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Uncertainty quantification context in neutronic

Calculation model :

Interest variable :
• ψ the neutron flux.

Input variables :
• ∼ 2000 variables : large size and correlations.

Approached model :
• Linear regression model
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Basics of multivariate linear regression
Framework and notations

Experimental design

• n observations (R-valued) of an explained random variable Y and of d
explanatory random variables X = (X1, . . . ,Xd) :

(Xn, yn) =
(
x(i)1 , . . . , x

(i)
d , y

(i)
)
i=1,...,n

Assumption. without any loss of generality

E[Xj ] = 0 for j = 1, ..., d and E[Y ] = 0
.
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Basics of multivariate linear regression
Framework and notations

Multivariate linear regression model

Y = Xβ + ε

• where β = (β1, . . . , βd)> ∈ Rd is the vector of coefficients,

• ε is a centered and gaussion random error.

Assumption. ε ∼ N (0, σ2
ε) and E [ε|X ] = 0.

• For each observation i = 1, ..., n, y (i) = x(i)β + ε(i) where for all i = 1, . . . , n,
the ε(i)s are independent and identically distributed with the same law as ε.
Therefore, determine :

E
[
Y |X =

(
x(i)1 , . . . , x

(i)
d

)]
= x(i)β
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Basics of multivariate linear regression
Framework and notations

Estimating model coefficients β

Hypothesis. The sample size is large enough (n � d), and the matrix Xn>Xn is
positive-definite.

• The unbiased maximum likelihood estimator (Ordinary Least Squares [chr90]) :

β̂ = (Xn>Xn)−1Xn>yn

Coefficient of determination

• Quantify the output variability captured by the linear regression model :

R2 = R2
Y (X ) := 1− E [V(Y |X ))]

V(Y )
=

V(E[Y |X ])

V(Y )
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The R2 for constructing importance measures
Variance-based importance measures

Variance-based importance measures (VIM) [kurcoo06]

• describe the impact of input data on output dispersion,
• equivalent to partition R2 among the d inputs.

Variance decomposition

V(Y ) =

explained variance︷ ︸︸ ︷
V(E[Y |X ]) +

residual variance︷ ︸︸ ︷
E[V(Y |X )]
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The R2 decomposition
Variance-based importance measures

Criteria for R2 decomposition
Four basic desirability criteria can be sought after for a VIM (according to
[gro07]) :
• (C1) Proper decomposition : the sum of all values should be equal to 1 ;

• (C2) Non-negativity : all values should be nonnegative ;

• (C3) Exclusion : if βj = 0, then the share of Xj should be zero ;

• (C4) Inclusion : if βj 6= 0, then the share of Xj should be nonzero.

An additional criterion that is sometimes mentioned in the literature, but more
related to regularization-based techniques [zouhas05 ; wal19] :
• (C5) Grouping : shares tend to equate for highly correlated inputs.
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Multicolinearity illustration with Venn diagrams
When the variable tend to be correlated it becomes difficult to isolate the
contribution of the variables.

(a) r = 0, b = 0 (b) r 6= 0, b 6= 0

• Three circles :

· the variance of Y ; the variance of X1 ; the variance of X2 .

• Two overlapping area - the additional explanatory power :
· of X1 on the regression model Y (X ) : a = b2

1(1− r2) , with b1 = β1σ1,

· of X2 on the regression model Y (X ) : c = b2
2(1− r2) , with b2 = β2σ2.

• The area b : b = b2
1r

2 + 2b1b2r + b2
2r

2.
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Shapley Values in regression model
Variance-based Importance Measures

Inspired from the cooperative game [sha53], they measure the average
marginal contribution of each variable Xj to all possible combinations of
variables in a regression model :

ψj =
1
d!

∑
π∈SD

∆π(Xj)

where :
• SD is the set of all permutations of D = {1, . . . , d},
• ∆π(Xj) = c(v ∪ j)− c(v) the marginal performance difference of the model

between the permutation π with and without Xj ,
• v the list of indices preceding j in the order π.

Owen[owe14] proposes to set the function c such as :

c(v) =
V(E[Y |Xv ])

V(Y )
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Lindeman-Merenda-Gold indices

In the linear regression context [linmer80] :
• LMGj average the additional explanatory power of Xj in each subset Xu∪{j}

defined for all the permutations of D = {1, . . . , d} :

LMGj =
1
d!

