Probabilistic sensitivity analysis: contribution to the sample mean plot and moment-independent importance measures

William Castaings[‡]

[‡]Institut de Mécanique des Fluides de Toulouse *travaux menés* au Centre Commun de Recherche de la Commission Européenne

Contribution to the sample mean plot

- Contribution to the sample mean plot
- Statistical test for inputs prioritisation

Moment independent sensitivity analysis

- Moment-independent importance measures
- Numerical and computational aspects
- Application examples

Contribution to the sample mean plot

- Contribution to the sample mean plot
- Statistical test for inputs prioritisation

Moment independent sensitivity analysis

- Moment-independent importance measures
- Numerical and computational aspects
- Application examples

Contribution to the sample mean plot for graphical and numerical sensitivity analysis

R. Bolado

European Commission, Joint Research Centre (IE, Petten)

W. Castaings, S. Tarantola

European Commission, Joint Research Centre (IPSC, Ispra)

- f a deterministic scalar function
- $X = (X_1, \dots, X_k)$ and Y random variables
- $x = (x_1, \dots, x_k)$ realization of the model inputs *X*
- y realization of the model output Y

Objective: understand the behaviour of the system with very few model runs

Context

- *Sinclair, (1993)* investigated how finite changes in inputs pdfs affect the mean and variance of the output
- Contribution to the sample mean (CSM) plot recognized as a general tool for sensitivity analysis

Objectives

- Revive and further develop CSM plot
- Exploit the full potential of this graphical tool
- CSM plot, primary building block of a statistical test for inputs prioritisation

Different steps for the construction of a CSM plot

- realizations of X_i are sorted, generating $\{x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(N)}\};$
- **2** realizations of *Y* are sorted accordingly, generating $\{y^{(i,1)}, y^{(i,2)}, \cdots, y^{(i,N)}\}$
- \bigcirc new variable M_i defined by

$$m_i^{(q)} = \frac{1}{N} \sum_{j=1}^{q} y^{(i,j)}$$
 $q = 1, \cdots, N$

- 4 normalization of the M_i using the sample mean of Y;
- **G** plot M_i against $F_{X_i}(x_i)$

Underlying features

- For both axes, values lie in the interval [0,1]
- $(F_{X_i}(x_i^{(q)}), m_i^q)$: fraction of the output mean due to any given fraction of values of the input X_i .

Different steps for the construction of a CSM plot

- realizations of X_i are sorted, generating $\{x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(N)}\};$
- **2** realizations of *Y* are sorted accordingly, generating $\{y^{(i,1)}, y^{(i,2)}, \cdots, y^{(i,N)}\}$
- \bigcirc new variable M_i defined by

$$m_i^{(q)} = \frac{1}{N} \sum_{j=1}^{q} y^{(i,j)}$$
 $q = 1, \cdots, N$

- **4** normalization of the M_i using the sample mean of Y;
- **G** plot M_i against $F_{X_i}(x_i)$

Underlying features

- For both axes, values lie in the interval [0,1]
- $(F_{X_i}(x_i^{(q)}), m_i^q)$: fraction of the output mean due to any given fraction of values of the input X_i .

Didactic example

All parameters, single output

Analytic function

- $Y = 2\exp(X_1) \exp(X_2) + \sin(X_3)$
- $X_i, i = 1, 2, 4 \sim U(0, 1), X_3 \sim U(0, \pi)$

High-level waste repository model (LevelE)

Single parameter, several outputs

Information provided by the plot

- Effects on the mean of the output of changes in the inputs pdfs
- · Underlines the limitations of the sample size/design
- Global importance measures

William Castaings

CSM plot with increasing sample size

CSM plot

• If $F_{X_i}(x_i^{(q)}) \simeq m_i^q \ \forall q$, any quantile range of X_i has a similar influence on the output mean, i.e non-influent model input

Relation with VB

Variance-based first-order effect

$$S_i = \frac{Var(E[Y|Xi])}{Var(Y)}$$

• CSM plot, variability of $E[Y|Xi < xi^*]$ (rather than $E[Y|Xi = xi^*]$) across the range

