Statistical inference in transport-fragmentation equations

M. Hoffmann (joint with M. Doumic, N. Krell, L. Robert)

Université Paris-Dauphine

30 mai 2013

Context

- We consider (simple) particle systems \approx toy models for the evolution of cells or bacteria.
- Each particle grows by ingesting a common nutrient.
- After some time, each particle gives rise to two offsprings by cell division.
■ We structure the model by state variables like size, growth rate and so on.
- Deterministically, the density of structured state variables evolves according to a fragmentation-transport PDE.
- Stochastically, the particles evolve according to a PDMP that evolves along a branching tree.

Toy model : size-structured populations

- $n(t, x)$: density of cells of size x.
- Parameter of interest: Division rate $B(x)$.

■ 1 cell of size x gives birth to 2 cells of size $x / 2$.
■ The growth of the cell size by nutrient uptake is given by a growth rate $g(x)=\tau x$ (for simplicity).

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

Structured populations (cont.)

■ Transport-fragmentation equation
$\partial_{t} n(t, x)+\partial_{x}(\tau x n(t, x))+B(x) n(t, x)=4 B(2 x) n(t, 2 x)$
Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N.
Krell, L.
Robert)
with $n(t, x=0)=0, t>0$ and $n(0, x)=n^{(0)}(x), x \geq 0$.

- obtained by mass conservation law :
- LHS : density evolution + growth by nutrient + division of cells of size x.
- RHS : division of cells of size $2 x$.

■ Several extensions...

Objectives

■ Main goal : estimate non-parametrically B from binary tree.

genealogical data of a cell population of size N living on a

■ Avoid an inverse problem (cp. Doumic, Perthame, Zubelli, 2009 \& Doumic, H., Reynaud, Rivoirard, 2012) thanks to richer data set.

- Reconcile the deterministic approach with a rigorous statistical analysis (relaxing the steady-state approximation).

Figure : Evolution of a E. Coli population.

Figure : Evolution of a E. Coli population.

Statistical inference in transport-

Figure : Evolution of a E. Coli population.

Strategy

■ Construct a stochastic model accounting for the stochastic dependence structure on a tree for which the empirical measure of N particles solves the fragmentation-transport equation (in a weak sense).
■ Develop appropriate statistical tools to estimate B.
■ Additional difficulty \& goal : incorporate growth variability (each cell has a stochastic growth rate inherited from its parent).

Result 1

■ We construct a Markov process on a binary tree

$$
\left(X_{t}, V_{t}\right) \in\left(\bigcup_{k \geq 0}[0, \infty)^{k}\right)^{2}
$$

where $X_{t}=$ size and $V_{t}=$ growth rate of living cells at time

Statistical
inference in transportfragmentation equations
M. Hoffmann
(joint with M.
Doumic, N.
Krell, L.
Robert) t (inherited from their parent according to a kernel ρ).
■ $n(t, \cdot):=\mathbb{E}\left[\sum_{i=1}^{\infty} \delta_{X_{i}(t), V_{i}(t)}\right]$ is a (weak)-solution of an extension of the transport-fragmentation equation :

$$
\begin{aligned}
& \partial_{t} n(t, x, v)+v \partial_{x}(x n(t, x, v))+B(x) n(t, x, v) \\
= & 4 \int \rho\left(v^{\prime}, d v\right) n\left(t, 2 x, d v^{\prime}\right)
\end{aligned}
$$

- The initial framework $g(x)=\tau x$ is retrieved as soon as $\rho(d v)=\delta_{\tau}(d v)$

Result 2

■ Genealogical data : we observe size+variability $\left(\xi_{u}, \tau_{u}\right)_{u \in \mathcal{U}_{N}}$, where \mathcal{U}_{N} is a (connected) subset of size N of the binary tree $\mathcal{U}=\cup_{k} \geq 0\{0,1\}^{k}$.

Statistical
inference in transport-
fragmentation equations
(joint with M.
Doumic, N.
Krell, L.
Robert)

- Main result : We can construct an estimator $\left(\widehat{B}_{N}(x), x>0\right)$ of the s-regular division rate $B(x)$ s.t.

$$
\mathbb{E}\left[\left\|\widehat{B}_{N}-B\right\|_{L_{\text {loc }}^{2}}^{2}\right]^{1 / 2} \lesssim(\log N) N^{-s /(2 s+1)}
$$

Numerical implementation and effect of variability

$n=2047, B(x)=x^{2}$, the growth rate distribution is unifor m on $[0.5,1.5]$, plain tree

Figure • Simulated data

Statistical inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N .
Krell, L.
Robert)

Comparison with the inverse problem approach

Statistical inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

Figure : Exploration on simulated data via the global approach (inverse problem), $N \approx 3000$.