∑
π∈SD

r2
Y ,(Xj |Xπ)

where
• the squared semi-partial correlation coefficient

r2
Y ,(Xj |Xπ) = R2

Y (Xu∪{j}) − R2
Y (Xu)

gives the additional explanatory power of Xj dans le modèle Y (Xu∪{j}).
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Variance-based Importance Measures
Johnson indices

Drawback of LMG :
• its exponential complexity : one needs to perform 2d − 1 different linear

regressions.

The Johnson indices
• equal to the LMG indices in the case of a two-input model.

Ji = LMGi =
bi

2 + bibj r +
r2

2
(bj

2 − bi
2)

bi
2 + 2bibj r + bj

2 + σ2
ε

with bi = βiσi .

• give empirically similar results for a higher-dimensional input data (d ≥ 3).
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Johnson indices

The Johnson indices [johnson66 ; joh00] :
• Xn ∈ Rn×d is transformed in an orthogonal matrix Zn ∈ Rn×d in the least

square sense. It consists in finding Zn and W ∈ Rd×d such as :
Xn = ZnW

(Zn)>Zn = I
Zn = arg min

Πn
Tr (Xn −Πn)>(Xn −Πn)

• Solution defined thanks to the singular value decomposition of Xn :

Xn = Pn∆Q>

Zn = PnQ> and W = Q∆Q>

11/23



Johnson indices

The Johnson index associated with the input Xj is finally expressed as :

Jj =
d∑

i=1

α∗
2

i w∗
2

ij .

• A first least square regression of yn on Zn gives the vector of the standardized
regression coefficient α∗ of the model Y (Z).

• The d linear combinations between Xn and Zn gives the weights W∗ allowing
to come back to the initial observations Xn.
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Alternative LMG inspired by Johnson’s method

1st step : Expression of the residu of the projection of Xj onto Xu

• as X⊥u
j , the component of Xj orthogonal to Xu,

Xj = E[Xj |Xu ] + X⊥u
j

= Xu(X t
uXu)−1X t

uXj︸ ︷︷ ︸
projection of Xj onto Xu

+ εXj |Xu︸ ︷︷ ︸
orthogonal component of Xj

2nd step : Expression of rY (Xj |Xu) as a correlation between Y and X⊥u
j

r2Y (Xj |Xu)
= COR2(Y ,X⊥u

j )
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Alternative LMG inspired by Johnson’s method

(Proof.)
• Expression of three linear models :

(1) : Y = Xuρu + εY |Xu ρu = (X t
uXu)−1X t

uY

(2) : Y = Xueu + Xjej + εY |Xu∪Xj
eu∪j = (X t

u∪jXu∪j)
−1X t

u∪jY

(3) : Y = Xuρu + X⊥u
j ρ⊥u

j + εY |Xu∪X⊥u
j

ρ⊥u
j = (X⊥u

j
t
X⊥u
j )−1X⊥u

j
t
Y

• (2) and (3) : same regression space :

εY |Xu∪X⊥u
j

= εY |Xu∪Xj

• using the variance decomposition

r2
Y (Xj |Xu ) =

E[V(Y |Xu)] − E[V(Y |Xu ∪ Xj)]

V(Y )
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Alternative LMG inspired by Johnson’s method

3rd step : Translate projection operations in X into operations in Z .

r2Y (Xj |Xu)
=

(
α∗tw⊥u

.j

)2
w⊥u
.j

tw⊥u
.j

• using α = Z tY

• and X = ZW :
X⊥u

j = Zw⊥u
.j

· with w⊥u
.j , the residual part that cannot be explained by Xu ,

w⊥u
.j = (I− Pu) w.j

· and Pu, the projector on the vector space generated by the variables u,

Pu = W.u(Wt
.uW.u)−1Wt

.u.
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Alternative LMG inspired by Johnson’s Method

How to approach the link between LMG and Johnson ?

