














Aggregated Shapley effects

Motivation

Framework of our application

The ingredients for our global sensitivity analysis (GSA) problem are:

input parameters leading to significant snow avalanches are

dependent,

the sample is given from the AR sampling and not drawn based on a

specific estimation strategy (pick-freeze, replicated designs,...),

two of the three outputs are functional.
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Aggregated Shapley effects

Aggregated Shapley effects

If output is multivariate or the discretization of a functional output

Y = (Y1, . . . ,Yp).

Aggregated Shapley effects of input Xi:

GShi =

∑p

j=1
Var(Yj)Sh

j

i
∑p

j=1
Var(Yj)

,

Aggregated Shapley effects accomplish the natural requirements for a sen-

sitivity measure [Heredia et al., 2020]:

0 ≤ GShi ≤ 1,

GShi(λf (X))) = GShi(f (X)) for all λ ∈R,

GShi(Of (X)) = GShi(f (X))) for all O ∈R
p×p and Ot O = I .

If the output dimension p >> 1, dimension reduction techniques such

as pca, fpca [Yao et al., 2005] [Ramsay and Silverman, 2005] should be per-

formed.
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Aggregated Shapley effects

Estimation using nearest neighbors

For all 1 ≤ i ≤ d and all 1 ≤ j ≤ p to estimate Sh
j

i
and GShi, we need to

estimate

Var
(
E(Yj|Xu)

)
or E

(
Var(Yj|X−u)

)

for all u⊆ {1, . . . ,d}, with −u= {1, . . . ,d} \u.

In our context, we have to estimate from the given data (X,Y) obtained

from the AR sampling.
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Estimation using nearest neighbors

For all 1 ≤ i ≤ d and all 1 ≤ j ≤ p to estimate Sh
j

i
and GShi, we need to

estimate

Var
(
E(Yj|Xu)

)
or E

(
Var(Yj|X−u)

)

for all u⊆ {1, . . . ,d}, with −u= {1, . . . ,d} \u.

In our context, we have to estimate from the given data (X,Y) obtained

from the AR sampling.

[Broto et al., 2020] proposed to estimate Eu = E
(
Var(Yj|X−u)

)
using nearest-

neighbors. The estimator Êu converges in probability to Eu under mild as-

sumptions (theorem 6.6 of [Broto et al., 2020]).

Combining what they call the subset W-aggregation procedure with the es-

timates Êu, [Broto et al., 2020, proposition 6.12] propose a consistent esti-

mator for each Shapley effect.
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Aggregated Shapley effects

2.1 Compute for all u⊂ {1, . . . ,d}.

Ê
j
u
=

1

Nu

Nu∑

ℓ=1

Ê
j
u,sℓ

. (1)

2.2 Compute B bootstrap samples (the idea of block-bootstrap is adapted

from [Benoumechiara and Elie-Dit-Cosaque, 2019]) from (1):

2.2.1 Create Nu bootstrap samples from Ê
j
u,sℓ

by sampling with replacement

from
(
Ê

j
u,sℓ

)
1≤ℓ≤Nu

.

2.2.2 Compute for all b ∈ {1, . . . ,B}:

Ê
j,(b)
u

=
1

Nu

Nu∑

ℓ=1

Ê
j,(b)
u,sℓ

. (2)
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Aggregated Shapley effects

3.1. Compute Ŝh
j

i for all j ∈ {1, . . . ,p} according to:

Ŝh
j

i =
1

dσ̂2
j

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j

u

⋃
{i}
− Ê

j
u

)
, (3)

where σ̂2
j

is the empirical variance of yj.

3.2 Compute B bootstrap samples of Ŝh
j

i using (2) in (3):

Ŝh
j,(b)

i =
1

dσ̂2(b)
j

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j,(b)

u

⋃
{i}
− Ê

j,(b)
u

)
,

where σ̂2(b)
j

is the empirical variance of a bootstrap sample of yj.
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Aggregated Shapley effects

4.1 Compute ĜShi for all i ∈ {1, . . . ,d} according to:

ĜShi =
1

d
∑p

j=1
σ̂2

j

p∑

j=1

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j

u

⋃
{i}
− Ê

j
u

)
,

4.2 compute B bootstrap samples of Ĝhi:

ĜSh
(b)

i =
1

d
∑p

j=1
σ̂2,(b)

j

p∑

j=1

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j,(b)

u

⋃
{i}
− Ê

j,(b)
u

)
.
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Aggregated Shapley effects

4.1 Compute ĜShi for all i ∈ {1, . . . ,d} according to:

ĜShi =
1

d
∑p

j=1
σ̂2

j

p∑

j=1

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j

u

⋃
{i}
− Ê

j
u

)
,

4.2 compute B bootstrap samples of Ĝhi:

ĜSh
(b)

i =
1

d
∑p

j=1
σ̂2,(b)

j

p∑

j=1

∑

u⊂−i

(
d−1

|u|

)−1 (
Ê

j,(b)

u

⋃
{i}
− Ê

j,(b)
u

)
.

