Introduction	Cadre Théorique	Principaux Résultats	Illustration ೦೦೦೦೦೦೦೦೦೦೦೦	Conclusion/Perspectives

Méthodes d'Interpolation à Noyau et Opérateurs Intégraux

Bertrand GAUTHIER gauthier@emse.fr

École Nationale Supérieure des Mines de Saint-Étienne

Mascot-Num Avignon, 17-18-19 mars 2010

Introduction	Cadre Théorique	Principaux Résultats	Illustration 00000000000000	Conclusion/Perspectives
Plan				

- 2 Cadre Théorique
- OPRINCIPAUX Résultats

- Exemple en Dimension 2
- Cas des Équations Classiques

Introduction	Cadre Théorique	Principaux Résultats	Illustration 000000000000	Conclusion/Perspectives

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives

Introduction	Cadre Théorique	Principaux Résultats	Illustration	Conclusi

Conclusion/Perspectives

Introduction	Cadre Théorique	Principaux Résultats	Illustration 000000000000	Conclusion/Perspectives

Ζ

Simulation :

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
Méthodes	s à Noyau			

Noyau

 $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symétrique et défini positif

- \rightarrow Choix de *K* à partir des a priori...
 - Cadre fonctionnel : K noyau d'un RKHS H
 - Cadre probabiliste : K noyau de covariance d'un processus gaussien centré Z

Introduction	Cadre Théorique	Principaux Résultats	Illustration 000000000000	Conclusion/Perspectives
Structure h	ilbertienne			

Isomorphisme

$\mathsf{RKHS} \leftrightarrow \mathsf{espace gauss.} \text{ associé au processus} \\ \mathcal{K}_x \leftrightarrow \mathcal{Z}_x$

$$(K_x|K_y)_{\mathcal{H}} = K(x,y) = Cov(Z_x,Z_y)$$

Introduction	Cadre Théorique	Principaux Résultats	Illustration 000000000000	Conclusion/Perspectives
Hypothèse	de travail			

La fonction inconnue est

- une fonction du RKHS (noté φ)
- une réalisation du processus gaussien

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
Internolati	ion Ontimale			

Observations

Réponse connue aux points $s \in S \subset X$

Résultat théorique

•Best-Predictor (cadre proba.) :

 $\mathbb{E}\left(Z_{x}|Z_{s}, \ s \in \mathcal{S}\right) = \text{ proj. ortho. de } Z_{x} \text{ sur } \overline{span\{Z_{s}, \ s \in \mathcal{S}\}}.$

•Interpolateur de norme minimale (cadre fonc.) :

 $h_M(x) = \text{ proj. ortho. de } \varphi \text{ sur } \overline{span\{K_s, s \in S\}}.$

$$\mathcal{H}_1 = \overline{span\{K_s, s \in \mathcal{S}\}}$$

Principaux Résultats

Illustration

Conclusion/Perspectives

Cadre Classique : nombre fini d'observations

Observations

Réponse connue aux points $\zeta^{(1)}, \cdots, \zeta^{(n)}$

Équation du Krigeage

$$\mathbb{E}\left(Z_{x}|Z_{\zeta^{(1)}},\cdots,Z_{\zeta^{(n)}}
ight)=\mathbf{k}(x)^{T}\mathbf{K}^{-1}\mathbf{z}$$

avec :

- $\mathbf{k}(x)$: vecteur des $K(x, \zeta^{(i)})$
- K : matrice des K(ζ⁽ⁱ⁾, ζ^(j))
- **z** : vecteur des $Z_{\zeta^{(i)}}$

Problématique

Comment prendre en compte

- Réponse connue sur les bords du domaine
- Plus généralement, réponse connue en une infinité de points

→ sans discrétiser

 \rightarrow sans modifier la structure du processus

Intro	ndi	ICTI	$\cap r$
II IU C	Jul	10 U	UI.

Démarche

- Réponse connue sur le support d'une mesure
- Objinition d'un opérateur intégral à l'aide du noyau $K(\cdot, \cdot)$ et de la mesure
- Expression/Approximation de l'interpolateur à partir de la base de diagonalisation de l'opérateur

• μ une mesure sur S dont le support est S

K ∈ L²(µ ⊗ µ) ou bien, de façon plus restrictive, (Z_x)_x à trajectoires L²(µ)

Opérateur Intégral

Pour $x \in \mathcal{X}$, et $f \in L^2(\mu)$

$$T_{\mu}[f](x) = \int_{\mathcal{S}} K(x,t) f(t) d\mu(t)$$

 $T_{\mu}:L^{2}\left(\mu
ight)
ightarrow L^{2}\left(\mu
ight)$ auto-adjoint et positif.

