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Uncertainty quantification context in neutronic

—_— : >
Input data ——> Calculation model j——> Output Variable
— |—

I Y =f(X)

Calculation model :

Sensitivity analysis

QVU(7, E.Q) + Be(F. By (7, B, Q) = [°dE' [, d*Q'Ss(7 B — E.Q.0)0(F E', ) + Q(F. E. ()

Interest variable :

e 1) the neutron flux.
Input variables :

e ~ 2000 variables : large size and correlations.
Approached model :

e Linear regression model
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Basics of multivariate linear regression

Framework and notations

Experimental design

e n observations (R-valued) of an explained random variable Y and of d
explanatory random variables X = (X1,...,Xq) :

(X", y") = (X(1i)7 . 7><E,"),y("))i_1 ]

=1,...,

Assumption. without any loss of generality

E[Xj] =0for j=1,...,d and E[Y] =0
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Basics of multivariate linear regression

Framework and notations

Multivariate linear regression model

Y=X3+¢

o where 8= (f1,...,84)" € R? is the vector of coefficients,

e ¢ is a centered and gaussion random error.

Assumption. & ~ N(0,02) and E [¢|X] = 0.

e For each observation i = 1,..., n, y D = x4 e where foralli=1,...,n,
the (s are independent and identically distributed with the same law as ¢.
Therefore, determine :

E [Y|x . (x(li), . ,xfj’)] —xg
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Basics of multivariate linear regression

Framework and notations

Estimating model coefficients 3

Hypothesis. The sample size is large enough (n > d), and the matrix X" TX" s
positive-definite.

e The unbiased maximum likelihood estimator (Ordinary Least Squares [chr90]) :

B\ _ (XnTXn)flanyn

Coefficient of determination

e Quantify the output variability captured by the linear regression model :

_ _ 4 E[V(Y[X))] _ V(E[Y[X])
R? = Rf,(x) =1- VY)Y
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The R? for constructing importance measures

Variance-based importance measures

Variance-based importance measures (VIM) [kurcoo06]

e describe the impact of input data on output dispersion,
e equivalent to partition R? among the d inputs.

Variance decomposition

explained variance residual variance

— ——
v(Y) = VE[NMIX]) + E[V(Y[X)]
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The R? decomposition

Variance-based importance measures

Criteria for R?> decomposition

Four basic desirability criteria can be sought after for a VIM (according to
[gro07]) :

e (C1) Proper decomposition : the sum of all values should be equal to 1;

)

e (C2) Non-negativity : all values should be nonnegative ;

o (C3) Exelusien : if 3; =0, then the share of X; should be zero;
)

e (Ca) Inclusion : if B; # 0, then the share of X; should be nonzero.

An additional criterion that is sometimes mentioned in the literature, but more
related to regularization-based techniques [zouhas05 ; wal19] :

e (Cs) Grouping : shares tend to equate for highly correlated inputs.
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Multicolinearity illustration with Venn diagrams

When the variable tend to be correlated it becomes difficult to isolate the
contribution of the variables.

(a) r=0,b=0
e Three circles :

(b) r#£0,b#0

- the |variance of Y : the variance of X; ; the variance of X5

e Two overlapping area - the additional explanatory power :

- of X1 on the regression model Y(X): a= bi(1 —r?), with by = B101,

- of X2 on the regression model Y(X): ¢ = b3(1 — r?), with by = B202.
e The area b : b= b2r? + 2bybor + b2r>.
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Shapley Values in regression model

Variance-based Importance Measures

Inspired from the cooperative game [sha53], they measure the average
marginal contribution of each variable X; to all possible combinations of
variables in a regression model :

1
U= > Ax(X)

’ TESP

where :
e Sp is the set of all permutations of D = {1,...,d},
o Ar(Xj) = c(vUj)— c(v) the marginal performance difference of the model
between the permutation 7 with and without Xj,
e v the list of indices preceding j in the order .

Owen[owe14] proposes to set the function ¢ such as :

vy — VELYIX)
vY)
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Lindeman-Merenda-Gold indices

In the linear regression context [linmer80] :

e LMG; average the additional explanatory power of X; in each subset X,uj}
defined for all the permutations of D = {1,...,d} :

1 2
LMG; = =1 D #.0x1x0)
TeSp
where

e the squared semi-partial correlation coefficient

2 2 2
Y.(x1%s) = Ry(x,, ) = Rvx)

gives the additional explanatory power of X; dans le modéle Y'(X,_j1)-
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Variance-based Importance Measures

Johnson indices

Drawback of LMG :

e its exponential complexity : one needs to perform 27 — 1 different linear
regressions.

