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Natural phenomena are complex.

others
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others

Natural phenomena are complex.

Given some inilial condilions:

o o
o0 dx
dhy @ e
L h Skt =] = ind—T
3 Far (hr. tS ] h(gsing —T)

where v = ||[¥]| is the flow velocity, #1is the
low depth, ¢ is the local angle, ¢ is the
time, g is the gravity constant and T = ||F|
is the Yoellmy frictional force,

F = geosd + % e,

where p and ¢ are the friction parameters
{see more detail in [Naaim et al., 2004]).
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Natural phenomena are complex.

P | Black box model
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To get meaningful samples, we apply
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Shapley effects

Framework of our application

The ingredients for our global sensitivity analysis (GSA) problem are:

@ input parameters leading to significant snow avalanches are
dependent,

o the sample is given from the AR sampling and not drawn based on a
specific estimation strategy (pick-freeze, replicated designs,...),

o two of the three outputs are functional.
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GSA framework

We aim al determining which inpul parameters contribute the most o a
given quantity ol interest (delined [rom the outpul ol the model).
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GSA framework

We aim al determining which inpul parameters contribute the most o a
given quantity ol interest (delined [rom the outpul ol the model).

Inputs Model Output
X=(X,....%)

- -
X R Vie(l,...d

Depending on the quantities of interest:
o variance-based (Sobol’ indices [Sobol', 1993], Shapley etfects
[Owen, 2014]),
@ density-based indices or moment-free measures
[Borgonovo, 2007, Da Veiga, 2015],
@ derivative-based measures
[Sobol" and Kucherenko, 2009, TLamboni ct al,, 2013].
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GSA framework

We aim al determining which inpul parameters contribute the most o a
given quantity ol interest (delined [rom the outpul ol the model).

Inputs Model Output
X=(X,....%)

- -
X R Vie(l,...d

Shapley effects are the ideal framework to our problem!
@ they are meaningful even for dependent inputs
|Owen and Prieur, 2017, looss and Prieur, 2019],
o there exists a given dala estimation method [Broto et al., 2020].

Moreover,
e we can extend them to multivariate and functional outputs adapting
the propositions in [Campbell et al., 2006, Lamboni et al., 2009,
Gamboa et al., 2013, Alexanderian et al., 2020],
e we propose a bootstrap strategy to build confidence intervals.
[~



Shapley effects

If Y is scalar.
Shapley effect [Owen, 2014] (coopetative game theory [Shapley, 1953]) of #;

=1
1 d-1
Shj= —— (var (E(Y|Xy:)) — Var (E(Y[X,)0).
[4 dvar(y) uc;z—:{i}( Iu| ) {l Xy (l X,

RI10



Shapley effects

If Y is scalar.
Shapley effect [Owen, 2014] (coopetative game theory [Shapley, 1953]) of #;

=1
1 d-1
= ) Var (E(Y X)) — Var (E(Y[X,)).
= Narm) ugz_“}( Jul ) (Var (E(YXuui)) - Var (E(Y|Xu)))
Inputs Price Shapley value
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Shapley effects

If Y is scalar.
Shapley effect [Owen, 2014] (coopetative game theory [Shapley, 1953]) of #;

-1
1 d-1
N = Y —
Sh; avariy) ugz—:{;}( | ) (vVar (E(Y[X,,;)) — Var (E(Y|Xy))).
Inputs Price Shapley value

(coop. game players)

. Xy . Var(Y) m

[Shapley, 1953] proved that this is the [airest way Lo divide a price among players
(elliciency, symmetry, dummy, additive).
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Shapley effects

If Y is scalar.
Shapley effect [Owen, 2014] (coopetative game theory [Shapley, 1953]) of #;

-1
1 d-1
N = Y —
Sh; avariy) ugz—:{;}( | ) (vVar (E(Y[X,,;)) — Var (E(Y|Xy))).
Inputs Price Shapley value

(coop. game players)

. Xy . Var(Y) m

[Shapley, 1953] proved that this is the [airest way Lo divide a price among players
(elliciency, symmetry, dummy, additive).

