
1/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Polynomial Chaos Expansion for Uncertainties

Quantification and Sensitivity Analysis

Thierry Crestaux1, Jean-Marc Martinez1,

Olivier Le Maitre2, Olivier Lafitte 1,3

1Commissariat à l’Énergie Atomique, Centre d’Études de Saclay, France ;
2Université d’Évry, France ; 3Université Paris Nord, France

Thierry Crestaux SAMO, JUNE 2007



2/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Introduction

Uncertainties quantification in numerical simulation by Polynomial
Chaos expension is a technic which has been used recently for

numerous problems.

This method can also be used in global sensitivity analysis by the

approximation of sensitivity indices.
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Polynomial Chaos

Intrusive method : Galerkin projection

Non-intrusive methods

Polynomial Chaos

Polynomial Chaos (PC) expansions of (2nd order) stochastic processes :

y(x , t , θ) =
∞
∑

k=0

βk (x , t)Ψk(ξ(θ)) (Wiener 1938).

Application to uncertainty quantification by Ghanem and Spanos.

ξ = (ξ1, ξ2, . . . , ξd) a set of d independent second order random
variables with given joint density p(ξ) =

∏

pi(ξi).

(Ψk (ξ))k∈N multidimensional orthogonal polynomials with regard

to the inner product (mathematical expectation)

< Ψk , Ψl >≡
∫

Ψk (ξ)Ψl(ξ)p(ξ)dξ = δkl ||Ψk ||
2.
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y(x , t , ξ) =
∞
∑

k=0

βk (x , t)Ψk(ξ),

where βk (x , t) are the PC coefficients or stochastic modes of y .

✞

✝

☎

✆
Knowledge of the βk fully characterizes the process y .

For practical use, truncature at polynomial order no :

P + 1 =
(d + no)!

d!no!
⇒ y(x , t , ξ) ≈

P
∑

k=0

βk (x , t)Ψk(ξ).

Fast increase of the basis dimension P according to no.

Need for numerical procedure to compute βk .
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Intrusive method : Galerkin projection

Galerkin projection

A two steps procedure to solve spectral problems :

The introduction of the truncated spectral expansions into model
equations.

Determination of the PC coefficients such that the residual is
orthogonal to the basis.

M(y ;D(θ)) = 0⇒

〈

M(
∑

i

βiΨi(ξ(θ));D(θ)), Ψk(ξ(θ))

〉

= 0 ∀k .

Comments :

⋆ A set of P + 1 coupled spectral problems.
⋆ Require rewriting / adaptation of existing codes.

Thierry Crestaux SAMO, JUNE 2007



7/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Polynomial Chaos

Intrusive method : Galerkin projection

Non-intrusive methods

Intrusive method : Galerkin projection

Galerkin projection

A two steps procedure to solve spectral problems :

The introduction of the truncated spectral expansions into model
equations.

Determination of the PC coefficients such that the residual is
orthogonal to the basis.

M(y ;D(θ)) = 0⇒

〈

M(
∑

i

βiΨi(ξ(θ));D(θ)), Ψk(ξ(θ))

〉

= 0 ∀k .

Comments :

⋆ A set of P + 1 coupled spectral problems.
⋆ Require rewriting / adaptation of existing codes.

Thierry Crestaux SAMO, JUNE 2007



8/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Polynomial Chaos

Intrusive method : Galerkin projection

Non-intrusive methods

Non-intrusive methods

Construction of a sample set {ξ(i)} of ξ and corresponding set of

deterministic solutions {y (i) = y(x , t , ξ(i))}.

Use the solution set to estimate/compute the PC coefficients βk .

Comments :

⊕ Solve a (large) number of deterministic problems.
⊕ Transparent to non linearities.
⊖ Convergence with the sample set dimension and error estimation.

Currently we use two different non-intrusive methods :

Least square approximation of the βk .

Non Intrusive Spectral Projection (NISP).
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Least square approximation

Least square problem for a sample sets B = (ξ(i)) and y = (y (i)).

β̂R(B) = (Z TZ )−1Z Ty

where Z TZ is the Fisher matrix :

Z =











1 Ψ1(ξ
(1)) . . . ΨP(ξ

(1))

1 Ψ1(ξ
(2)) . . . ΨP(ξ

(2))
...

...
. . .

...

1 Ψ1(ξ
(n)) . . . ΨP(ξ

(n))











Open questions :

Selection of the sample set ?

Design Optimal Experiment, active learning ?

Error estimation ?

Model selection ?
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Polynomial Chaos

Intrusive method : Galerkin projection

Non-intrusive methods

Non Intrusive Spectral Projection : NISP

Exploit orthogonality of the PC basis :

βk =
〈y(ξ), Ψk(ξ)〉

〈

Ψ2k
〉 , 〈y(ξ), Ψk 〉 =

∫

Ω

y(ξ)Ψk (ξ)pdf (ξ)dξ.