• Using the Sherman-Morrison-Woodbury formula, we can express Pu by
iteration in function of all the projectors associated with the indices
u′ = k, . . . , l :

Pu′ = Pk +
l∑

i=k+1

(I− Pi−1)w.iw t
.i (I− Pi−1)

w t
.i (I− Pi−1)w.i

.
• (I− Pi−1)w.i is the part of w.i orthogonal to the space already projected by

Pi−1.
• The global projector Pu can thus be constructed by successive accumulations,

where we progressively add the contribution of w.i to the projected space.

16/23



Alternative LMG inspired by Johnson’s Method

(Proof.)

• Considérant u′ = u ∪ {i}, le nouveau projecteur devient :

Pu′ = W.u′Σ
−1
u′ Wt

.u′

avec
W.u′ = [W.uw.i ] ,

et :

Σu′ = Wt
.u′W.u′ =

[
ΣuWt

.u Wt
.uw.i

w t
.iW.u w t

.iw.i

]
• la formule de Sherman-Morrison-Woodbury permet d’exprimer :

Pu′ = Pu +
(I− Pu)w.iw t

.i (I− Pu)

w t
.i (I − Pu)w.i

• Par itération, si on classe par ordre croissant les indices dans u′ tel que
u′ = k, . . . , l :

Pu′ = Pk +
l∑

i=k+1

(I− Pi−1)w.iw t
.i (I− Pi−1)

w t
.i (I− Pi−1)w.i

.
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Alternative LMG inspired by Johnson’s Method

How to approach the link between LMG and Johnson ?

r2Y (Xj |Xu)
=

(
α∗tw∗.j −α∗tw∗.k −α∗tAccw∗.j

)2
1−w∗.j

tPkw∗.j −w∗.j
tAccw∗.j

with Acc =
∑l

i=k+1
(I− Pi−1)w.iw t

.i (I− Pi−1)

w t
.i (I− Pi−1)w.i

.
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Numerical Application

Two-input regression model : Y = β1X1 + β2X2 + ε

R2 COR(X1,X2) b1 = β1σ1 b2 = β2σ2 V(Y )
0.35 0.80 23.0 15.0 798.0

Numerical equality :

Results LMGR2 LMGPu Rel. error Johnson Rel. error
X1 0.24 0.24 1.4E-15 0.24 1.8E-15
X2 0.11 0.11 2.5E-15 0.11 2.7E-15

19/23



Numerical Application

Input regression model :

d = 10

Y =
∑d

i=1 βiXi + ε

R2

0.35

Results X1 X2 X3 X5 X7 X9

b = βσ -8.8 -243.5 -112.9 -96.7 -89.45 -154.8
LMGR2 0.0032 0.030 0.023 0.12 0.028 0.061
LMGPu 0.0032 0.030 0.022 0.12 0.028 0.061

Abs. error E-15
Johnson 0.0035 0.029 0.023 0.12 0.028 0.062
Abs. error E-4 - E-5
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Numerical Application

Input regression model :

d = 10

Y =
∑d

i=1 βiXi + ε

R2

0.34

Results X1 X2 X3 X5 X7 X9

b = βσ -9.7 -241.0 -125.4 -97.4 -99.2 -176.2
LMGR2 0.030 0.042 0.041 0.036 0.035 0.035
LMGPu 0.030 0.042 0.041 0.036 0.035 0.035

Abs. error E-16 - E-18
Johnson 0.028 0.043 0.042 0.038 0.037 0.036
Abs. error E-3 - E-4
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Numerical Application

Input regression model :

d = 10

Y =
∑d

i=1 βiXi + ε

R2

0.29

Results X1 X2 X3 X5 X7 X9

b = βσ -27.7 -262.6 -129.8 -95.2 -90.6 -175.1
LMGR2 0.011 0.103 0.019 0.071 0.014 0.010
LMGPu 0.011 0.103 0.019 0.071 0.014 0.010

Abs. error E-15
Johnson 0.0093 0.100 0.018 0.072 0.015 0.012
Abs. error E-3
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Conclusion & Perspectives

Conclusion :
• LMG offer a principled way to attribute variance in multivariate linear

regression with correlated inputs.

• It provides a decomposition of R2 that satisfies the grouping property.

• Because LMG is computationally expensive, Johnson’s approximation offers
an efficient alternative when the objective is to define a hierarchy between
variables.