The Johnson indices

e equal to the LMG indices in the case of a two-input model.

2
b,‘2 aF b,-bjr aF %(bjz = b,‘z)

J; = LMG; = with b; = B;o;.

b2 + 2b;bjr + b2 + o2

e give empirically similar results for a higher-dimensional input data (d > 3).
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Johnson indices

The Johnson indices [johnson66 ; joh00] :

e X" € R"™ is transformed in an orthogonal matrix Z" € R"*? in the least
square sense. It consists in finding Z" and W € R?*? such as :

X" = Z'W
(z"Tz" = |
Z" = argmin Tr (X" —II") " (X" — II")
Hn

e Solution defined thanks to the singular value decomposition of X" :
X"=P"AQ"

Z"=P'Q" and W =QAQ"
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Johnson indices

The Johnson index associated with the input X; is finally expressed as :

e A first least square regression of y” on Z" gives the vector of the standardized
regression coefficient a™ of the model Y (Z).

e The d linear combinations between X" and Z" gives the weights W* allowing
to come back to the initial observations X".
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Alternative LMG inspired by Johnson’'s method

1st step : Expression of the residu of the projection of X; onto X,

e as Xf“, the component of X; orthogonal to Xu,

— dlu
X = E[X;| Xu] + X
t —1 t
= Xu(XuXu) "X, X; + EX;j| Xy
L
projection of X; onto X, orthogonal component of X;

2nd step : Expression of ry(x;|x,) as a correlation between Y and XJ-L“

Y xix) = COR?(Y, X/')
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Alternative LMG inspired by Johnson’'s method

(Proof.)
e Expression of three linear models :
(1) Y = Xupu + €Y|X, Pu = (lexu)*lxlfY
(2): Y =Xye,+ Xje; + €Y|X,UX; ey = (XuUJXuUJ) 1XL";U-Y
(3): Y =Xupu+ XjL“/)jL“ + €Y |X,UX )*“ = (XL“ Xl“) 1Xl"' Y

e (2) and (3) : same regression space :

€y X, uxte = €Y[X,0X;

e using the variance decomposition

_EV(YIX)] — EIV(YIX U )
My (X1 xa) = V(Y)
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Alternative LMG inspired by Johnson’'s method

3rd step : Translate projection operations in X into operations in Z.

2
- - (a*twj“)
Y (X[ Xu) T Lut o lu
Wi Wj
e usinga=2Y
e and X = ZW :
Xt = Zw i

J -J

- with W.} “ the residual part that cannot be explained by X,
wi = (1-P,)w;
- and P,, the projector on the vector space generated by the variables u,

Pu - W.U(W?uw.u)ilw.tw
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Alternative LMG inspired by Johnson's Method

How to approach the link between LMG and Johnson ?

e Using the Sherman-Morrison-Woodbury formula, we can express P, by
iteration in function of all the projectors associated with the indices
/
u=uk,... I:

u’—Pk+Z - ,1)WW(—P,'71)

Ll —Pi—1)w,
i=k+1 ll) !

e (I — Pi_1)w, is the part of w,; orthogonal to the space already projected by
Pi_1.

e The global projector P, can thus be constructed by successive accumulations,
where we progressively add the contribution of w; to the projected space.
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Alternative LMG inspired by Johnson's Method

(Proof.)

e Considérant u’ = uU {i}, le nouveau projecteur devient :
Py =W, I, 'W,,
avec
W.u’ - [W.uW.i]7
et :

_ t o ZuW.L’LI WFUWJ‘
Yy =W, W, = |:Wt,WLI thw’

e |a formule de Sherman-Morrison-Woodbury permet d'exprimer :

I — P )wwi(l—P
Pu’ — Pu+ ( :’) -l J( U)
wi(l — Py)w,;
e Par itération, si on classe par ordre croissant les indices dans v’ tel que

u =k, .. |:

!
_ (I —Piy)wwji(l —Pi_1)
Pu=Pit+ > Wil Py )W, :

i=k+1
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Alternative LMG inspired by Johnson's Method

How to approach the link between LMG and Johnson ?

