbf{X}_{u}\cup X_{j}^{\perp u}} \qquad \boldsymbol{\rho}_{j}^{\perp u} = (X_{j}^{\perp u^{t}}X_{j}^{\perp u})^{-1}X_{j}^{\perp u^{t}}Y$$

• (2) and (3) : same regression space :

$$\epsilon_{\boldsymbol{Y}|\boldsymbol{X}_{\boldsymbol{u}}\cup\boldsymbol{X}_{j}^{\perp\boldsymbol{u}}}=\epsilon_{\boldsymbol{Y}|\boldsymbol{X}_{\boldsymbol{u}}\cup\boldsymbol{X}_{j}}$$

• using the variance decomposition

$$r_{Y(X_j|X_u)}^2 = \frac{\mathbb{E}[\mathbb{V}(Y|X_u)] - \mathbb{E}[\mathbb{V}(Y|X_u \cup X_j)]}{\mathbb{V}(Y)}$$

Alternative LMG inspired by Johnson's method

3rd step : Translate projection operations in \boldsymbol{X} into operations in \boldsymbol{Z} .

$$r_{Y(X_j|\boldsymbol{X}_u)}^2 = \frac{\left(\alpha^{*t}\boldsymbol{w}_j^{\perp \boldsymbol{u}}\right)^2}{\boldsymbol{w}_j^{\perp \boldsymbol{u}^t}\boldsymbol{w}_j^{\perp \boldsymbol{u}}}$$

- using $\alpha = \mathbf{Z}^t Y$
- and $\boldsymbol{X} = \boldsymbol{Z} \boldsymbol{W}$:

$$X_j^{\perp u} = Z w_{.j}^{\perp u}$$

• with $w_{j}^{\perp u}$, the **residual part** that cannot be explained by X_{u} ,

$$\mathbf{w}_{.j}^{\perp u} = (\mathsf{I} - \mathsf{P}_u) \mathbf{w}_{.j}$$

 \cdot and P_u , the projector on the vector space generated by the variables u,

$$\mathbf{P}_{u} = \mathbf{W}_{.u} (\mathbf{W}_{.u}^{t} \mathbf{W}_{.u})^{-1} \mathbf{W}_{.u}^{t}.$$

Alternative LMG inspired by Johnson's Method

How to approach the link between LMG and Johnson?

• Using the **Sherman-Morrison-Woodbury formula**, we can express P_u by iteration in function of all the projectors associated with the indices u' = k, ..., l:

$$\mathbf{P}_{u'} = \mathbf{P}_{k} + \sum_{i=k+1}^{l} \frac{(\mathbf{I} - \mathbf{P}_{i-1}) w_{,i} w_{,i}^{t} (\mathbf{I} - \mathbf{P}_{i-1})}{w_{,i}^{t} (\mathbf{I} - \mathbf{P}_{i-1}) w_{,i}}$$

- $(I P_{i-1})w_{i}$ is the part of w_{i} orthogonal to the space already projected by P_{i-1} .
- The global projector P_u can thus be constructed by successive accumulations, where we progressively add the contribution of w_i to the projected space.

Alternative LMG inspired by Johnson's Method

(Proof.)

• Considérant $u' = u \cup \{i\}$, le nouveau projecteur devient :

$$\mathsf{P}_{u'} = \mathsf{W}_{.u'} \mathsf{\Sigma}_{u'}^{-1} \mathsf{W}_{.u'}^{t}$$

avec

$$\mathsf{W}_{.u'}=\left[\mathsf{W}_{.u}\boldsymbol{w}_{.i}\right],$$

et :

$$\Sigma_{\boldsymbol{u'}} = \mathsf{W}_{\boldsymbol{\cdot}\boldsymbol{u'}}^t \mathsf{W}_{\boldsymbol{\cdot}\boldsymbol{u'}} = \begin{bmatrix} \Sigma_{\boldsymbol{u}} \mathsf{W}_{\boldsymbol{\cdot}\boldsymbol{u}}^t & \mathsf{W}_{\boldsymbol{\cdot}\boldsymbol{u}}^t \boldsymbol{w}_{\boldsymbol{\cdot}\boldsymbol{i}} \\ \boldsymbol{w}_{\boldsymbol{\cdot}\boldsymbol{j}}^t \mathsf{W}_{\boldsymbol{\cdot}\boldsymbol{u}} & \boldsymbol{w}_{\boldsymbol{\cdot}\boldsymbol{j}}^t \boldsymbol{w}_{\boldsymbol{\cdot}\boldsymbol{i}} \end{bmatrix}$$