5 Compute simultaneous bootstrap confidence intervals (correction of

Bonferroni) with bias correction (see e.g., [Efron, 1981]).
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Test cases

Linear Gaussian model with two inputs

Model from [Iooss and Prieur, 2019].

Y =β0 +βt
X

with Xi ∼N (0,1), β1 = 1, β2 = 0, X1 and X2 correlated ρ = 0.4.
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Figure: Mean absolute error of the estimation of scalar Shapley effects in N=300 i.i.d.

samples in function of Ntot . NI = 3. The 0.05 and 0.95 pointwise quantiles of the

absolute error are drawn with gray polygons. The probability of coverage of the 90%

bootstrap simultaneous intervals (Bonferroni correction) is displayed with dotted

lines. The theoretical probability of coverage 0.9 is shown with a plain gray line. The

bootstrap sample size is fixed to B = 500.
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Test cases

Multivariate Linear Gaussian model with two inputs

Y = (Y1,Y2,Y3) =β0 +βt
X

with Xi ∼N (0,1), X1 and X2 correlated ρ = 0.4, and β ∈R
2×3:

β =

[
1 4 0.1

1 3 0.9

]
.
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Figure: Mean absolute error of the estimation of aggregated Shapley effects in N=300

i.i.d. samples in function of Ntot . NI . The 0.05 and 0.95 pointwise quantiles of the

absolute error are drawn with gray polygons. The probability of coverage of the 90%

bootstrap simultaneous intervals (Bonferroni correction) is displayed with dotted

lines. The theoretical probability of coverage 0.9 is shown with a plain gray line. 14/19







Aggregated Shapley effects

Application: Snow avalanche modeling

Ubiquitous Shapley effects
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Figure: Shapley effects are estimated with a sample of size 6152 and Ntot=2002. The

local slope is displayed with a white line. A gray dotted rectangle box is displayed at

interval [2017, 2412] where snow avalanche return periods vary from 10 to 10 000

years. The bootstrap sample size is fixed to B = 500.
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Application: Snow avalanche modeling

Aggregated Shapley effects
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Figure: Aggregated Shapley effects are estimated with a sample of size 6152 and

Ntot=2002. Effects are estimated using the first fPCs explaining more than 95% of

the output variance. The local slope is displayed with a gray line. A gray dotted

rectangle is displayed at [2017m, 2412m] where snow avalanche return periods vary

from 10 to 10 000 years. The bootstrap sample size is fixed to B = 500.
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Aggregated Shapley effects

Conclusions and perspectives

Conclusions

We extended Shapley effects to models with multivariate or

functional outputs.

We proposed an algorithm to construct bootstrap confidence

intervals for estimation.

The bootstrap confidence intervals have accurate coverage

probability.

Aggregated Shapley effects are more stable and easier to interpret

(observed by [Alexanderian et al., 2020] for Sobol’ indices).

Perspectives

In order to estimate with samples of higher size, build a surrogate

model of our avalanche model.

To perform a GSA in several corridors in order to see if there exist

correlations between the local slope and the ubiquitous effects.

To study theoretically the asymptotic properties of our estimator.
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Conclusions and perspectives

Thanks! Questions?
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Shapley value [Shapley, 1953]

Given a set of d players in a coalitional game and a charateristic function

val : 2d →R, val(;) = 0, the Shapley value (φ1, . . . ,φd) is the only

distribution of the total gains val({1, . . . ,d}) to the players satisfying the

desirable properties listed below:

1 (Efficiency)
∑d

i=1φi = val({1, . . . ,d}).

2 (Symmetry) If val(u∪ {i}) = val(u∪ {ℓ}) for all u⊆ {1, . . . ,d}− {i, j}, then

φi =φℓ.

3 (Dummy) If val(u∪ {i}) = val(u) for all u⊆ {1, . . . ,d}, then φi = 0.

4 (Additivity) If val and val’ have Shapley values φ and φ′ respectively,

then the game with characteristic function val+val’ has Shapley

value φi +φ′
i

for i ∈ {1, . . . ,d}.