2
"y (x;1%4)

xt % *t % xt * 2
(o wi—atw -« Ach_j)

o *t * *‘t *
1 w Pkw_j w ACCWJ

Wlth ACC = Z;:k—}—l (l

—Piy)w,;w'(l - Pi1)
Wt;(l — P,'_]_)W.,' '
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Two-input regression model : Y = 51 X1 4+ 2 Xo 4+ ¢

R2 COR(Xl,Xz) bl = 5101 b2 = ,820’2 V(Y)
0.35 0.80 23.0 15.0 798.0

Numerical equality :

Results [MGgr> [LMGp, Rel.error Johnson Rel. error
X1 0.24 0.24 1.4E-15 0.24 1.8E-15
X5 0.11 0.11 2.5E-15 0.11 2.7E-15

¢
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Input regression model :

d=10

Y=Y 86X +e

R2
0.35

Results X1

X2

0.0031 0,076 0013

-0.0031] 0011 20.0a1

- 0076 0011 0,056

-0.094 0083

- 0013 0041 0056

- 0045 0089 003 0.037

S 016 023 0028 0043 0018 -

0019 0043 0075 029 .06

014 017 00038 0.043 0068
0043 <

X3 Xs

0045 016 0.015
0089 023 0043
003 0028 0075
0037 0044 029

014 024
017 0032
00038 015
0044 0053
0068 0,043
018 007

X9

b= fo -8.8

-243.5

-112.9 -96.7

-154.8

LMGge 0.0032

0.030

0.023 0.12

0.061

LMGp, 0.0032

0.030

0.022 0.12

0.061

Abs. error

E-15

Johnson 0.0035

0.029

0.023 0.12

0.062

Abs. error

E4-E5

¢
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Input regression model :

d=10

Y=Y 86X +e

R2
0.34
Results X1 X2 X3 X5 X7 Xg
b= o -9.7 -241.0 -1254 -974 -99.2 -176.2
LMGg: 0.030 0.042 0.041 0.036 0.035 0.035
LMGp, 0.030 0.042 0.041 0.036 0.035 0.035
Abs. error E-16 - E-18
Johnson 0.028 0.043 0.042 0.038 0.037 0.036
Abs. error E-3 - E-4

¢
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Numerical Application

Input regression model :

d=10

Y =30, 8iX +¢

R2
0.29
Results X1 Xa X3 Xs X7 Xo
b= fBo 277  -262.6 -129.8 -952 -90.6 -175.1
LMGg2 0.011  0.103 0.019 0.071 0.014 0.010
LMGp, 0.011 0.103 0.019 0.071 0.014 0.010
Abs. error E-15
Johnson  0.0093 0.100 0.018 0.072 0.015 0.012
Abs. error E-3
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Conclusion & Perspectives

Conclusion :
e LMG offer a principled way to attribute variance in multivariate linear
regression with correlated inputs.

e It provides a decomposition of R? that satisfies the grouping property.

e Because LMG is computationally expensive, Johnson's approximation offers
an efficient alternative when the objective is to define a hierarchy between
variables.

Article in SESMO Journal [cloioo25] : L. Clouvel, B. looss, V. Chabridon, M. II
Idrissi, F. Robin, An overview of variance-based importance measures in the linear

regression context : comparative analyses and numerical tests.
Software : R package sensitivity : LMG/Johnson.
Future work :

e quantify the difference between LMG and Johnson,

e extend to PMVD indices which satisfy the exclusion property,

e imgaine how to extend to non-linear models. ¢
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https://cran.r-project.org/package=sensitivity
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Thank you for your attention |
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Article in the journal SESMO [cloioo25]

Socio-Environmental Systems Modelling

SESMO! An International, Community Driven, Open Access Journal

An overview of variance-based importance measures in the
linear regression context: comparative analyses and
numerical tests

Laura Clouvel', Bertrand Tooss?, Vincent Chabridon?, Marouane 11 IdrissiZ. and Frédérique Robin!

'EDF R&D, PERICLES Department, Saclay, France
2EDF R&D, PRISME Department, Chatou, France & SINCLAIR Al Lab., Saclay, France
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Multicolinearity illustration

Two-input regression model

An illustrative example :

Two-input regression model

Consider the linear regression model (for d = 2) of the output Y with X; and X>.

by := f101, b2 := 202, andr:i=rx, x,-
The coefficient of determination is :

> b1? + 2bybor + by?
b12 + 2bi1bor + 520’22 + 0'3 '

[ J
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Metrics to deal with multicollinearity

The full correlation coefficient (Pearson) :
e measures the degree of linear association between two variables :