• la formule de Sherman-Morrison-Woodbury permet d'exprimer :

$$\mathbf{P}_{u'} = \mathbf{P}_u + \frac{(\mathbf{I} - \mathbf{P}_u)\mathbf{w}_{.i}\mathbf{w}_{.i}^t(\mathbf{I} - \mathbf{P}_u)}{\mathbf{w}_{.i}^t(\mathbf{I} - \mathbf{P}_u)\mathbf{w}_{.i}}$$

 Par itération, si on classe par ordre croissant les indices dans u' tel que u' = k,...,l:

$$\mathbf{P}_{u'} = \mathbf{P}_k + \sum_{i=k+1}^l \frac{(\mathbf{I} - \mathbf{P}_{i-1}) \mathbf{w}_{,i} \mathbf{w}_{,i}^t (\mathbf{I} - \mathbf{P}_{i-1})}{\mathbf{w}_{,i}^t (\mathbf{I} - \mathbf{P}_{i-1}) \mathbf{w}_{,i}}.$$

17/23

Alternative LMG inspired by Johnson's Method

How to approach the link between LMG and Johnson?

$$r_{Y(X_j|\mathbf{X}_u)}^2 = \frac{\left(\alpha^{*t} \mathbf{w}_{,j}^* - \alpha^{*t} \mathbf{w}_{,k}^* - \alpha^{*t} \mathbf{A}_{cc} \mathbf{w}_{,j}^*\right)^2}{1 - \mathbf{w}_{,j}^{*t} \mathbf{P}_k \mathbf{w}_{,j}^* - \mathbf{w}_{,j}^{*t} \mathbf{A}_{cc} \mathbf{w}_{,j}^*}$$

with
$$\mathbf{A}_{cc} = \sum_{i=k+1}^{l} \frac{(\mathbf{I} - \mathbf{P}_{i-1}) \mathbf{w}_{.i} \mathbf{w}_{.i}^{t} (\mathbf{I} - \mathbf{P}_{i-1})}{\mathbf{w}_{.i}^{t} (\mathbf{I} - \mathbf{P}_{i-1}) \mathbf{w}_{.i}}.$$

Two-input regression model : $Y = \beta_1 X_1 + \beta_2 X_2 + \varepsilon$

R^2	$COR(X_1, X_2)$	$b_1 = \beta_1 \sigma_1$	$b_2 = \beta_2 \sigma_2$	$\mathbb{V}(Y)$
0.35	0.80	23.0	15.0	798.0

Numerical equality :

Results	LMG_{R^2}	LMG_{Pu}	Rel. error	Johnson	Rel. error
X_1	0.24	0.24	1.4E-15	0.24	1.8E-15
X ₂	0.11	0.11	2.5E-15	0.11	2.7E-15

Input regression model	:	- 1	-0.0031	0.076	-0.094	0.013	0.045	0.16	-0.019	-0.14	0.24
		0.0031	1	0.011	0.089	-0.041	0.089	-0.23	0.043	-0.17	-0.032
d = 10		- 0.076	0.011	1	0.11	0.056	0.03	0.028	-0.075	0.0038	0.15
		0.094	0.089	0.11	1	-0.17	-0.037	-0.044	-0.29	-0.044	0.053
$Y = \sum_{i=1}^{d} \beta_i X_i + \varepsilon$		- 0.013	-0.041	0.056	-0.17	1	-0.1	-0.018	-0.06	0.068	0.043
		- 0.045	0.089	0.03	-0.037	-0.1	1	-0.11	0.18	-0.14	-0.07
		- 0.16	-0.23	0.028	-0.044	-0.018	-0.11	1	-0.11	0.049	0.01
R^2		0.019	0.043	-0.075	-0.29	-0.06	0.18	-0.11	1	-0.12	0.069
0.35		0.14	-0.17	0.0038	-0.044	0.068	-0.14	0.049	-0.12		0.23
0.00		0.24	-0.032	0.15	0.053	0.043	-0.07	0.01	0.069	0.23	1

Results	X_1	X_2	X_3	X_5	X_7	X_9		
$b = \beta \sigma$	-8.8	-243.5	-112.9	-96.7	-89.45	-154.8		
LMG _{R²}	0.0032	0.030	0.023	0.12	0.028	0.061		
LMG _{Pu}	0.0032	0.030	0.022	0.12	0.028	0.061		
Abs. error		E-15						
Johnson	0.0035	0.029	0.023	0.12	0.028	0.062		
Abs. error			E-4 -	E-5				