Statistical test keynotes

Features

- *Hypotheses* (null hypothesis *H*₀ and alternative hypothesis *H*₁):
 - $H_0: f_{Y|X_i}(y|x_i = x_i^*) = f_Y(y) \ \forall x_i^* \in R_i \ (R_i \text{ is the support of } X_i);$
 - $H_1: \exists x_i^*, x_i' \in R_i \ / \ f_{Y|X_i}(y|x_i = x_i^*) \neq f_{Y|X_i}(y|x_i = x_i').$
- Test statistic: D_m , the maximum distance to the diagonal

Different steps

- Empirical distribution of D_m
 - Random permutations of the inputs realizations
 - For each permutation, compute D_m from CSM plot
- 2 Compute $D_{m\alpha}$, value of the test statistic for the critical level α
- **③** Estimation of $D_{m_{\chi_i}}$ v $i = 1, \dots, k$ from the *original* CSM plot
- null hypothesis H_0 rejected if $D_{m_{X_i}} > D_{m\alpha}$ (i.e. X_i is an important input))

Statistical test keynotes

Features

- *Hypotheses* (null hypothesis *H*₀ and alternative hypothesis *H*₁):
 - $H_0: f_{Y|X_i}(y|x_i = x_i^*) = f_Y(y) \ \forall x_i^* \in R_i \ (R_i \text{ is the support of } X_i);$
 - $H_1: \exists x_i^*, x_i' \in R_i \ / \ f_{Y|X_i}(y|x_i = x_i^*) \neq f_{Y|X_i}(y|x_i = x_i').$
- *Test statistic*: *D_m*, the maximum distance to the diagonal

Different steps

- **1** Empirical distribution of D_m
 - Random permutations of the inputs realizations
 - For each permutation, compute D_m from CSM plot
- 2 Compute $D_{m\alpha}$, value of the test statistic for the critical level α
- **③** Estimation of $D_{m_{X_i}}$ v $i = 1, \dots, k$ from the *original* CSM plot
- null hypothesis H_0 rejected if $D_{m_{X_i}} > D_{m\alpha}$ (i.e. X_i is an important input))

Convergence of importance measures

Test statistic and SDP (Ratto et al, 2007) first order indices (LHS samples 50-3000)

Robustness of importance measures

Test statistic across 20 LHS replicates of size 500

Conclusions

Potential

- CSM plot: simple, versatile and very informative graphical tool
- Statistical test: identifies important model inputs for very low sample size, no additional model run for robustness analysis

Limitations

- Inputs prioritisation assessment restricted to first order effects
- Statistical test prone to type I error (treating non-influential inputs as important)

To be done ...

- Systematic approach for non-monotonic mappings
- Second order interactions with surfaces
- Investigate the potential of the contribution to the sample variance (CSV) plot

Contribution to the sample mean plot

- Contribution to the sample mean plot
- Statistical test for inputs prioritisation

Moment independent sensitivity analysis

- Moment-independent importance measures
- Numerical and computational aspects
- Application examples

Relative importance of model inputs on the output probability distribution function

Emanuele Borgonovo

Bocconi University, Department of Decision Sciences (ELEUSI, Milan)

W. Castaings, S. Tarantola

European Commission, Joint Research Centre (IPSC, Ispra)

- f a deterministic scalar function
- $X = (X_1, \dots, X_k)$ and Y random variables
- $x = (x_1, \dots, x_k)$ realization of the model inputs *X*
- y realization of the model output Y

- Variance not necessarily adapted to describe the output variability
- Analysis of the entire output distribution $f_Y(y)$ rather than V(Y)

• Conditional variance $V(Y|X_i)$ to be compared with V(Y)

$$S_i = \frac{V_i}{V(Y)}$$

$$V_i = V(E(Y|X_i)) = V(Y) - E(V(Y|X_i))$$

 $V(Y) = E(V(Y|X_i)) + V(E(Y|X_i))$

• Conditional PDF $f_{Y|X_i}(y)$ to be compared with $f_Y(y)$

$$s(X_i) = \int |f_Y(y) - f_{Y|X_i}(y)| dy$$
$$\delta_i = \frac{1}{2} E_{X_i}[s(X_i)]$$

