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Introduction

[ 1o}

Approximation of high-dimensional functions

Context : Uncertainty quantification for a black-box and costly model represented by a
function u(x) of d variables.

Objective : Construct an approximation u* of u in some model class V'

— with controlled precision (when ue L7, |u—u" ”Li <eg),

— with only few evaluations of u(z’) of u at points z* chosen adaptively.

Difficulties : For a high dimension d,

— V is an approximation space that should be adapted to the function w.
A typical choice is a tensor product space V =V} ® - ® V5, where each V; is a suitable
space of univariate functions.

— When d >>1 (even when each V; is low-dimensional) — curse of dimensionality.
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Introduction TBT formats
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Approach

— Here we propose a strategy to construct a nested sequence of well-chosen tensor product
subspaces with decreasing dimensions, associated to a dimension partition tree T,

V=v® 5 oy@opy® oy

such that the approximation is defined by u* = Py+«u.

— The resulting approximation is in tree-based tensor format.
It admits a multilinear parametrization with parameters forming a tree network of
low-order — also called tree tensor networks.

— The V) are constructed from the leaves of the tree to the root thanks to an extension
of Principal Component Analysis to multivariate functions and sample-based
projections.

‘/(2)

v (3)
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Boosted least-squares

Least-squares methods

In this part, we consider a linear space V c L? and {p;}j21 a given orthonormal basis
of V. The best approximation of u by an element of V is given by the orthogonal
projection :
Pyu =argmin |u-v|72.
veV Iz

e Since it is not computable in practice, replaced by a weighted least-squares projection :
n

5 " i i N2 i
Pvufargl;ril‘;lﬁ > w(a')(v(z") - u(z"))” where 2" ~ p

i=1

e The stability of the projection PV is measured by the properties of the empirical Gram
matrix G, more precisely by |G - I|.

e How to choose p to have the |G - I close to 0 while using a small n?
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Boosted least-squares A for TBT formats

Optimal least-squares methods

Theorem (Optimal weighted least-squares)

Let dp = w(z) du(x) with w(z)™ =+ Yt wi(z)?.

Let ne (0,1) and § € (0,1), and for z*,--, ™ i.i.d from dp. For n > 8 *mlog(2mn™"), it
holds

P(|G-1|>4) <.
The approximation Py u defined by Pyu if |G - I| <& and 0 otherwise satisfies

E(Jlu - Pvul®) < (1-8)7" Ju~ Pyul® +nlul*.

® Improving stability (smaller ) and the chance to have this stability (smaller ) implies
higher n.

@ n still high compared to an interpolation method (n=m).

e Next, we propose a new measure p based on p to improve the properties of ||G -1I].

[2] A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI Journal of Computational
Mathematics. 2017
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Boosted optimal least-squares method (BLS)

1. Resampling : draw M independent n-samples {z™*}¥,, with ™" = (2!, ..., z™"%), for

each 1< j<n, 2" ~ p and choose the one which minimizes |G - I.

15T !

BLS (M =1) —
BLS (M = 10) —
ol BLS (M = 100) |

o
T
I
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FIGURE — Distribution of |G - I| for § =0.9

Resampling improves the chance to be stable for a given § (7 — n™).
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Boosted optimal least-squares method (BLS)

1. Resampling : draw M independent n-samples {z™*},, with ™" = (2!, ..., z™"%), for

each 1< j<n, 2" ~ p and choose the one which minimizes |G - I|.

15F !

BLS (M =1) —
BLS (M = 10) —
BLS (M = 100)

o
T
I

I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7

IG-1]

FIGURE — Distribution of |G - I|| for § = 0.9

Resampling improves the chance to be stable for a given § (n — nM).

2. Conditioning by rejection : Repeat step 1 while |G - I| > 4.
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Boosted optimal least-squares method (BLS)

3. Greedy removal of samples : Begin with K = {1,---,n} and while |G-1| <6
successively select a subsample of size #K — 1 which minimizes |G - I|.

15
BLS (M = 100)
s-BLS (few points removed) ——
ol s-BLS (many points removed) ——
0.2 0.4 0.6 0.8
|G-1]

FIGURE — Distribution of |G - I|| for § = 0.9
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Boosted optimal least-squares (BLS)

Theorem (Stability of the boosted optimal least-squares)

Let ne(0,1) and 6 € (0,1), and let Pyu be the boosted optimal least-squares projection
such that the initial sample size verifies n > 6~ *mlog(2mn™") and the resulting number of
samples after the greedy subsampling is constrained to be greater than ng. It satisfies the
quasi-optimality property

E(|u - Pvul®) < Clu- Pyul?

with C = (1+ 2 (1-6)"" (1 -n™)7"M).

Also, assuming |u]ee,w < L , we can obtain a better bound.