Numerical implementation

Statistical inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N.
Krell, L
Robert)

Figure : Exploration on real-data. Sparse tree, $N \approx 3000$.

Statistical estimation

■ Given a pair $\xi_{u^{-}}, \zeta_{u^{-}}$and ξ_{u}, we can identify $\tau_{u^{-}}$through

$$
2 \xi_{u}=\xi_{u^{-}} e^{\tau_{u^{-}} \zeta_{u^{-}}}
$$

- We have

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

$$
\mathbb{P}\left(\zeta_{u} \in[t, t+d t] \mid \zeta_{u} \geq t, \xi_{u}=x\right)=B\left(x e^{\tau t}\right) d t
$$

from which we obtain the density of the lifetime $\zeta_{u^{-}}$ (lifetime of the parent u^{-}) conditional on $\xi_{u^{-}}=x$ and $\tau_{u^{-}}=v$:

$$
t \rightsquigarrow B\left(x e^{v t}\right) \exp \left(-\int_{0}^{t} B\left(x e^{v s}\right) d s\right) .
$$

Toward a Markov kernel

$■$ Using $2 \xi_{u}=\xi_{u^{-}} \exp \left(\tau_{u^{-}} \zeta_{u^{-}}\right)$, we further infer

$$
\begin{aligned}
& \mathbb{P}\left(\xi_{u} \in d x^{\prime} \mid \xi_{u^{-}}=x, \tau_{u^{-}}=v\right) \\
= & \frac{B\left(2 x^{\prime}\right)}{v x^{\prime}} \mathbf{1}_{\left\{x^{\prime} \geq x / 2\right\}} \exp \left(-\int_{x / 2}^{x^{\prime}} \frac{B(2 s)}{v s} d s\right) d x^{\prime} .
\end{aligned}
$$

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

- We obtain a simple an explicit representation for the transition kernel on $\mathcal{S}=[0, \infty) \times \mathcal{E}$,

$$
\mathcal{P}_{B}\left(\mathbf{x}, d \mathbf{x}^{\prime}\right)=\mathcal{P}_{B}\left((x, v), x^{\prime}, d v^{\prime}\right) d x^{\prime}
$$

The explicit transition

- The formula is given by

$$
\begin{aligned}
& \mathcal{P}_{B}\left((x, v), x^{\prime}, d v^{\prime}\right) d x^{\prime} \\
= & \frac{B\left(2 x^{\prime}\right)}{v x^{\prime}} \mathbf{1}_{\left\{x^{\prime} \geq x / 2\right\}} \exp \left(-\int_{x / 2}^{x^{\prime}} \frac{B(2 s)}{v s} d s\right) \rho\left(v, d v^{\prime}\right) .
\end{aligned}
$$

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

■ $\rho\left(a, d a^{\prime}\right)$: appropriate Markov kernel on \mathcal{E}.
■ Under appropriate conditions on B, the Markov chain on $\mathcal{S}=[0, \infty) \times \mathcal{E}$ is geometrically ergodic. (It is however not reversible.)

Identifying B through the invariant measure

■ Under appropriate assumptions, we have existence (and uniqueness) of an invariant measure on \mathcal{S}

$$
\nu_{B}(d \mathbf{x})=\nu_{B}(x, d v) d x
$$

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L
Robert)
i.e. such that $\nu_{B} \mathcal{P}_{B}=\nu_{B}$.

■ More precisely, we have a contraction property

$$
\sup _{|g| \leq V}\left|\mathcal{P}_{B}^{k} g(\mathbf{x})-\int_{\mathcal{S}} g(\mathbf{z}) \nu_{B}(d \mathbf{z})\right| \leq R V(\mathbf{x}) \gamma^{k}
$$

for some $\gamma<1$ locally uniformly in B for an appropriate Lyapunov function V.