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
Diagonalis	sation			

Pour tout
$$f \in L^{2}(\mu)$$
 : $T_{\mu}[f] \in \mathcal{H}_{2}$

Décomposition Spectrale et Régularisation

$$\phi_i \in \mathcal{H}_1, \|\phi_i\|_{L^2(\mu)} = 1, \lambda_i \in \mathbb{R}^+ \text{ t.q.}$$

$$T_{\mu} \left[\phi_{i}\right](\boldsymbol{x}) = \int_{\mathcal{S}} \mathcal{K}(\boldsymbol{x}, t) \phi_{i}(t) d\mu(t) = \lambda_{i} \phi_{i}(\boldsymbol{x})$$

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
A propos	des ϕ_i			

Remarques :

- ϕ_i b.o.n. de $L^2(\mu)$
- $\sqrt{\lambda_i}\phi_i$ b.o.n. de \mathcal{H}_1
- de plus

$$\forall h \in \mathcal{H}, \ (h|\phi_i)_{\mathcal{H}} = \frac{1}{\lambda_i} (h|\phi_i)_{L^2(\mu)}$$
$$\forall h \in \mathcal{H}, \ \forall f \in L^2(\mu), \ (T_{\mu}[f]|h)_{\mathcal{H}} = (f|h)_{L^2}$$

Illustration

Conclusion/Perspectives

Théorèmes de Représentation

Cas Probabiliste

$$\mathbb{E}(Z_{x}|Z_{s}, s \in S) = \sum_{k} \phi_{k}(x) \int_{S} \phi_{k}(t) Z_{t} d\mu(t)$$

Cas Fonctionnel

Pour tout $\varphi \in \mathcal{H}$,

$$\mathbb{P}_{\mathcal{H}_1}\left[\varphi\right](\mathbf{x}) = \sum_{\mathbf{k}} \phi_{\mathbf{k}}(\mathbf{x}) \int_{\mathcal{S}} \phi_{\mathbf{k}}(t) \varphi(t) d\mu(t)$$

Illustration

Conclusion/Perspectives

Théorèmes de Représentation

Cas Probabiliste

$$\mathbb{E}(Z_{x}|Z_{s}, s \in S) = \sum_{k} \phi_{k}(x) \int_{S} \phi_{k}(t) Z_{t} d\mu(t)$$

Cas Fonctionnel

Pour tout $\varphi \in \mathcal{H}$,

$$\mathbb{P}_{\mathcal{H}_1}\left[\varphi\right](\mathbf{x}) = \sum_{\mathbf{k}} \phi_{\mathbf{k}}(\mathbf{x}) \int_{\mathcal{S}} \phi_{\mathbf{k}}(t) \varphi(t) d\mu(t)$$

Formules indépendantes du choix de μ

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
Corollaires				

\mathcal{H}_1 (muni de $(\cdot|\cdot)_{\mathcal{H}})$ RKHS de noyau

$$K_1(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{k}\in\mathbb{N}} \lambda_{\mathbf{k}}\phi_{\mathbf{k}}(\mathbf{x})\phi_{\mathbf{k}}(\mathbf{y}).$$

idem pour
$$\mathcal{H}_0 = \mathcal{H}_1^{\perp} \dots$$

isomorphisme

$$\begin{array}{rcccc} T^{\frac{1}{2}}_{\mu} & : & L^{2}(\mu) & \longrightarrow & \mathcal{H}_{1} \\ & \sum \alpha_{k} \phi_{k} & \longmapsto & \sum \alpha_{k} \sqrt{\lambda_{k}} \phi_{k} \end{array}$$

et
$$T_{\mu} = T_{\mu}^{\frac{1}{2}} \circ T_{\mu}^{\frac{1}{2}}$$
.

U Supeneure des Mines

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives
Intérêt Pra	tiaue			

$\sum_k \phi_k(x) \int_{\mathcal{S}} \phi_k(t) Z_t d\mu(t)$

→ Problèmes numériques

Série Tronquée

$$\sum_{k=1}^{N} \phi_k(x) \int_{\mathcal{S}} \phi_k(t) Z_t d\mu(t)$$

⇒ Approximation de la solution, dans la base { ϕ_1, \dots, ϕ_N }, au sens des Moindres-Carrés $L^2(\mu)$.