Article in SESMO Journal [cloioo25] : L. Clouvel, B. Iooss, V. Chabridon, M. Il
Idrissi, F. Robin, An overview of variance-based importance measures in the linear
regression context : comparative analyses and numerical tests.

Software : R package sensitivity : LMG/Johnson.

Future work :
• quantify the difference between LMG and Johnson,

• extend to PMVD indices which satisfy the exclusion property,

• imgaine how to extend to non-linear models.
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Multicolinearity illustration
Two-input regression model

An illustrative example :

Two-input regression model

Consider the linear regression model (for d = 2) of the output Y with X1 and X2.

b1 := β1σ1, b2 := β2σ2, and r := rX1,X2 .

The coefficient of determination is :

R2 =
b1

2 + 2b1b2r + b2
2

b1
2 + 2b1b2r + β2σ2

2 + σ2
ε

.
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Metrics to deal with multicollinearity
The full correlation coefficient (Pearson) :

• measures the degree of linear association between two variables :

rY ,Xj =
COV(Y ,Xj)

σYσj

With independent inputs : r = 0

• rY ,Xj is equal to β
∗
j the Standardized regression coefficients (SRC) [gro06 ;

antlam21] :
β∗j = βj

σj

σY
= rY ,Xj

r2Y ,X1 =
b1

2

b1
2 + b2

2 + σ2
ε

and r2Y ,X2 =
b2

2

b1
2 + b2

2 + σ2
ε

.

C1 Proper decomposition
∑

j IMj = R2 YES

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 YES

C4 Inclusion if βj 6= 0, IMj 6= 0 YES
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Metrics to deal with multicollinearity

The full correlation coefficient (Pearson) :

• measures the degree of linear association between two variables :

rY ,Xj =
COV(Y ,Xj)

σYσj

With correlated inputs : r 6= 0

r2Y ,X1 =
(b1 + rb2)2

b1
2 + 2b1b2r + b2

2 + σ2
ε

and r2Y ,X2 =
(b2 + rb1)2

b1
2 + 2b1b2r + b2

2 + σ2
ε

.

C1 Proper decomposition
∑

j IMj = R2 NO

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 NO ex : if r = 1

C4 Inclusion if βj 6= 0, IMj 6= 0 YES
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Metrics to deal with multicollinearity

The semi-partial correlation coefficient :

• quantify the additional explanatory power of a variable Xj on the variance of
Y [johleb04].

r2
Y ,(Xj |X−j )

= R2
Y (X ) − R2

Y (X−j )
.

With independent inputs : r = 0

• r2
Y ,(Xj |Xi )

is equal to the correlation coefficient and the SRC2 β∗j = r2
Y ,Xj

.

r2Y ,(X1|X2)
=

b1
2

b1
2 + b2

2 + σ2
ε

and r2Y ,(X2|X1)
=

b2
2

b1
2 + b2

2 + σ2
ε

.

C1 Proper decomposition
∑

j IMj = R2 YES

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 YES

C4 Inclusion if βj 6= 0, IMj 6= 0 YES
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Metrics to deal with multicollinearity

The semi-partial correlation coefficient :

• quantify the additional explanatory power of a variable Xj on the variance of
Y [johleb04].

r2
Y ,(Xj |X−j )

= R2
Y (X ) − R2

Y (X−j )
.

With correlated inputs : r 6= 0

r2Y ,(X1|X2)
=

b1
2(1− r2)

b1
2 + 2b1b2r + b2

2 + σ2
ε

and r2Y ,(X2|X1)
=

b2
2(1− r2)

b1
2 + 2b1b2r + b2

2 + σ2
ε

.

C1 Proper decomposition
∑

j IMj = R2 NO

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 YES

C4 Inclusion if βj 6= 0, IMj 6= 0 NO when r = 1
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Metrics to deal with multicollinearity
Venn diagrams illustrating the challenges of the multicollinearity framework :

(a) r = 0, b = 0 (b) r 6= 0, b 6= 0

• Three circles :

· the variance of Y ; the variance of X1 ; the variance of X2 .

• Two overlapping area - the additional explanatory power :
· of X1 on the regression model Y (X ) : a = β2

1σ
2
1(1− r2) ,

· of X2 on the regression model Y (X ) : c = β2
2σ

2
2(1− r2) .