Identifying B through the invariant measure

$$
\begin{aligned}
& \nu_{B}\left(y, d v^{\prime}\right) \\
= & \int_{\mathcal{S}} \nu_{B}(x, d v) d x \mathcal{P}_{B}\left((x, v), y, d v^{\prime}\right) \\
& =\frac{B(2 y)}{y} \int_{\mathcal{E}} \int_{0}^{2 y} \nu_{B}(x, d v) d x \exp \left(-\int_{x / 2}^{y} \frac{B(2 s)}{v s} d s\right) \frac{\rho\left(v, d v^{\prime}\right)}{v} .
\end{aligned}
$$

"Survival analysis trick"

$$
\exp \left(-\int_{x / 2}^{y} \frac{B(2 s)}{v s} d s\right)=\int_{y}^{\infty} \frac{B(2 s)}{v s} \exp \left(-\int_{x / 2}^{v} \frac{B\left(2 s^{\prime}\right)}{v s^{\prime}} d s^{\prime}\right) d s
$$

and \mathcal{P}_{B} is involved in the RHS again...

Identifying B through the invariant measure

■ We obtain
Statistical
inference in transport-
fragmentation equations

$$
\begin{gathered}
\nu_{B}\left(y, d v^{\prime}\right)=\frac{B(2 y)}{y} \int_{\mathcal{E}} \int_{0}^{2 y} \nu_{B}(x, d v) d x \\
\int_{y}^{\infty} \frac{B(2 s)}{v s} \exp \left(-\int_{x / 2}^{s} \frac{B\left(2 s^{\prime}\right)}{v s^{\prime}} d s^{\prime}\right) d s \frac{\rho\left(v, d v^{\prime}\right)}{v} \\
=\frac{B(2 y)}{y} \int_{\mathcal{S}} \int_{[0, \infty)} \mathbf{1}_{\{x \leq 2 y, s \geq y\}^{v^{-1}}} \\
\nu_{B}(x, d v) d x \mathcal{P}_{B}\left((x, v), s, d v^{\prime}\right) d s .
\end{gathered}
$$

and integrate in $d v^{\prime}$.

Key representation

■ We obtain the key representation

$$
\nu_{B}(y)=\frac{B(2 y)}{y} \mathbb{E}_{\nu_{B}}\left[\frac{1}{\tau_{u^{-}}} \mathbf{1}_{\left\{\xi_{u}^{-} \leq 2 y, \xi_{u} \geq y\right\}}\right] .
$$

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N.
Krell, L.
Robert)

■ We conclude

$$
B(y)=\frac{y}{2} \frac{\nu_{B}(y / 2)}{\mathbb{E}_{\nu_{B}}\left[\frac{1}{\tau_{u^{-}}} \mathbf{1}_{\left\{\xi_{u} \leq y, \xi_{u} \geq y / 2\right\}}\right]}
$$

Final estimator

- Introduce a kernel function

$$
\begin{aligned}
& K:[0, \infty) \rightarrow \mathbb{R}, \int_{[0, \infty)} K(y) d y=1 \text { and set } \\
& K_{h}(y)=h^{-1} K\left(h^{-1} y\right) \text { for } y \in[0, \infty) \text { and } h>0 .
\end{aligned}
$$

Statistical
inference in transport-
fragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L.
Robert)

■ Final estimator

$$
\widehat{B}_{n}(y)=\frac{y}{2} \frac{n^{-1} \sum_{u \in \mathcal{U}_{n}} K_{h}\left(\xi_{u}-y / 2\right)}{\left.n^{-1} \sum_{u \in \mathcal{U}_{n}} \frac{1}{\tau_{u^{-}}-} \mathbf{1}_{\left\{\xi_{u^{-}}\right.} \leq y, \xi_{u} \geq y / 2\right\} \bigvee \varpi}
$$

- The estimator $\widehat{B}_{n}(y)$ is specified by K, the bandwidth h and the threshold ϖ.

Some references

■ Doumic, M., H. M., Reynaud-Bouret, P. and Rivoirard, V. (2012) Nonparametric estimation of the division rate of a size-structured population. SIAM Journal on Numerical Analysis. 50, 925-950

Statistical
inference in transportfragmentation equations
M. Hoffmann
(joint with M.
Doumic, N
Krell, L
Robert)

- Doumic, M., H.,M., Krell, N. and Robert, L. (2012) Statistical estimation of a growth-fragmentation model observed on a genealogical tree. arXiv :1210.3240
- Doumic, M., Perthame, B. and Zubelli, J. (2009)

Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics. Inverse Problems, 25, 25pp.