Dépendance par rapport au choix de μ

 \rightarrow Conserver les fonctions propres associée aux *N* plus grandes valeurs propres.

Illustration

Exemple en Dimension 2

Réponse Connue sur un Cercle

Noyau Gaussien

$$\mathcal{K}_{ heta}(x,y) = e^{-rac{\|x-y\|^2}{ heta}}, \; ext{ avec } heta = 2$$

Ensemble \mathcal{S}

Cercle centré en (0,0) et de rayon 3

On souhaite simuler un processus de covariance K sachant que ce dernier est nul sur le cercle

Mesure

Mesure de Lebesgue sur le cercle

Opérateur

$$T_{\mu}[f](x) = \int_{0}^{2\pi} K(x, (R\cos(\omega), R\sin(\omega))) f((R\cos(\omega), R\sin(\omega))) Rd\omega$$

Fontions propre

Restriction au cercle :

- constante
- proportionnelle à $\cos(n\omega)$
- proportionnelle à $sin(n\omega)$

Introduction	Cadre Théorique	Principaux Résultats	Illustration oo●ooooooooo	Conclusion/Perspectives
Exemple en Dimens	sion 2			
Étude Spe	ectrale			

Fct Propre constante sur le cercle :

$$\lambda_0 = Re^{-\frac{2R^2}{\theta}} \int_0^{2\pi} e^{-\frac{2R^2}{\theta}\cos(\omega)} d\omega$$
$$\phi_0(x) = \frac{1}{\lambda_0} \int_0^{2\pi} K(x, (R\cos(\omega), R\sin(\omega))) \frac{R}{\sqrt{2\pi R}} d\omega$$

Introduction	Cadre Théorique	Principaux Résultats	Illustration	Conclusion/Perspectives
Exemple en Dimensio	on 2			
Étude Spec	trale			

Fct Propre prop. à $cos(n\omega)$ sur le cercle (graph pour n=2) :

$$\lambda_{Cn} = Re^{-\frac{2R^2}{\theta}} \int_0^{2\pi} e^{-\frac{2R^2}{\theta}\cos(\omega)}\cos(n\omega)d\omega$$
$$\phi_{Cn}(x) = \frac{1}{\lambda_{Cn}} \int_0^{2\pi} K(x, (R\cos(\omega), R\sin(\omega)))\cos(n\omega)\frac{R}{\sqrt{\pi R}}d\omega$$

Fct Propre prop. à $sin(n\omega)$ sur le cercle (graph pour n=18) :

$$\phi_{Sn}(x) = \frac{1}{\lambda_{Sn}} \int_{0}^{2\pi} K(x, (R\cos(\omega), R\sin(\omega))) \sin(n\omega) \frac{R}{\sqrt{\pi R}} d\omega$$

Illustration

Conclusion/Perspectives

Exemple en Dimension 2

Approximation de la covariance conditionnelle

Valeurs Propres

```
2.543927e+00 2.398134e+00 2.011008e+00 1.504353e+00 1.008106e+00
6.082584e-01 3.322637e-01 1.652402e-01 7.522338e-02 3.150974e-02
1.220389e-02 4.389996e-03 1.472786e-03 4.625664e-04 1.364831e-04
3.795235e-05
```

$$\begin{aligned} \mathcal{K}_{app}(x,t) &= \mathcal{K}(x,t) - \\ \left\{ \lambda_0 \phi_0(x) \phi_0(t) + \sum_{k=1}^{15} \lambda_{Ck} \left[\phi_{Ck}(x) \phi_{Ck}(t) + \phi_{Sk}(x) \phi_{Sk}(t) \right] \right\} \end{aligned}$$

Introduction	Cadre Théorique	Principaux Résultats	Illustration oooooo●ooooo	Conclusion/Perspectives
Exemple en Dime	ension 2			
Simulatio	on avec Kapp			

Introduction	Cadre Théorique	Principaux Résultats	Illustration 00000000000000	Conclusion/Perspectives
Exemple en Dime	ension 2			
Krigeage	avec K _{app}			

Meilleur Prédicteur :

$$\mathcal{S} = \left\{ \zeta^{(1)}, \cdots, \zeta^{(n)} \right\} \text{ et } \mu = \delta_{\zeta^{(1)}} + \cdots + \delta_{\zeta^{(n)}}$$
$$T_{\mu}[f](x) = \sum_{i=1}^{n} \mathcal{K}(x, \zeta^{(i)}) f(\zeta^{(i)}).$$

$$\mathbf{k}(x)^T \mathbf{K}^{-1} \mathbf{y} = \sum_k \phi_k(x) \int_{\mathcal{S}} \phi_k(s) \varphi(s) d\mu(s)$$