COV(Y, X))
oyo;

ry7)9 ==

With independent inputs : r =0

e ryx; is equal to 3/ the Standardized regression coefficients (SRC) [gro06 ;
antlam21] :

* Uj o
B = 515 =rIv.X;

2 2
r%X:b% and r\%X:b;.
1 by? 4 bp? + 02 2 1% 4 bp? + o2
C1  Proper decomposition Zj IM; = R? YES
C>  Non-negativity for all j,IM; >0  YES
C3  Exclusion if; =0,IM; =0 YES
Ca Inclusion ifB; #0,IM; 20 YES
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Metrics to deal with multicollinearity

The full correlation coefficient (Pearson) :

e measures the degree of linear association between two variables :

COV(Y, X))
ryx = ——
Oyd0j
With correlated inputs : r # 0
> (b] + rb2)2 > (b2 + I‘b]_)2
ry X and ry x, =

a b12 + 2b1bor + bp? + 02 b12 + 2b1bor + b2 + 02

C1  Proper decomposition Zj IM; = R? NO
C> Non-negativity for all j,IM; >0  YES
C3  Exclusion ifB; =0,IM; =0 NO ex:ifr=1
Cs4 Inclusion ifB; #0,IM; #0 YES

q
L S
s % T @DF



Metrics to deal with multicollinearity

The semi-partial correlation coefficient :

e quantify the additional explanatory power of a variable X; on the variance of
Y [johleb04].

2 2 2
rv.ogix_) = Ry = Ryx_)) -

With independent inputs : r =0

° ’32/,()9-\)(,-) is equal to the correlation coefficient and the SRC* 3} = f\2/,xj-
2 _ by? R _ be?
Iy, (xalxe) = b12 + b2 + 02 and Iy (xa|x1) = b12 + bo? + 02 :
C1  Proper decomposition  37:IM; = R? YES
C> Non-negativity for all j,IM; >0  YES
C3  Exclusion ifB; =0,IM; =0 YES
Cs  Inclusion ifB; #0,IM; #0 YES
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Metrics to deal with multicollinearity

The semi-partial correlation coefficient :

e quantify the additional explanatory power of a variable X; on the variance of
Y [johleb04].

2 _p2 2
rv.ogixo) = Ryopo — Rvixy) -
With correlated inputs : r # 0

> bi?(1—r?) 2 bo?(1—r?)
V001X T b2 obibor + b2 + Tz and Y ol = b1? + 2bibor + bo® + 02 |
C1  Proper decomposition  7;IM; = R? NO
C>  Non-negativity for all j,IM; >0  YES
e if3; = 0,IM; =0 YES
Cs  Inclusion ifBj #0,IM; 20 NO when r =1

q
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Metrics to deal with multicollinearity

Venn diagrams illustrating the challenges of the multicollinearity framework :

C
e b
4 ) a o2
O¢
(a) r=0,b=0 (b) r£0,b#0

e Three circles :

- the 'variance of Y ; the variance of Xi ; the variance of X .

e Two overlapping area - the additional explanatory power :
- of X1 on the regression model Y(X): a= Bioi(l —r?),

- of X2 on the regression model Y(X): ¢ = f203(1 — r?).

e The area b: b= p202r2 + 2p1B20102r + B30512.
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Metrics to deal with multicollinearity

(a) r=0,b=0 (b) r#£0,b#0

a ) a+b
a+c+o2 CCry x a+b+c+o2
a . A
atc+o? semi-partial CC ry (. |x,) atb+c+o?
2t . _atbtc
atc+ot R at+b+c+o2

Importance measures : How to allocate a portion of zone b to the two variables X; and X> 7
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Lindeman-Merenda-Gold indices

Two-input regression model

s

2 2
b12 + bibor + %(bzz = b12) b22 + bibar + %(blz - b22)

LMG; = LMG; =
YT T b 2bibor + by? + 02 2T b? f 2bibar + by? + 02
a-+b/2 B c+b/2
T atb+cHo? T at+b+cto?

LMG redistributes b equally between the portions attributed to X; and Xa.
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Variance-based Importance Measures

LMG

With independent inputs : r =0

e LMG is equal to the squared SPCC, the squared CC and the SRC?.

LMG; = L
b1? + bo? + 02

C1  Proper decomposition

C>  Non-negativity

C3  Exclusion

Cs Inclusion

by?