Numerical integration :

∫

Ω

y(ξ)Ψk (ξ)pdf (ξ)dξ ≈
N

∑

i=1

y(ξ(i))Ψk (ξ
(i))w (i) = β̂k

〈

Ψ2k
〉

,

with ξ(i) and w (i) are integration quadrature points / weights.

⊕ Independent computation of the PC coefficients.
⊖ Curse of dimension (cubature formula, adpative construction,
Monte-Carlo, . . .)
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Uncertainty and sensitivity
analysis by PC
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Sensitivity Analysis

Uncertainty analysis

Uncertainty analysis from PC coefficients is immediate :

The expectation and the variance of the process are given by

E{y(x , t)} = β0(x , t) and

E{(y(x , t) − E{y(x , t)})
2
} =

∑∞
k=1 β2k (x , t)||Ψk ||

2.

Higher moments too.

Fractiles and density estimation can be calculated by

Monte-Carlo simulations of the PC surrogate model

y(x , t , ξ) ≈
P

∑

k=0

βk (x , t)Ψk(ξ)

(only polynomials to be computed : not the full model).
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Global Sensitivity Analysis

The computation of sensitivity indices from PC coefficients is also
immediate.

Indeed we know exactly the Sobol decomposition of the PCs.

So thanks to orthogonality of the basis and linearity of the PC

expansion one can immediately deduce the Sobol decomposition of

the PC expansion.
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Sensitivity Analysis

Sobol decomposition of the PC surrogate model

For each integrable function f , there is a unique decomposition :

f (ξ) =
∑

u⊆{1,2,...,d}

fu(ξu), (Sobol1993)

with f∅ = f0.

The Sobol decomposition of a troncated PC expansion ŷ is,

ŷ(ξ) =
∑

u⊆{1,2,...,d}

ŷu(ξu) =
P

∑

k=0

β̂kΨk (ξ)

The terms of the decomposition are

ŷu(ξu) =
∑

k∈Ku

β̂kΨk (ξ)

with K = {0, 1, ...,P}, Ku := {k ∈ K |Ψk (ξ) = Ψk (ξ = ξu)}
and ŷ∅ = β̂0Ψ0
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15/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Uncertainty analysis

Sensitivity Analysis

Sensitivity indices

Sensitivity indices are calculated with the formula

Su =
σ2u

σ2
ŷ

Where σ2
ŷ
is

σ2ŷ =
∑

u⊆{1,2,...,d}\∅

σ2u

and σ2u are explicits for PC expansions

σ2u =

∫

ŷ2u (ξ)p(ξ)dξ =
∑

k∈Ku

β̂2k ||Ψk ||
2
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Uncertainty analysis

Sensitivity Analysis

Example : Homma-Saltelli

f (ξ) = sin(ξ1) + 7sin2(ξ2) + 0.1ξ43sin(ξ1) .
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Example : Saltelli-Sobol, non smooth function

g(ξ) =
Qp
i=1(|4ξi − 2| + ai)/(1+ ai), ai = (i − 1)/2, p = 5 .
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Application :
Advection-dispersion in a porous
media

Thierry Crestaux SAMO, JUNE 2007



19/23

Polynomial Chaos expansion

Uncertainty and sensitivity analysis by PC

Application : Advection-dispersion

Equation of advection-dispersion

(1+ R)θ
∂C

∂t
(z, t) = −

∂

∂z

(

qC(z, t) − θ(D0 + λ|q|)
∂C

∂z
(z, t)

)

,

(+ Initial and boundary conditions).

Deterministic input

R ≥ 0 decay rate,

q Darcy velocity,

θ ∈]0, 1] porosity,

D0 mol. diffusivity.

Input uncertainties

λ hydrodynamic dispersion coefficient :

λ = aθb,

where a and b random

log(a) ∼ U([10−4, 10−2]), b ∼ U([−3.5,−1]).
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t = 5h. t = 8h. t = 10h.
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times obtained by Galerkin and NISP (no = 6).
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Conclusion

Summary

Alternative techniques (intrusive / non-intrusive) available for

practicle determination of PC coefficients ;

PC expansion contains a great deal of information in a

convenient compact format ;

Global sensitivity analysis proceeds immediately from PC

expansion ;

Limited to low-moderate dimensionality of the input uncertainty ;

Issues in application to non-smooth processes (remedy : use

non-smooth basis).
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Conclusion

Perspectives

Improvement of non-intrusive methods (development of efficient

adaptive quadrature techniques, automatic enrichment of sample
sets using active learning techniques) ;

Reduced basis approximation ;

Application to industrial problems ;

Application to identification and optimization problems.
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