Shapley effect properties:

d o _
o 0<Shi<lforallieil,. .d., ° Yo Shi=L
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Shapley effects

ted Shapley effects

Aggregated Shapley effects

If output is multivariate or the discretization of a functional output
Y=(1,..., V).
Aggregated Shapley effects of input X;:

¥?_ Var(Y) SH,

= i

GShi= ——————
TP Var(y)

Aggregated Shapley effects accomplish the natural requirements for a sen-
sitivity measure [Heredia et al., 2020]:

0 0=<GSh;j<1,
o GSh;(AfX))) = GSh;i(f(X)) forall L e R,
o GSh;(Of X)) = GSh;(f(X))) for all O€ RP*P and O'O = I.

If the output dimension p >> 1, dimension reduction techniques such
as pca, fpca [Yao et al., 2005] [Ramsay and Silverman, 2005] should be per-
formed.
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ted Shapley effects

ated Shapley effects

Estimation using nearest neighbors

Foralll<i<dandalll << pto estimate Shﬁ: and GSh;, we need to
estimate
Var(E(YjlXy)) or  E(Var(YjX_y))

foralluc{l,...,d}, with —u={1,...,d} \u.
In our context, we have to estimate from (X,Y) obtained
from the
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ted Shapley effects

ated Shapley effects

Estimation using nearest neighbors

Foralll<i<dandalll << pto estimate Shf: and GSh;, we need to
estimate

Var(E(YjlXy)) or  E(Var(YjX_y))

foralluc{l,...,d}, with —u={1,...,d} \u.
In our context, we have to estimate from (X,Y) obtained
from the

[Broto et al., 2020] proposed to estimate E,, = [E (Var(Yj[X_,,)) using nearest-

neighbors. The estimator £, converges in probability to £, under mild as-
sumptions (theorem 6.6 of [Broto et al., 2020]).

Combining what they call the subset W-aggregation procedure with the es-
timates Eu, [Broto et al., 2020, proposition 6.12] propose a consistent esti-
mator for each Shapley effect.
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Adaptation to the estimation of both Shapley and aggregated Shapley
effects, with the construction of bootstrap confidence intervals:
Inputs: (1) a nsample (x,¥), (i) Nyt the estimation cost, (iii) 1= Ny = ., the cost
for estimation of I, (N depends on N and can be chosen in order to minimize

the variance of the estimation), (iv) a Ny, random sample (§¢) ) op=n, [rom {1,..., 4l
{v} Ny number of neighbors.
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Adaptation to the estimation of both Shapley and aggregated Shapley
effects, with the construction of bootstrap confidence intervals:
Inputs: (1) a nsample (x,¥), (i) Nyt the estimation cost, (iii) 1= Ny = ., the cost
for estimation of I, (N depends on N and can be chosen in order to minimize
the variance of the estimation), (iv) a Ny, random sample (§¢) ) op=n, [rom {1,..., 4l

{v} Ny number ol neighbors.

1 Foralluc{l,...,dt and forall 1 = £ < N,,, compute:

= 1

w5 T N -1

P 2 th 7 1 ' .
J . - — T Fo, = F
¥; N Vs, | with s, y ¥

Y \ .
v BBy NIt ey e

with 8_,, ¢ the set of Ny closest neighbors of X, where
Xy = (X X ) with —u = fu,.., wpd and k= -ul.
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Adaptation to the estimation of both Shapley and aggregated Shapley
effects, with the construction of bootstrap confidence intervals:
Inputs: (1) a nsample (x,¥), (i) Nyt the estimation cost, (iii) 1= Ny = ., the cost
for estimation of I, (N depends on N and can be chosen in order to minimize

the variance of the estimation), (iv) a Ny, random sample (§¢) ) op=n, [rom {1,..., 4l
{v} Ny number ol neighbors.