It is proved in [Shapley, 1953] that according to the Shapley value, the

amount that player i gets given a coalitional game (val,d) is:

φi =
1

d

∑

u⊆−{i}

(
d−1

|u|

)−1

(val(u∪ {i})−val(u)) ∀i ∈ {1, . . . ,d}.
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References

Functional principal component analysis [Yao et al., 2005]

We have a collection of n independent trajectories of a smooth random

function f (.,X) with unknown mean µ(s) = E(f (s,X)),s ∈ τ, where τ is a

bounded and closed interval in R, and covariance function:

G(s1,s2) = Cov(f (s1,X), f (s2,X)),s1,s2 ∈ τ.

We assume that G has a L2 orthogonal expansion in terms of

eigenfunction ξk and non increasing eigenvalues λk such that:

G(s1,s2) =
∑

k≥1

λkξk(s1,X)ξk(s2,X),s1,s2 ∈ τ.

The Karhunen-Loève orthogonal expansion of f (s,X) is:

f (s,X) =µ(s)+
∑

k≥1

αk(X)ξk(s) ≈µ(s)+
q∑

k=1

αk(X)ξk(s),s ∈ τ, (4)

where αk(X) =
∫
τ f (s,X)ξk(s)ds is the k-th functional principal component

(fPC) and q is a truncation level.

For fPCs estimation, the authors in [Yao et al., 2005] propose first to

estimate µ̂(s) using local linear smoothers and to estimate Ĝ(s1,s2) using

local linear surface smoothers ([Fan and Gijbels, 1996]).
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References

The estimates of eigenfunctions and eigenvalues correspond then to the

solutions of the following integral equations:

∫

τ
Ĝ(s1,s)ξ̂k(s1)ds1 = λ̂k ξ̂k(s),s ∈ τ,

with
∫
τ ξ̂(s)ds = 1 and

∫
τ ξ̂k(s)ξ̂m(s) = 0 for all m 6= k ≤ q. The problem is

solved by using a discretization of the smoothed covariance (see further

details in [Rice and Silverman, 1991] and [Capra and Müller, 1997]).

Finally, fPCs α̂k(X) =
∫
τ f (s,X)ξ̂k(s)ds are solved by numerical integration.

Aggregated Shapley effects are computed with only the q first fPCs:

G̃Shi =
1

d
∑q

k=1
λk

q∑

k=1

∑

u⊆−i

(
d−1

|u|

)−1 (
E(Var(αk(X)|Xu∪{i}))−E(Var(αk(X)|Xu))

)
.

(5)
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Theorem (Theorem 6.6 [Broto et al., 2020])

If f is bounded, the Êu converges to Eu in probability when n and Nu if:

For all i ∈ {1, . . . ,d}, (Xi ,di) is a Polish space with metric di , with Xi the domain of Xi , and X = (X1, . . . ,Xd ) has a density fX with

respect to a finite measure µ=
⊗d

i=1
µi which is bounded and PX almost everywhere continuous.

The closest neighbors in B−u,ℓ are two by two distinct.
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The bias-corrected percentile method [Efron, 1981]

Given bootstrap samples B of ĜShi, Ri = {ĜSh
(1)

i , . . . , ĜSh
(B)

i }.

We compute a bias correction constant z0:

ẑ0 =Φ
−1

(
#{ĜSh

(b)

i ∈ Ri s. t. ĜSh
(b)

i ≤ ĜShi}

B

)

where Φ the standard normal cumulative distribution function.

The corrected quantile estimate q̂(β):

q̂i(β) =Φ(2ẑ0 +zβ),

where zβ satisfies Φ(zβ) =β.

To guarantee the validity of the previous BC corrected confidence interval

[q̂i(α/2), q̂i(1−α/2)], there must exist an increasing transformation g,

z0 ∈R and τ> 0 such that g(ĜShi) ∼N (GShi −τz0,τ2) and

g(ĜSh
∗

i ) ∼N (ĜShi −τz0,τ2) where ĜSh
∗

i is the bootstrapped ĜShi for fixed

sample (see [Efron, 1981]).
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Probability of coverage with Bonferroni correction

The probability of coverage with Bonferroni correction is the probability

that [q̂i(α/(2d)), q̂i(1−α/(2d))] contains GShi for all i ∈ {1, . . . ,d}

simultaneously.

The POC is estimated as

�POC =

N∑

k=1

wk

N
, (6)

where wk is equal to 1 if q̂i(α/(2d)) ≤ GShi ≤ q̂i(1−α/(2d)) for all i, and 0

otherwise.
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