For more details — see [3] C. Haberstich, A. Nouy, G. Perrin. Boosted optimal least-squares
method. arXiv :1912.07075.

® quasi-optimality property
® pay the M and nlo
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Boosted least-squares
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lllustration on a simple example : stability guaranteed

1

u(z) = T 05y L. defined on X = [-1,1]%, equipped with the uniform measure
i=1Ti
A={a: I (e +1) < 10} 3,000
.
8
S 2,000
6 =
&'s
4 . 1,000
3¢ e
26 o o
1¢ o o o o ol
0 Il Il Il Il Il Il
0123456789 B T S —
ag
log(E(lu—u"[*))
FIGURE - V' is defined by a FIGURE — Guaranteed stability with
hyperbolic cross d = 2. probability greater than 0.99, & = 0.9.
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lllustration on a simple example : given cost

1
u(z) = — 5 oq — defined on X = [-1, 1]¢, equipped with the uniform measure
1-53 Ximim

We have access to u(z) + e with e ~ N(0,0?)

e Given cost n=m

e Interpolation : u*(z*) = u(z") + ¢’ for 1 <i <m,z" € X, for example magic points. —
interpolation may not be stable!

Interpolation with magic points | s-BLS (M = 100)

m o log(flu - u*|?) lu =™ ?
10 01 [1.1;-1.0] [1.6;-1.1]
27 0.1 [-0.8; 0.1] [-1.8;-0.7]
27 0.01 [2.5; -1.5] [-3.0; -2.3]

TABLE — Confidence intervals of levels 10% and 90% for the approximation error log(|u —u*|?) for
a noisy example with d=2, n=m
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Conclusions of the first part

The boosted least-squares projection is

stable in expectation,

© O

with a number of samples close to the dimension of the space (almost the cost of an
interpolation method),

error bound pessimistic compared to the experiments.

® Sampling from the boosted optimal measure is time-consuming.
(Remedies are sequential sampling for multivariate distributions, introduce an
approximate greedy algo based on results in linear algebra).

— However, when one evaluation of u is costly, this method is relevant.
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Leaves-to-root strategy

e We consider the following dimension tree T,

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{1,2} {7,8}
{1} {2} {3} {4} {53 (6} {7} {8}
F1GURE — Dimension partition tree

T-={{1,2,3,4,5,6,7,8},{1,2,3,4},{5,6,7,8},{1,2},{3,4},....,{7,8}, {1}, -, {8} }

e One node « is associated to a space of functions of groups of variables x4 = (% )ica-
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formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V ® V2 ®---® Vg c Li.

e Construct a nested sequence of well-chosen subspaces
V= V(L) ERTTES 74 SRS VACO N Vo

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua)aer associated to the tree T' which defines the
sequence v,

Vi Vo Vs Vi Vs Ve Vi W
v =@ Vi
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formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V ® V2 ®---® Vg c Li.

e Construct a nested sequence of well-chosen subspaces
V= V(L) ERTTES 74 SRS VACO N Vo

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua)aer associated to the tree T' which defines the
sequence v,

U1 U2 U3 U4 U5 U6 U7 US
For each o, Us c Vo V) = @5, U;
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formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V @ V2 ®---® V3 c Li.

e Construct a nested sequence of well-chosen subspaces
V= V(L) 5 V(2) 5 V(l) — V*

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua )aer associated to the tree T’ which defines the
sequence V().

Vie =U1 ®@ Uz Vay Vse Vg =U7 @ Ug
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formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V ® V2 ®---® Vg c Li.

e Construct a nested sequence of well-chosen subspaces
Vv 5. oy@opy® oy

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua)aer associated to the tree T" which defines the
sequence V.

For each v, Uy c Vo V® = Uys ® Usy ® Usg ® Urs
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PCA for TBT formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V @ V2 ®---® V3 c Li.

e Construct a nested sequence of well-chosen subspaces
V= V(L) 5 V(2) 5 V(l) — V*

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua )aer associated to the tree T’ which defines the
sequence V().

V1234 = U12 ® Uss Vse7s = Use ® Urs
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formats

Leaves-to-root strategy

e Introduce a finite-dimensional approximation space V=V ® 12 ®---® Vg c Li.

e Construct a nested sequence of well-chosen subspaces
V= V(L) ERTTES 74 SRS VACO N Vo

and compute the approximation by porjecting u in V*.

e More precisely, going from the leaves to the root, construct a hierarchy of
low-dimensional subspaces (Ua)aer associated to the tree T' which defines the
sequence v,

Ui234 Users

For each o, Uy c V., and VO = V* = Utgss ® Users
e Final approximation is given by u* = Py~u with V* = U1234 ® Usgrs.
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PCA for TBT formats
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How to construct near-optimal subspaces U, ?