Input regression model :	- 1	0.92	0.91	0.91	0.9	0.89	0.9	0.9	0.9	0.9
	0.92									
d = 10	0.91									
u — 10	0.91									
	0.9									
$Y = \sum_{i=1}^{d} \beta_i X_i + \varepsilon$	0.89									
	0.9									
R^2	0.9									
0.34	- 0.9									
0.54	0.9									

Results	X_1	X_2	X_3	X_5	X_7	X9
$b = \beta \sigma$	-9.7	-241.0	-125.4	-97.4	-99.2	-176.2
LMG _{R²}	0.030	0.042	0.041	0.036	0.035	0.035
LMG _{Pu}	0.030	0.042	0.041	0.036	0.035	0.035
Abs. error			E-16 -	E-18		
Johnson	0.028	0.043	0.042	0.038	0.037	0.036
Abs. error			E-3 -	E-4		

Input regression model	:	- 1	0.041	-0.15	0.083	-0.28	-0.05	-0.18	-0.37	-0.4	-0.48
		- 0.041	1	-0.27	-0.41	-0.29	-0.37	-0.27	-0.37	-0.37	-0.4
d = 10		- 0.15	-0.27	1	-0.11	-0.091	-0.21	-0.043	0.087	0.017	0.067
		- 0.083	-0.41	-0.11	1	0.26	0.41	0.32	0.35	0.35	0.27
$Y = \sum_{i=1}^{d} \beta_i X_i + \varepsilon$		0.28	-0.29	-0.091	0.26	1	0.49	0.47			
		0.05	-0.37	-0.21	0.41		1	0.6			
		- 0.18	-0.27	-0.043	0.32			1			
R^2		0.37	-0.37	0.087	0.35			0.75			
0.29		-0.4	-0.37	0.017	0.35			0.72			
		0.48	-0.4	0.067	0.27			0.73			

Results	X_1	X_2	X_3	X_5	X_7	X_9		
$b = \beta \sigma$	-27.7	-262.6	-129.8	-95.2	-90.6	-175.1		
LMG _{R²}	0.011	0.103	0.019	0.071	0.014	0.010		
LMG _{Pu}	0.011	0.103	0.019	0.071	0.014	0.010		
Abs. error		E-15						
Johnson	0.0093	0.100	0.018	0.072	0.015	0.012		
Abs. error			E-	3				

Conclusion & Perspectives

 $\underline{Conclusion}$:

- LMG offer a principled way to **attribute variance** in **multivariate linear regression** with correlated inputs.
- It provides a decomposition of R^2 that satisfies the grouping property.
- Because LMG is **computationally expensive**, Johnson's approximation offers an **efficient alternative** when the objective is to define a hierarchy between variables.

<u>Article in SESMO Journal</u> [cloioo25] : L. Clouvel, B. looss, V. Chabridon, M. II Idrissi, F. Robin, *An overview of variance-based importance measures in the linear regression context : comparative analyses and numerical tests.*

<u>Software</u> : R package sensitivity : LMG/Johnson.

Future work :

- quantify the difference between LMG and Johnson,
- extend to PMVD indices which satisfy the exclusion property,
- imgaine how to extend to non-linear models.

23/23

Bibliography

Thank you for your attention !

Article in the journal SESMO [cloioo25]

An overview of variance-based importance measures in the linear regression context: comparative analyses and numerical tests

Laura Clouvel¹, Bertrand Iooss², Vincent Chabridon², Marouane II Idrissi², and Frédérique Robin¹

¹EDF R&D, PERICLES Department, Saclay, France ²EDF R&D, PRISME Department, Chatou, France & SINCLAIR AI Lab., Saclay, France

Multicolinearity illustration

Two-input regression model

An illustrative example :

Two-input regression model

Consider the linear regression model (for d = 2) of the output Y with X_1 and X_2 .

 $b_1 := \beta_1 \sigma_1, \quad b_2 := \beta_2 \sigma_2, \text{ and } r := r_{X_1, X_2}.$

The coefficient of determination is :

$$R^{2} = \frac{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2}}{b_{1}^{2} + 2b_{1}b_{2}r + \beta_{2}\sigma_{2}^{2} + \sigma_{\varepsilon}^{2}}$$

The full correlation coefficient (Pearson) :

• measures the degree of linear association between two variables :

$$r_{Y,X_j} = \frac{\mathrm{COV}(Y,X_j)}{\sigma_Y \sigma_j}$$

With independent inputs : r = 0

r_{Y,X_j} is equal to β^{*}_j the Standardized regression coefficients (SRC) [gro06; antlam21]:

$$\beta_j^* = \beta_j \frac{\sigma_j}{\sigma_Y} = r_{Y,X_j}$$

$$r_{Y,X_1}^2 = \frac{{b_1}^2}{{b_1}^2 + {b_2}^2 + \sigma_{\varepsilon}^2}$$
 and $r_{Y,X_2}^2 = \frac{{b_2}^2}{{b_1}^2 + {b_2}^2 + \sigma_{\varepsilon}^2}$.