• Conditional variance $V(Y|X_i)$ to be compared with V(Y)

$$S_i = \frac{V_i}{V(Y)}$$

$$V_i = V(E(Y|X_i)) = V(Y) - E(V(Y|X_i))$$

 $V(Y) = E(V(Y|X_i)) + V(E(Y|X_i))$

• Conditional PDF $f_{Y|X_i}(y)$ to be compared with $f_Y(y)$

• Conditional PDF $f_{Y|X_i}(y)$ to be compared with $f_Y(y)$

$$s(X_i) = \int |f_Y(y) - f_{Y|X_i}(y)| dy$$

 $\delta_i = \frac{1}{2} E_{X_i}[s(X_i)]$

- Other moment-independent important measures based on CDF (*Park et al, 1994; Chun et al, 2000*),
- The measures proposed by *Borgonovo, (2006)* have interesting normalization properties

Individual importance

 $0 \le \delta_i \le 1$

Individual importance

$$0 \le \delta_i \le 1$$

Joint importance of
$$X_i$$
 and X_j

$$\delta_{ij} = \frac{1}{2} \int f_{X_i, X_j}(x_i, x_j) \left[\int |f_Y(y) - f_{Y|X_i, X_j}(y)| dy \right] dx_i dx_j$$

 $\delta_{ij} = \delta_i$ if *Y* is dependent on X_i but independent on X_j

 \mathbb{S} δ can be extended to any set of inputs (i.e. analysis by groups)

✓ Individual importance
$$0 \le \delta_i \le 1$$

✓ Normalization of joint importance $\delta_{1,2,...,k} = 1$

Joint importance of
$$X_i$$
 and X_j
$$\delta_{ij} = \frac{1}{2} \int f_{X_i,X_j}(x_i,x_j) \left[\int |f_Y(y) - f_{Y|X_i,X_j}(y)| dy \right] dx_i dx_j$$

 $\delta_{ij} = \delta_i$ if *Y* is dependent on X_i but independent on X_j

 $\otimes \delta$ can be extended to any set of inputs (i.e. analysis by groups)

✓ Individual importance
$$0 \le \delta_i \le 1$$

✓ Normalization of joint importance $\delta_{1,2,...,k} = 1$

✓ Subadditivity
$$\delta_i \le \delta_{ij} \le \delta_i + \delta_{j|i}$$

$$\begin{split} \delta_{j|i} &= \frac{1}{2} \int f_{X_i,X_j}(x_i,x_j) \\ &\times \left[\int |f_{Y|X_i}(y) - f_{Y|X_i,X_j}(y)| dy \right] dx_i dx_j \end{split}$$

- ✓ Individual importance $0 \le \delta_i \le 1$
- ✓ Normalization of joint importance $\delta_{1,2,...,k} = 1$

✓ Subadditivity $\delta_i \le \delta_{ij} \le \delta_i + \delta_{j|i|}$

- All properties hold for dependent inputs
- Proofs are provided in Borgonovo, (2006; 2007)

Essential aspects of the computational approach

• Focus on δ_i $i = 1, \cdots, k$

$$\delta_i = \frac{1}{2} \int f_{X_i}(x_i) \left[\int |f_Y(\mathbf{y}) - f_{Y|X_i}(\mathbf{y})| dy \right] dx_i$$

Key features

- Sample generation
- **2** Evaluation of the area $s(X_i)$

Discrete model outputs

- Histograms are perfectly suited
- Zero width and number of bins calculated from the sample

- 2 Continuous model outputs
 - Non-parametric estimation of PDFs (e.g. kernel density estimation)
 - Monotonic transformations can be applied without altering $\boldsymbol{\delta}$ properties
 - Area calculated from CDFs (Liu and Homma, 2008)

Critical aspects of sample generation

Comparison with variance-based

- Approximation errors are potentially larger when dealing with the entire PDF
- Shortcuts are more difficult to elaborate
- **1** Shift between $f_Y(y)$ and $f_{Y|X_i}(y)$ should be due to the fact that $X_i = x_i^*$ i.e. $\int |f_{Y|X_i} - f_Y(y)| dy < \varepsilon$ if X_i is a dummy input otherwise type I error (treating non influential inputs as important)
- **2** A sufficient number of x_i^* should be explored for estimating $E_{X_i}[s(X_i)]$.