1 Foralluc{l,...,dt and forall 1 = £ < N,,, compute:

s 1 MR NN PR S

wse T N1 Y |- N, e | Wit bs = 2oy
[ 2 I NIy ey e

with 8_,, ¢ the set of Ny closest neighbors of X, where

Xy = (X X ) with —u = fu,.., wpd and k= -ul.

1 - @ 1
roy il & € A T,
YOS T Ton s !
LI : R
By Ely, = Al ol al,
" T, I T
P o o, o
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ated Shapley effects

d Shapley effects

2.1 Compute foralluc{l,...,d}.

=~j 1 Ny ~j
B, = N [Z:IE,W. )]

2.2 Compute Bbootstrap samples (the idea of block-bootstrap is adapted
from [Benoumechiara and Elie-Dit-Cosaque, 2019]) from (1):

2.2.1 Create Ny, bootstrap samples from E{ly 5, by sampling with replacement

o
from (E”'sf)lsfsNu'
2.2.2 Compute forall be{1,...,B}:
N,
) _ 1 M i)
Eu = AT Z Eu,s;' 2
Nuj5
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d Shapley effects

ed Shapley effects

=] . .
3.1. Compute S/; forall je {1,..., p} according to:

-1
S = = S
Shi d(fz Z ( [ ) (buU\ {i bu) @)

c—
]U i

where (7]2. is the empirical variance of y;.
3.2 Compute Bbootstrap samples of 37111 using (2) in (3):
1 d-1\"
A o ]
J

42(b)

where 67 i is the empirical variance of a bootstrap sample of y;.
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ed Shapley effects

ed Shapley effects

4.1 Compute @1[ forallie {1,...,d} according to:

-1
. 1 P d-1 ~j o~
GSh; = W > ( ) (E{lu{ E{‘)

j=1 O—]‘ Jj=luc—i lul

4.2 compute Bbootstrap samples of Gh;:

1
— (b) .j,(D) 7, (D)
GShy =~ Yy ( N ) (B0, -EY).

dZ j=luc—i

12/19



ed Shapley effects

ed Shapley effects

4.1 Compute @1[ forallie {1,...,d} according to:

-1
_ 1 P d-1 ~i ~i
GShj= ——— J24 -F

carab ) Eas)

4.2 compute Bbootstrap samples of Gh;:

-1
— (b) =j,(b) ],
GShy = ——— = Yy ( N ) (B0, -EY).

dZ/: j=luc—i

5 Compute simultaneous bootstrap confidence intervals (correction of
Bonferroni) with bias correction (see e.g., [Efron, 1981]).
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ed Shapley effects

Linear Gaussian model with two inputs

Model from [Iooss and Prieur, 2019].
Y =By +BX
with X; ~.A4(0,1), B1 =1, B2 =0, X; and X, correlated p = 0.4.

a) n =1000 b) n = 2000 ) n = 5000
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Figure: Mean absolute error of the estimation of scalar Shapley effects in N=300 i.i.d.
samples in function of Niot. Ny = 3. The 0.05 and 0.95 pointwise quantiles of the
absolute error are drawn with gray polygons. The probability of coverage of the 90%
bootstrap simultaneous intervals (Bonferroni correction) is displayed with dotted
lines. The theoretical probability of coverage 0.9 is shown with a plain gray line. The

bootstrap sample size is fixed to B = 500.
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d Shapley effects

st cases

Multivariate Linear Gaussian model with two inputs

Y=(Y1,Y,Y3) =Bo+3'X
with X; ~ 4(0,1), X; and X correlated p = 0.4, and 3 € R>*3:

1 4 0.1
B=11 3 0.9] :
b) n = 2000 ) n = 5000

1.0
1.0

0.06

Mean absolute error
Mean absolute error
Probabily of coverage

0.02
00 02 04 06 08

0.00

o MleclEuD e . AUUN‘O‘EDD wo o AOUN‘O:W wo
Figure: Mean absolute error of the estimation of aggregated Shapley effects in N=300
i.i.d. samples in function of Nyo;. Ny. The 0.05 and 0.95 pointwise quantiles of the
absolute error are drawn with gray polygons. The probability of coverage of the 90%
bootstrap simultaneous intervals (Bonferroni correction) is displayed with dotted
lines. The theoretical probability of coverage 0.9 is shown with a plain gray line. 14719