 $\sum_{i} \mathrm{IM}_{i} = R^{2}$ YES \mathcal{C}_1 Proper decomposition for all j, $IM_i \ge 0$ YES Co Non-negativity $if \beta_i = 0$, $IM_i = 0$ YES Cz Exclusion CA Inclusion if $\beta_i \neq 0$, IM_i $\neq 0$ YES

The full correlation coefficient (Pearson) :

• measures the degree of linear association between two variables :

$$r_{Y,X_j} = \frac{\mathrm{COV}(Y,X_j)}{\sigma_Y \sigma_j}$$

With correlated inputs : $r \neq 0$

$$r_{Y,X_1}^2 = \frac{(b_1 + rb_2)^2}{b_1{}^2 + 2b_1b_2r + b_2{}^2 + \sigma_\varepsilon^2} \quad \text{and} \quad r_{Y,X_2}^2 = \frac{(b_2 + rb_1)^2}{b_1{}^2 + 2b_1b_2r + b_2{}^2 + \sigma_\varepsilon^2} \;.$$

\mathcal{C}_1	Proper decomposition	$\sum_j IM_j = R^2$	NO
\mathcal{C}_{2}	Non-negativity	for all j , $IM_j \ge 0$	YES
\mathcal{C}_{3}	Exclusion	$if \beta_j = 0, IM_j = 0$	NO ex : if $r = 1$
\mathcal{C}_4	Inclusion	if $\beta_j \neq 0$, IM $_j \neq 0$	YES

The semi-partial correlation coefficient :

• quantify the additional explanatory power of a variable X_j on the variance of Y [johleb04].

$$r_{Y,(X_j|\mathbf{X}_{-j})}^2 = R_{Y(\mathbf{X})}^2 - R_{Y(\mathbf{X}_{-j})}^2$$
.

With independent inputs : r = 0

• $r_{Y,(X_j|X_i)}^2$ is equal to the correlation coefficient and the SRC² $\beta_j^* = r_{Y,X_j}^2$.

$$r_{Y,(X_1|X_2)}^2 = \frac{{b_1}^2}{{b_1}^2 + {b_2}^2 + \sigma_\varepsilon^2} \quad \text{and} \quad r_{Y,(X_2|X_1)}^2 = \frac{{b_2}^2}{{b_1}^2 + {b_2}^2 + \sigma_\varepsilon^2} \;.$$

 $\sum_{i} \mathrm{IM}_{i} = R^{2}$ YES \mathcal{C}_1 Proper decomposition for all j, $IM_i \ge 0$ YES Co Non-negativity Exclusion $if \beta_i = 0$, $IM_i = 0$ YES Cz Inclusion if $\beta_i \neq 0$, IM_i $\neq 0$ YES C_{4}

The semi-partial correlation coefficient :

• quantify the additional explanatory power of a variable X_j on the variance of Y [johleb04].

$$r_{Y,(X_j|\mathbf{X}_{-j})}^2 = R_{Y(\mathbf{X})}^2 - R_{Y(\mathbf{X}_{-j})}^2$$
.

With correlated inputs : $r \neq 0$

$$r_{Y,(X_1|X_2)}^2 = \frac{b_1^2(1-r^2)}{b_1^2 + 2b_1b_2r + b_2^2 + \sigma_{\varepsilon}^2} \quad \text{and} \quad r_{Y,(X_2|X_1)}^2 = \frac{b_2^2(1-r^2)}{b_1^2 + 2b_1b_2r + b_2^2 + \sigma_{\varepsilon}^2}$$

\mathcal{C}_{1}	Proper decomposition	$\sum_j IM_j = R^2$	NO
\mathcal{C}_{2}	Non-negativity	for all j , $IM_j \ge 0$	YES
\mathcal{C}_{3}	Exclusion	$if \beta_j = 0, IM_j = 0$	YES
\mathcal{C}_{4}	Inclusion	if $\beta_i \neq 0$, IM $_i \neq 0$	NO when $r = 1$

Venn diagrams illustrating the challenges of the multicollinearity framework :

Importance measures : How to allocate a portion of zone b to the two variables X_1 and X_2 ?