• Unconditional sample for $f_X(x)$ and $f_Y(y)$

• Unconditional sample for $f_X(x)$ and $f_Y(y)$

- $X_{\sim i}$ <u>not influenced</u> by the fact that $X_i = x_i^{(j)}$
- Substituted column sampling can be applied

• Unconditional sample for $f_X(x)$ and $f_Y(y)$

$$\begin{pmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_i^{(1)} & \cdots & x_k^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_i^{(2)} & \cdots & x_k^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_1^{(N-1)} & x_2^{(N-1)} & \cdots & x_i^{(N-1)} & \cdots & x_k^{(N-1)} \\ x_1^{(N)} & x_2^{(N)} & \cdots & x_i^{(N)} & \cdots & x_k^{(N)} \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N-1)} \\ y^{(N)} \end{pmatrix}$$

• Ex. Conditional sample for $f_{X|X_i}(x|X_i = x_i^{(1)})$ and $f_{Y|X_i}(y|X_i = x_i^{(1)})$

- N conditional samples of size N required for the calculation of δ_i
- Total number of model evaluations

$$COST = N(1 + kN)$$

- N conditional samples of size N required for the calculation of δ_i
- Total number of model evaluations

$$COST = N(1 + kN)$$

Slightly more efficient calculation strategy

- Less than N sample points for approaching $f_X(x|X_i = x_i^*)$, i.e. $N_{int} < N$
- Less than N different values x_i^{*} of X_i for approaching E_{X_i}[s(X_i)],
 i.e. N_{ext} < N

• N conditional samples of size N

$$COST = N(1 + kN)$$

• N_{ext} conditional samples of size N_{int}

$$COST = N + kN_{int}N_{ext}$$

• N conditional samples of size N

$$COST = N(1 + kN)$$

N_{ext} conditional samples of size N_{int}

$$COST = N + kN_{int}N_{ext}$$

- Reducing N_{int} can lead to type I error
- N_{ext} more likely to be reduced given the shape of $s(X_i)$,

• N conditional samples of size N

$$COST = N(1 + kN)$$

N_{ext} conditional samples of size N_{int}

$$COST = N + kN_{int}N_{ext}$$

- No constraints for the design of the unconditional sample
- Efficient sampling strategies like Latin Hypercube Sampling (*McKay, 1979*) or Quasi-Random sampling (ex. *Sobol, 1976*) can be used

• Unconditional correlated sample for $f_X(x)$ and $f_Y(y)$

• Unconditional correlated sample for $f_X(x)$ and $f_Y(y)$

- $X_{\sim i}$ influenced by the fact that $X_i = x_i^{(j)}$
- Generation of conditional correlated samples for $f_X|X_i(x)$
- Permuted columns sampling plans can be used

• Unconditional correlated sample for $f_X(x)$ and $f_Y(y)$

- Replicated Latin Hypercube Sampling (McKay, 1995)
 - r matrices generated trough column permutation
 - Correlations induced trough permutations (*Iman et al, 1987; Stein et al, 1987*)

Tutorial example for sample generation

- X_i $(i = 1, 2, 3) \sim U[-\pi \pi]$
- rLHS sample, number of variables k = 3, base sample size N = 4,number of replicates r = 2

Base sa	ample			
-2.11	-2.38	-2.18		
0.79	-0.14	0.53		
1.71	0.28	3.03		
-0.39	3.09	-0.99		
1 st Rep	licate			
-2.11	3.09	-2.18		
-0.39	-0.14	-0.99		
0.79	0.28	3.03		
1.71	-2.38	0.53		
2 nd Rep	2 nd Replicate			
0.79	-2.38	-2.18		
-0.39	3.09	-0.99		
1.71	-0.14	3.03		
-2.11	0.28	0.53		

Tutorial example for sample generation

- X_i $(i = 1, 2, 3) \sim U[-\pi \pi]$
- rLHS sample, number of variables k = 3, base sample size N = 4,number of replicates r = 2

Base sa	ample			
-2.11	-2.38	-2.18		
0.79	-0.14	0.53		
1.71	0.28	3.03		
-0.39	3.09	-0.99		
1 st Rep	licate			
-2.11	3.09	-2.18		
-0.39	-0.14	-0.99		
0.79	0.28	3.03		
1.71	-2.38	0.53		
2 nd Rep	2 nd Replicate			
0.79	-2.38	-2.18		
-0.39	3.09	-0.99		
1.71	-0.14	3.03		
-2.11	0.28	0.53		