e A multivariate function can be identified with a bivariate function.

e The truncated singular value decomposition u,, of u :
& @ af
Uro (Tas Tae) = Zaﬂ)z‘ (Za)vi (Tac)
i=1

is the solution of the problem of best approximation of u by a function with a-rank r

. 2
min  |u-v]|
rankq (V)<rqo

o uf,-, vy are the rq a-principal components of u and U, = span{vf, -, vy } is the
a-principal subspace of u.
In practice to estimate U, two approximations are made :

1. Statistical estimation of the a-principal subspaces with an adaptive strategy based on
cross validation.

2. Compute the a-principal subspace of a projection of u. (using BLS).
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for TBT formats

@000

Error bound

e The final approximation u” verifies :

Elu-uw)s ¥ 0 Ddu@r ¥ 120 ()

a€eT'\ root e leaves

e (' is the quasi-optimality constant from the boosted least-squares projection.
In theory, if we want a controlled approximation E(|u —u*|?) < &%, we have to
— Adapt ranks and control the estimation of U, such that

2
512;ca(a) < E—
Q2CY@ (#T-1)

— and also, control the discretization error,

2

2 g
5dis(a) < %(20)1(a)+1d :

— But, C is large and I(a)) may be high (for high d and deep trees), in practice we assume
this bound is not sharp and use heuristics to control the error (cross validation).
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PCA for TBT formats
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lllustration of the choice of the projection

Let u(z) =sin(z1 + -+ 10) and X = R' equipped with the gaussian measure.

e Polynomial approximation spaces V,, = P,(X,), with p chosen such that there is a
negligeable discretization error (p = 20).

e T is a balanced binary tree.

o Approximation with prescribed tolerance ¢ = 107°.

Interpolation Boosted least-squares

log(VE( HSU —u*|?)) n log(VE( ngzi u*|?)) n
-85 -9.

[1110;4405] [940; 946]

TABLE — log(v/E(|u — u*||?)) and confidence intervals of levels 10% and 90% for the number of

evaluations n.
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PCA for TBT formats
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lllustration of the adaptive strategy for the estimation of the
a-principal components

o Let u(z) = (10+2x1+:c;+2:c4—:c5)2 and X =[-1,1]% equipped with the uniform measure.

e Polynomial approximation spaces V, = P,(X,), with p chosen adaptively to reach a
negligeable discretization error (p < 15) using adaptive boosted least-squares.

e T is a balanced binary tree.

With adaptive strategy for PCA

e | log(v/E([u-u*|?)) n

-2 -3 [328; 403]
-3 41 [455; 579]
-4 -4.4 [534; 697]
5 5.3 [751; 985]
6 6.1 [1028; 1503]
7 7.0 [1463; 2230]

TABLE — Heuristic control of the precision. log(y/E(]u — u*|2)) (in log scale) and confidence
intervals of levels 10% and 90% for the number of evaluations n.
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PCA for TBT formats
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Conclusions of the second part

The tree-based tensor format approximation

with BLS guarantees stability for the final approximation (compared to interpolation),

© O

estimation of the a-principal components can be controlled through adaptive
strategies (with a near-optimal number of evaluations, only observed, no theory)

© final approximation with a controlled error (if we pay the price ...).

Computing BLS projectors requires many samples from and multivariate measures
(same remedies as before).

© The a-ranks may be large for a given tree T'.
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Tree adaptation
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A motivating example

e X =[-1,1]% equipped with the uniform measure and the function v defined as follows,

3.
u(x) = g(x1,22) + g(x3,24) + ... + g(Ta-1,%a), Where g(z,Tu11) = Y Ty Tpar.
i=0

e Polynomial approximation spaces V,, = P,(X,), with p chosen to have a negligeable
discretization error (p = 4).

Fe W e e Wre)

{1y {2} {3} {4} {5} {6} {7} {8} {2} {4} {6} {8} {1} {3} {5} {7}
Balanced tree Permuted balanced tree

FIGURE — Two balanced trees, ordered variables (left) and permuted variables (right).
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Tree adaptation

(o] JeJ

A motivating example

e X =[-1,1]% equipped with the uniform measure and the function v defined as follows,

3.
u(@) = g(x1,22) + g(x3,2a) + ... + g(Ta-1,%a), Where g(z,Tu11) = Y Ty Tpuq.
i=0

e Polynomial approximation spaces V,, = P, (X, ), with p chosen to have a negligeable
discretization error (p = 4).