MGy = —5———5——
: b2? + b1? + o2

> IM; = R? YES
for all j,IM; >0  YES
if3;=0,IM;=0 YES
ifB; #0,IM; £0  YES
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LMG as a R?> decomposition
Appendix

With correlated inputs : r # 0

2 2
bi? + bibar + = (b2? — br?) ba? + bibar + = (b1? = b2?)

M = o brt b2 402 2T b2 obibar + bi? 4 o2
C1  Proper decomposition Zj IM; = R? YES
C>  Non-negativity for all j,IM; >0 YES
C3  Exclusion ifB; =0,IM; =0 NO if r #0
Cs4  Inclusion ifBj # 0,IM; # 0 YES
Cs  Grouping shares equate for high correlations YES

LMGy = LMGy, ifr =1
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Variance-based Importance Measures

Johnson indices

With a linear relation hypothesis between Y and X :

e The Johnson indices are equal to the LMG indices in the case of a two-input
model.

r2 r2
b12+b1b2r+3(b227b12) b22+b1b2r+5(b12~t
Jo = LMG; = 5 >
b2 4 2b1bar 4 b1° + o

J1 = LMG; =
' ' b12 + 2b1bor + bp? + 02

e They give empirically similar results for a higher-dimensional input data
(d > 3).
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Sensitivity analysis in a neutronic study

Assessment of the neutron irradiation contributing to the aging of the reactor vessel

clo19

Vessel

Capsules

Fuel assembly

e The neutron flux is calculated to be compared with the measured flux.
e The calculation gives a prediction of the neutron flux received by the vessel,
which is not measured.
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Sensitivity analysis in a neutronic study

Input data

I

—
—
e

Calculation model
Y = f(X)

—>
—
—

Output Variable

Calculation model :

Sensitivity analysis

AVU(F E Q) + Sy (7, E)O(F, E.Q) = [ dE [, d*QV'Es(F B — B, Q.0N(F E ) + Q(F. E. )

Interest variable :

e ) the neutron flux.

Input variables :

e the power of 25 assemblies

Approached model :

e Linear regression model

[ J
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Sensitivity

0.3f
025
042i —— Shapley
12 F —— Johnson ||
11]11[11 oasp — SRC2 i
10]10{10]10 ot
/19l9]9[9]9]9 T
Zl [
0.05—
GFEDCBA :
GmlS)Illilxl9,l()[ll|8I‘)|l(lil1‘12|8|‘)|l[)‘|l]|12|8|‘J:l[):ll'Xl‘)l
¢ F  E ' D C B A
Assembly

e The SRC? indices (blue) of the assemblies A9, B10, B11 are the highest.
e The SRC? indices only explain 75% of the output variance.

¢
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Assemblies where the
power is directly measured

11

10

10

s

9

9

Zl

GFEDCBA

Sensitivity

0.3

0.25

0.2

—— Shapley
—— Johnson

—— SRC2

LA L L L B B R

0 | - - T |
lﬁli01111510‘10,l1lx,f),m,|1|12lz<,0,10,11,|2!8|0||n‘|llslf)!

G F E D ¢ B A
Assembly

e The variables with a stronger correlation with A9, B10, B11 have a higher
Johnson/Shapley index than the associated SRC? index.

¢
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Sensitivity

Assemblies where the F
power is directly measured r
0.3
025
0_2:_ Shapley
. Johnson |
11 o1sp — SRC2 i
1010 of
91919 T
4 0.05i
GFEDCBA E
L1

G|8|8I,s),1n|8,s),10,11|x,s),1(1:11,12|8,9,11>i11,12|8,9,m|11|8,0|
¢ Fr ' B b ' Cc B A
Assembly
e The power map is based on calculation and measures. Some powers are
measured and the value of the other variables are reconstructed thanks to
measured assemblies.
e The variables positioned next to a measured and influential power in the

model have a higher Johnson/Shapley index than that of SRC. q
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Conclusion

[ INPUTS ]
Independent Collinearity [ Dependent ]
diagnostics
[ Low dimension ] i [ Large dimension ]
2
LMG / s Johnson /
VIF / Shapley o 2Johnson-Shapley?
Modele linéaire / SRC?/ e =
Cas général Sobol’ : i
copula test -
PMVD / 2 )
PME S =
w
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19/19 = QEDF



	Uncertainty quantification context in neutronic
	Basics of multivariate linear regression
	Variance-based Importance Measures: LMG and Johnson

	Conclusion
	Annexe
	Appendix
	Multicolinearity illustration with a two-input regression model
	Metrics to deal with multicollinearity
	Sensitivity analysis in a neutronic study