Tutorial example for sample generation

- X_i $(i = 1, 2, 3) \sim U[-\pi \pi]$
- rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sa	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Sorting replicates according to values of X_1

□ -2.11	3.09	-2.18
-2.11	0.28	0.53
-0.39	-0.1409	-0.99
-0.39	3.0980	-0.99
0.79	0.2820	3.03
0.79	-2.3887	-2.18
1.71	-2.38	0.53
1.71	-0.14	3.03

Tutorial example for sample generation

•
$$X_i$$
 $(i = 1, 2, 3) \sim U[-\pi - \pi]$

• rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sa	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Conditional samples for $f_{X|X_1}(x)$

$$\begin{array}{c} f_{X|X_1}(x|X_1=x_1^{(1)}) \\ \hline -2.11 & 3.09 & -2.18 \\ -2.11 & 0.28 & 0.53 \\ \hline f_{X|X_1}(x|X_1=x_1^{(2)}) \\ \hline -0.39 & -0.1409 & -0.99 \\ \hline -0.39 & 3.0980 & -0.99 \\ \hline f_{X|X_1}(x|X_1=x_1^{(3)}) \\ \hline 0.79 & 0.2820 & 3.03 \\ \hline 0.79 & -2.3887 & -2.18 \\ \hline f_{X|X_1}(x|X_1=x_1^{(4)}) \\ \hline 1.71 & -2.38 & 0.53 \\ 1.71 & -0.14 & 3.03 \\ \end{array}$$

Tutorial example for sample generation

- X_i $(i = 1, 2, 3) \sim U[-\pi \pi]$
- rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sal	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Sorting replicates according to values of X_2

Г	1.71	-2.38	0.53
	0.79	-2.38	-2.18
-	0.39	-0.14	-0.99
	1.71	-0.14	3.03
	0.79	0.28	3.03
-	2.11	0.28	0.53
	2.11	3.09	-2.18
L –	0.39	3.09	-0.99

Tutorial example for sample generation

•
$$X_i$$
 $(i = 1, 2, 3) \sim U[-\pi - \pi]$

• rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sa	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Conditional samples for $f_{X|X_2}(x)$

$$\begin{array}{c} f_{X|X_2}(x|X_2=x_2^{(1)}) \\ \hline 1.71 & -2.38 & 0.53 \\ 0.79 & -2.38 & -2.18 \\ f_{X|X_2}(x|X_2=x_2^{(2)}) \\ \hline -0.39 & -0.14 & -0.99 \\ 1.71 & -0.14 & 3.03 \\ f_{X|X_2}(x|X_2=x_2^{(3)}) \\ \hline 0.79 & 0.28 & 3.03 \\ -2.11 & 0.28 & 0.53 \\ f_{X|X_2}(x|X_2=x_2^{(4)}) \\ \hline -2.11 & 3.09 & -2.18 \\ -0.39 & 3.09 & -0.99 \\ \end{array}$$

Tutorial example for sample generation

- X_i $(i = 1, 2, 3) \sim U[-\pi \pi]$
- rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sal	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Sorting replicates according to values of X_3

「 −2.11	3.0980	-2.18
0.79	-2.3887	-2.18
-0.39	-0.1409	-0.99
-0.39	3.0980	-0.99
1.71	-2.3887	0.53
-2.11	0.2820	0.53
0.79	0.28	3.03
L 1.71	-0.14	3.03

Tutorial example for sample generation

•
$$X_i$$
 $(i = 1, 2, 3) \sim U[-\pi - \pi]$

• rLHS sample, number of variables k = 3, base sample size N = 4, number of replicates r = 2

$f_X(x)$	(Base sa	mple)
-2.11	-2.38	-2.18
0.79	-0.14	0.53
1.71	0.28	3.03
-0.39	3.09	-0.99
1 st Rep	olicate	
-2.11	3.09	-2.18
-0.39	-0.14	-0.99
0.79	0.28	3.03
1.71	-2.38	0.53
2 nd Re	plicate	
0.79	-2.38	-2.18
-0.39	3.09	-0.99
1.71	-0.14	3.03
-2.11	0.28	0.53