• The area b : b = β2
1σ

2
1r

2 + 2β1β2σ1σ2r + β2
2σ

2
2r

2.
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Metrics to deal with multicollinearity

(a) r = 0, b = 0 (b) r 6= 0, b 6= 0

a

a + c + σ2
ε

CC r2
Y ,X1

a + b

a + b + c + σ2
ε

a

a + c + σ2
ε

semi-partial CC r2
Y ,(X1|X2)

a

a + b + c + σ2
ε

a + c

a + c + σ2
ε

R2
a + b + c

a + b + c + σ2
ε

Importance measures : How to allocate a portion of zone b to the two variables X1 and X2 ?
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Lindeman-Merenda-Gold indices
Two-input regression model

LMG1 =
b1

2 + b1b2r +
r2

2
(b2

2 − b1
2)

b1
2 + 2b1b2r + b2

2 + σ2
ε

LMG2 =
b2

2 + b1b2r +
r2

2
(b1

2 − b2
2)

b2
2 + 2b1b2r + b1

2 + σ2
ε

=
a+ b/2

a+ b + c + σ2
ε

=
c + b/2

a+ b + c + σ2
ε

LMG redistributes b equally between the portions attributed to X1 and X2.
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Variance-based Importance Measures
LMG

With independent inputs : r = 0

• LMG is equal to the squared SPCC, the squared CC and the SRC2.

LMG1 =
b1

2

b1
2 + b2

2 + σ2
ε

LMG2 =
b2

2

b2
2 + b1

2 + σ2
ε

C1 Proper decomposition
∑

j IMj = R2 YES

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 YES

C4 Inclusion if βj 6= 0, IMj 6= 0 YES
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LMG as a R2 decomposition
Appendix

With correlated inputs : r 6= 0

LMG1 =
b1

2 + b1b2r +
r2

2
(b2

2 − b1
2)

b1
2 + 2b1b2r + b2

2 + σ2
ε

LMG2 =
b2

2 + b1b2r +
r2

2
(b1

2 − b2
2)

b2
2 + 2b1b2r + b1

2 + σ2
ε

C1 Proper decomposition
∑

j IMj = R2 YES

C2 Non-negativity for all j , IMj ≥ 0 YES

C3 Exclusion if βj = 0, IMj = 0 NO if r 6= 0

C4 Inclusion if βj 6= 0, IMj 6= 0 YES

C5 Grouping shares equate for high correlations YES

LMG1 = LMG2, if r = 1

12/19



Variance-based Importance Measures
Johnson indices

With a linear relation hypothesis between Y and X :

• The Johnson indices are equal to the LMG indices in the case of a two-input
model.

J1 = LMG1 =
b1

2 + b1b2r +
r2

2
(b2

2 − b1
2)

b1
2 + 2b1b2r + b2

2 + σ2
ε

J2 = LMG2 =
b2

2 + b1b2r +
r2

2
(b1

2 − b2
2)

b2
2 + 2b1b2r + b1

2 + σ2
ε

• They give empirically similar results for a higher-dimensional input data
(d ≥ 3).
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Sensitivity analysis in a neutronic study

Assessment of the neutron irradiation contributing to the aging of the reactor vessel
[clo19]

• The neutron flux is calculated to be compared with the measured flux.
• The calculation gives a prediction of the neutron flux received by the vessel,

which is not measured.
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Sensitivity analysis in a neutronic study

Calculation model :

Interest variable :

• ψ the neutron flux.

Input variables :

• the power of 25 assemblies
Approached model :

• Linear regression model
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Sensitivity analysis in a neutronic study

• The SRC2 indices (blue) of the assemblies A9, B10, B11 are the highest.
• The SRC2 indices only explain 75% of the output variance.
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Sensitivity analysis in a neutronic study

• The variables with a stronger correlation with A9, B10, B11 have a higher
Johnson/Shapley index than the associated SRC2 index.
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Sensitivity analysis in a neutronic study

• The power map is based on calculation and measures. Some powers are
measured and the value of the other variables are reconstructed thanks to
measured assemblies.

• The variables positioned next to a measured and influential power in the
model have a higher Johnson/Shapley index than that of SRC2.
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Conclusion
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