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Balanced tree Permuted balanced tree

FIGURE — Two balanced trees, ordered variables (left) and permuted variables (right), with the
a-ranks
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Tree adaptation
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A motivating example

e X =[-1,1]% equipped with the uniform measure and the function u defined as follows,

3 . .
w(x) = g(x1,32) + g(x3,24) + ... + g(Ta-1,%a), where g(z,,T141) = Zxﬁmiﬂ,
<0

e Polynomial approximation spaces V,, = P,(X,), with p chosen to have a negligeable
discretization error (p = 4).

Balanced tree | Permuted balanced tree

d n n

8 [460; 460] [2293;2438]
16 [940;957] [13679;14682]
24 [1420;1471] [45921; 49402]

TABLE — Confidence intervals of levels 10% and 90% for the number of evaluations n with two
different dimension partition trees.
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Leaves-to-root optimization of the tree

1. For each leaf o = {v}, 1 <v < d, we determine U, an approximation of the a-principal
subspace of u.

— 71,7T2,T3,74 and r5 are known.

O O O O O
{1 {2y 8y {4 {5}

2. Choose a random pairing P and estimate the associated a-ranks
T12 T34 Ts5
{1y {20 {80 {4 {5}

and calculate the corresponding cost function
2
C= Zae’P TalS;(a)TSy(a) = T127T17T2 + 7347374 + 7’5

Cécile Haberstich, Anthony Nouy, Guillaume Perrin 17-18 September 2020 17 /23



Tree adaptation
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Leaves-to-root optimization of the tree

2. Select two nodes 31 and (2 (choosing preferentially the ones whose parent has a high
a-rank), B ~ rankyarent(g)(u)” with v an integer.

o o 3

{2y 8 4 {5
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adaptation
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Leaves-to-root optimization of the tree

2. Select two nodes 31 and (2 (choosing preferentially the ones whose parent has a high
a-rank), B ~ rankyqrent(g)(u)” with v an integer.

6By 8 4 {Z

and permute these two nodes. Estimate the new «a-ranks (associated to this new
partition), calculate the new cost C*, if C* < C accept the permutation.

3. Repeat the operation np times.
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Tree adaptation

000@000

Leaves-to-root optimization of the tree

2. Select two nodes 31 and 32 (choosing preferentially the ones whose parent has a high
a-rank), 3~ rankygreni(gy (1) with v an integer.

{1 By B8y 4 {Z

and permute these two nodes. Estimate the new a-ranks (associated to this new
partition), calculate the new cost C*, if C* < C accept the permutation.

3. Repeat the operation np times.

{1 By B8y 28 4

Determine U, for a = {1,5},{2,3}. = 715,723 and 74 are known.
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Tree adaptation
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Leaves-to-root optimization of the tree

4. Proceed similarly with the next level, for pairing {1,5}, {2,3} and {4}.

T{1,5,4} T23

o o o

(1,5} {4} {2,3}

5. This yields a dimension tree.

{1,2,3,4,5}

{1,5,4}
{1,5}

{2,3}

(3}
{2} {5}

6. Compute the final approximation u* = pU(1,4,5}®U{2,3}“
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Tree adaptation
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Numerical example with local optimization

o X =[-1, 1]d, with, d = 24, equipped with the uniform measure and the function u,

3 . .
u(z) = g(w1,2) + g(w3,4) + ...+ g(xa-1,2a), where g(Ty,Tps1) = Y. T, Tys1-
=0

Polynomial approximation spaces V;, = P, (X, ), with p chosen to have a negligeable

discretization error (p = 4).
Approximation with a prescribed tolerance € = 107

n Ntotal
[q10; @50 g90] [g10; g50; @90]
Deterministic algo from [1] [1540; 2075; 3008] [24221; 27182 ; 28313]
[2055; 6321; 10814] | [9865; 14212; 19089]
[17867 ; 24115 ; 35865]

Stochastic algo presented here
Random Balanced Tree [17867 ; 24115 ; 35865]

TABLE — q10, 950, o0 are the 10“17 50t and 90th quantiles for a number of evaluations n, np = 10d

[1] Grasedyck L. Ballani J. Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput.

2014.
17-18 September 2020
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Conclusions of the third part

® Tree optimization is a combinatorial problem.

© Stochastic algorithm — compromise between the number of trees explored (cost for
optimization) and the search of the optimum, compared to a deterministic strategy.

© Total cost is better in expectation than a random tree.
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Conclusions

The proposed algorithm :

e provides an approximation of u in tree-based tensor format using evaluations of the
function at a structured set of points,

e provides a controlled approximation (for a sufficiently a high number of evaluations of
the function ).

e Under some assumptions on the function class and results on empirical PCA, a bound
of the number of evaluations necessary to reach a certain precision can be obtained
(very pessimistic compared to experiments...).

We proposed fully adaptive strategies for :
e the control of the discretization error,
o the tree selection,
e the control of the a-ranks,

e the estimation of the principal components.
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Cea Thank you for your attention.

Do you have any questions ?
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