Lindeman-Merenda-Gold indices

Two-input regression model

$$LMG_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \qquad LMG_{2} = \frac{b_{2}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{1}^{2} - b_{2}^{2})}{b_{2}^{2} + 2b_{1}b_{2}r + b_{1}^{2} + \sigma_{\varepsilon}^{2}} = \frac{a + b/2}{a + b + c + \sigma_{\varepsilon}^{2}}$$

LMG redistributes b equally between the portions attributed to X_1 and X_2 .

Variance-based Importance Measures

With independent inputs : r = 0

• LMG is equal to the squared SPCC, the squared CC and the SRC².

$$\mathsf{LMG}_{1} = \frac{{b_{1}}^{2}}{{b_{1}}^{2} + {b_{2}}^{2} + \sigma_{\varepsilon}^{2}} \quad \mathsf{LMG}_{2} = \frac{{b_{2}}^{2}}{{b_{2}}^{2} + {b_{1}}^{2} + \sigma_{\varepsilon}^{2}}$$

\mathcal{C}_{1}	Proper decomposition	$\sum_j IM_j = R^2$	YES	
\mathcal{C}_{2}	Non-negativity	for all $j, IM_j \ge 0$	YES	
\mathcal{C}_{3}	Exclusion	$if \beta_j = 0, IM_j = 0$	YES	
\mathcal{C}_4	Inclusion	$if \beta_j eq 0, IM_j eq 0$	YES	

LMG as a R^2 decomposition Appendix

With correlated inputs : $r \neq 0$

$$\mathsf{LMG}_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \quad \mathsf{LMG}_{2} = \frac{b_{2}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{1}^{2} - b_{2}^{2})}{b_{2}^{2} + 2b_{1}b_{2}r + b_{1}^{2} + \sigma_{\varepsilon}^{2}}$$

\mathcal{C}_{1}	Proper decomposition	$\sum_{j} IM_{j} = R^{2}$	YES
\mathcal{C}_{2}	Non-negativity	for all $j, IM_j \ge 0$	YES
\mathcal{C}_{3}	Exclusion	$if \beta_j = 0, IM_j = 0$	NO if $r \neq 0$
\mathcal{C}_{4}	Inclusion	$if \beta_j eq 0, IM_j eq 0$	YES
\mathcal{C}_{5}	Grouping	shares equate for high correlations	YES
			$LMG_1 = LMG_2$, if $r = 1$

Variance-based Importance Measures

With a linear relation hypothesis between Y and X:

 The Johnson indices are equal to the LMG indices in the case of a two-input model.

$$J_{1} = LMG_{1} = \frac{b_{1}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{2}^{2} - b_{1}^{2})}{b_{1}^{2} + 2b_{1}b_{2}r + b_{2}^{2} + \sigma_{\varepsilon}^{2}} \quad J_{2} = LMG_{2} = \frac{b_{2}^{2} + b_{1}b_{2}r + \frac{r^{2}}{2}(b_{1}^{2} - b_{1}^{2})}{b_{2}^{2} + 2b_{1}b_{2}r + b_{1}^{2} + \sigma_{\varepsilon}^{2}}$$

• They give empirically similar results for a higher-dimensional input data $(d \ge 3)$.

Assessment of the neutron irradiation contributing to the aging of the reactor vessel [clo19]

- The neutron flux is calculated to be compared with the measured flux.
- The calculation gives a prediction of the neutron flux received by the vessel, which is not measured.

Calculation model :

 $\vec{\Omega}.\vec{\nabla}\psi(\vec{r},E,\vec{\Omega}) + \mathbf{\Sigma_t}(\vec{r},E)\psi(\vec{r},E,\vec{\Omega}) = \int_0^\infty dE' \int_{4\pi} d^2 \vec{\Omega}' \mathbf{\Sigma_S}(\vec{r},E' \to E,\vec{\Omega}.\vec{\Omega}')\psi(\vec{r},E',\vec{\Omega}') + \mathbf{Q}(\vec{r},E,\vec{\Omega})$

Interest variable :

• ψ the neutron flux.

Input variables :

• the power of 25 assemblies

Approached model :

• Linear regression model

- The SRC² indices (blue) of the assemblies A9, B10, B11 are the highest.
- The SRC² indices only explain 75% of the output variance.

• The variables with a **stronger correlation** with A9, B10, B11 have a **higher Johnson/Shapley index** than the associated SRC² index.

- The power map is based on calculation and measures. Some powers are measured and the value of the other variables are **reconstructed thanks to measured assemblies**.
- The variables positioned next to a measured and influential power in the model have a higher Johnson/Shapley index than that of SRC².

18/19

Conclusion