Introduction	Cadre Théorique	Principaux Résultats	Illustration ○○○○○○○●○○	Conclusion/Perspectives
Cas des Équations C	lassiques			
Jeu d'Écrit	ure			

Diagonalisation de K

$$\mathbf{K} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\mathcal{T}}$$

avec
$$\Lambda = diag(\lambda_1, \cdots, \lambda_n)$$
 et $\mathbf{P} = [\mathbf{v}_1 | \cdots | \mathbf{v}_n]$

Spectre de T_{μ}

Spectre identique à K et

$$\forall x \in \mathcal{X}, \ \phi_k(x) = \frac{1}{\lambda_k} \mathbf{k}(x)^T \mathbf{v}_k = \mathbf{k}(x)^T \mathbf{K}^{-1} \mathbf{v}_k$$

$$\mathbf{k}(x)^T \mathbf{K}^{-1} \mathbf{y} = \mathbf{k}(x)^T \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}^T \mathbf{y}$$

k(x)^TPΛ⁻¹ vecteur des φ_i(x) = ¹/_{λi}k(x)^Tv_i = k(x)^TK⁻¹v_i
P^Ty vecteur des v_i^Ty, or

$$\mathbf{v}_i^T \mathbf{y} = \sum_{k=1}^n \phi_i(\zeta^{(k)}) \varphi\left(\zeta^{(k)}\right) = \int_{\mathcal{S}} \phi_k(s) \varphi(s) d\mu(s)$$

On obtient bien :

$$\mathbf{k}(\mathbf{x})^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y} = \sum_{i=1}^{n} \phi_{i}(\mathbf{x}) \int_{\mathcal{S}} \phi_{i}(t)\varphi(t) \, d\mu(t)$$

Démarche identique pour T_{ν} associé à K et $\nu = m_1 \delta_{\zeta^{(1)}} + \cdots + m_n \delta_{\zeta^{(n)}}$, avec $m_i > 0$: diagonalisation de **MK** (**M** = diag (m_1, \cdots, m_n)) et

$$\mathbf{k}(x)^{T} \mathbf{K}^{-1} \mathbf{y} = \mathbf{k}(x)^{T} \mathbf{K}^{-1} \mathbf{M}^{-1} \mathbf{M} \mathbf{y} = \mathbf{k}(x)^{T} \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}^{-1} \mathbf{M} \mathbf{y}$$

= $\mathbf{k}(x)^{T} \mathbf{P} \mathbf{\Lambda}^{-1} \mathbf{P}^{-1} \mathbf{K}^{-1} \mathbf{P}^{-T} \mathbf{P}^{T} \mathbf{K} \mathbf{M} \mathbf{y}$
= $\mathbf{k}(x)^{T} \mathbf{P} \left(\mathbf{P}^{T} \mathbf{K} \mathbf{M} \mathbf{K} \mathbf{P} \right)^{-1} \mathbf{P}^{T} \mathbf{K} \mathbf{M} \mathbf{y}, \dots$

- Couplage algorithmes spectraux et codes de krigeage,
- Estimation des paramètres,
- Généralisation aux noyaux hilbertiens, approximation,
- planification d'expériences, ...

Principaux Résultats

Illustration

N. Aronszajn.

Theory of reproducing kernels.

Trans. Amer. Math. Soc., 63:337-404, 1950.

R. M. Fortet.

Les operateurs integraux dont le noyau est une covariance. *Trabajos de Estadística y de Investigación Operativa*, 36:133–144, 1985.

C. A. Micchelli and T. J. Rivlin.

Numerical Analysis Lancaster 1984, chapter Lectures on optimal recovery, pages 21–93. Springer Berlin / Heidelberg, 1985.

Laurent Schwartz. *Analyse Hilbertienne*. Hermann, 1979.

L. Schwartz.

Principaux Résultats

Illustration

Conclusion/Perspectives

Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés. *J. Anal. Math.*, 13:115–256, 1964.

📔 H. Sun and Q. Wu.

Application of integral operator for regularized least-square regression.

Mathematical and Computer Modelling, 49:276–285, 2009.

G. Wahba. Spline Models for Observational Data. SIAM, 1990.

Introduction	Cadre Théorique	Principaux Résultats	Illustration 0000000000000	Conclusion/Perspectives

Merci.