Input  Description

Distribution

i Static friction coefficient
¢ Turbulent friction [m/s?]

atart Length of the release zone [m]

P[0.05, 0.63]
¢ 1100, 10000|

i

15,300

L
hgiarit  Mean snow depth in the release zone [m]  %[0.05,3]
4|

Xgart  Release abscissa [m)]

%[0, 16007

We consider volgrart = Lstarr » Astarr ¥ 72,37 €0s(357) instead of hgiart and legarr.

AR rules:

@ avalanche simulation is flowing in
(160077, 2412 ),

o vol> 70005,

o runout distance < 2500m {end of the
path).

Trom #g = 100000, AR sample
sizc 1 = 6152,

i i i L i o
] g ad cogaa IR
- o) gt s

Zanme e comdze
e el

e s
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1600 -300 2000 E200 0 2400 TEOT 180 E0LD 2E0D

ahszizsa 205 Tin m| slerisss sasifiznk [r]

AR rules:

o avalanche simulation is flowing
in [1600m, 2412 m],

e vol>7000n7,

@ runout distance < 2500m (end of
the path).

From ny = 100000, AR sample
size i = 61562,

& :-‘-'-_.'.-az:ﬂ

o s
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Ubiquitous Shapley effects

a) b) c)
2 — T} g 2 =3
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Figure: Shapley effects are estimated with a sample of size 6152 and Ntot=2002. The
local slope is displayed with a white line. A gray dotted rectangle box is displayed at
interval [2017, 2412] where snow avalanche return periods vary from 10 to 10 000
years. The bootstrap sample size is fixed to B = 500.
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ed Shapley effects

pplication: Snow avalanche modeling

Aggregated Shapley effects

a) b)
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Figure: Aggregated Shapley effects are estimated with a sample of size 6152 and
Ntot=2002. Effects are estimated using the first fPCs explaining more than 95% of
the output variance. The local slope is displayed with a gray line. A gray dotted
rectangle is displayed at [2017m, 2412m] where snow avalanche return periods vary
from 10 to 10000 years. The bootstrap sample size is fixed to B= 500.
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d Shapley effects

Jonclusions and perspectives

Conclusions

o We extended Shapley effects to models with multivariate or
functional outputs.

@ We proposed an algorithm to construct bootstrap confidence
intervals for estimation.

@ The bootstrap confidence intervals have accurate coverage
probability.

o Aggregated Shapley effects are more stable and easier to interpret
(observed by [Alexanderian et al., 2020] for Sobol’ indices).

Perspectives

o In order to estimate with samples of higher size, build a surrogate
model of our avalanche model.

o To perform a GSA in several corridors in order to see if there exist
correlations between the local slope and the ubiquitous effects.

o To study theoretically the asymptotic properties of our estimator.
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Thanks! Questions?
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Aggregated Shapley effects

[ References

Shapley value [Shapley, 1953]

Given a set of d players in a coalitional game and a charateristic function
val : 29 - R, val(@) = 0, the Shapley value (¢y,...,¢,) is the only
distribution of the total gains val({1, ..., d}) to the players satisfying the
desirable properties listed below:

(1

O (Symmetry) If val(wu {i}) = val(uu {¢}) forallu < {1,...,d} — {i, j}, then
bi= e

© (Dummy) If val(uu {i}) = val(u) forallu < {1,...,d}, then ¢; = 0.

@ (Additivity) If val and val’ have Shapley values ¢ and ¢’ respectively,
then the game with characteristic function val + val’ has Shapley
value ¢; + ¢ for ie {1,...,d}.

It is proved in [Shapley, 1953] that according to the Shapley value, the
amount that player i gets given a coalitional game (val, d) is:

1

‘Pizzl Z

uc—{i}

-1
(dl_ll) (val(uu {i}) —val(w)) Vie{l,...,d}.
u
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Aggregated Shapley effects

References

Functional principal component analysis [Yao et al., 2005]

We have a collection of n independent trajectories of a smooth random
function f(.,X) with unknown mean p(s) = E(f(s,X)),s€ 7, where T isa
bounded and closed interval in R, and covariance function:

(;(S] 5 \_)) = (I()v(f(sl ,X),f(Sg,X)), S, ET.

We assume that (; has a I? orthogonal expansion in terms of
eigenfunction ¢ and non increasing eigenvalues 1 such that:

G(s1,%) = ) Ak€i(s1,X)Ek(52,X), 51,2 € T.
k=1

The Karhunen-Loéve orthogonal expansion of f(s,X) is:

q
F8X) =ps) + ) arER(s) = pu(s) + ), arX)éx(s), seT, )
k=1 k=1

where a;(X) = fT f(s,X)¢x(s)ds is the k-th functional principal component
(fPC) and g is a truncation level.

For fPCs estimation, the authors in [Yao et al., 2005] propose first to
estimate [i(s) using local linear smoothers and to estimate G(s1, %) using

local linear surface smoothers ([Fan and Gijbels, 1996]). o



Aggregated Shapley effects
[ References

The estimates of eigenfunctions and eigenvalues correspond then to the
solutions of the following integral equations:

f Gis1, 9)&Ex(sD)dsy = ArEx(s), s€ T,
T

with [, &(s)ds=1and J: E9E ) =0forall m# k< g. The problem is
solved by using a discretization of the smoothed covariance (see further
details in [Rice and Silverman, 1991] and [Capra and Miiller, 1997]).
Finally, fPCs @, (X) = fr fGs, X)g? x(s)ds are solved by numerical integration.
Aggregated Shapley effects are computed with only the ¢ first fPCs:

-1
. 1 q d-1
GShj= ——— E(Var(a;X) Xyui)) — E(Var(ar(X)Xy)) -
1 dz/gllkk;u;( " ) (E(Var(a;X)[Xyuig)) — E(Var(apX)[Xy)))
(5)
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Aggregated Shapley effects

References

Theorem (Theorem 6.6 [Broto et al., 2020])

Iff is bounded, the Fu converges to Eyy in probability when n and Ny if:
Q@ Froralliefl,...,d), (X, dj) is a Polish space with metric dj, with & j the domain of Xj, and X= (Xq ... ,Xg) hasa density fx with

respect to a finite measure (L = ®7_ 1 Wj which is bounded and Px almost everywhere continuous.

@  The closest neighbors in PB_\,, ¢ are two by two distinct.
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Aggregated Shapley effects
[ References

The bias-corrected percentile method [Efron, 1981]

Given bootstrap samples B of GShi, & = ‘GSlz G/§111~ ).
We compute a bias correction constant zy:

(#ETH? € 5. 1. R < CIhy
B

where @ the
The corrected quantile estimate g(f8):

4i(P) = © (2% + zp),

where zg satisfies ®(zg) = B.

To guarantee the validity of the previous BC corrected confidence interval
[qi(e/2),qi(1 —a/2)], there must exist an increasing transformation g,

20 € [R% and 7> O such that g(GShl) ~ ,/V(GSh -12,T 72) and

g(GSh )~ JV(GSh, 129, 7%) where GSh is the bootstrapped GShl for fixed
sample (see [Efron, 1981]).
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Probability of coverage with Bonferroni correction

The probability of coverage with Bonferroni correction is the probability
that contains GSh; forallie {1,...,d}
simultaneously.

The POC is estimated as

=~

w
“ N’

—

POC= (6)

HMZ

where w* is equal to 1 if §;(a/(2d)) < GSh; < §;(1 — a/(2d)) for all i, and 0
otherwise.
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