Conditional samples for $f_{X|X_3}(x)$

$$\begin{array}{c} f_{X|X_3}(x|X_3 = x_3^{(1)}) \\ \hline -2.11 & 3.0980 & -2.18 \\ 0.79 & -2.3887 & -2.18 \\ f_{X|X_3}(x|X_3 = x_3^{(2)}) \\ \hline -0.39 & -0.1409 & -0.99 \\ -0.39 & 3.0980 & -0.99 \\ f_{X|X_3}(x|X_3 = x_3^{(3)}) \\ \hline 1.71 & -2.3887 & 0.53 \\ -2.11 & 0.2820 & 0.53 \\ f_{X|X_3}(x|X_3 = x_3^{(4)}) \\ \hline 0.79 & 0.28 & 3.03 \\ 1.71 & -0.14 & 3.03 \\ \end{array}$$

- Replicated Latin Hypercube Sampling (McKay, 1995)
 - r matrices of size N generated trough column permutation
 - Correlations induced trough permutations (*Iman et al, 1987; Stein et al, 1987*)

- Replicated Latin Hypercube Sampling (McKay, 1995)
 - r matrices of size N generated trough column permutation
 - Correlations induced trough permutations (*Iman et al, 1987; Stein et al, 1987*)

- Sample size used for approaching f_{X|Xi}(x) (i.e. N_{int}) is given by the number of replicates r
- Number of values of x_i explored (i.e. N_{ext}) for estimation $E_{X_i}[s(X_i)]$ given by the base sample size N

- Replicated Latin Hypercube Sampling (McKay, 1995)
 - r matrices of size N generated trough column permutation
 - Correlations induced trough permutations (*Iman et al, 1987; Stein et al, 1987*)

$$COST = r * N$$

- Sample size used for approaching f_{X|Xi}(x) (i.e. N_{int}) is given by the number of replicates r
- Number of values of x_i explored (i.e. N_{ext}) for estimation $E_{X_i}[s(X_i)]$ given by the base sample size N

- Replicated Latin Hypercube Sampling (McKay, 1995)
 - r matrices of size N generated trough column permutation
 - Correlations induced trough permutations (*Iman et al, 1987; Stein et al, 1987*)

$$COST = r * N$$

• *r* should be close to *N* in order to ensure that $\int |f_{Y|X_i} - f_Y(y)| dy < \varepsilon \text{ if } X_i \text{ is a dummy input}$

$$COST \sim N^2$$

 \square Number of model evaluations independent from k

Brute force approach

- X_i $(i = 1, \dots 4) \sim U[-\pi \pi]$
- Ishigami function $f(Y) = \sin X_1 + 7 \sin^2 X_2 + 0.1 X_3^4 \sin X_1$
- X₄ is a dummy input

	X_1	X_2	<i>X</i> ₃	X_4
Si	0.3139	0.4424	0.	0.
δ_i	0.2110	0.4073	0.1568	0.

Brute force approach

 $V(Y|X_i)$

William Castaings

 $E(Y|X_i)$

Brute force approach

William Castaings

IMPEC, 13 Oct 2008

 $s(X_i)$

rLHS approach

Validation for independent inputs

• Number of replicates essential in order to ensure that $\int |f_{Y|X_i} - f_Y(y)| dy < \varepsilon \text{ for dummy input factors}$

- Lack of correspondence for X_{~i} lead to approximation error for s(Xi)
- Reasonable accuracy for δ_i estimates

rLHS approach

Effect of dependence among inputs

- X_i $(i = 1, \dots, 4) \sim U[01]$
- $f(Y) = X_1 + X_2 + X_3$
- X₄ is a dummy input

rLHS approach

Effect of dependence among inputs

- X_i $(i = 1, \dots, 4) \sim U[01]$
- $f(Y) = X_1 \cdot X_2 \cdot X_3$
- X₄ is a dummy input

• The presence of correlations or/and interactions increases the approximation error

- The additional terms generated by dependence create a non-null effect for a dummy factor
- Correlations increase the importance of the correlated parameters for both VB and MI
- In the presence of interactions, influence on other factors can be different

- Moment-independent importance measures with interesting properties
- Any shortcut is prone to substantial approximation errors when dealing with the entire PDF
- Computationally intensive assessment
- Calculation methods for independent and dependent model inputs, other sampling plans to be investigated
- Rather than the entire PDF, a specific portion might be of interest

Ex. Focus on the variability of extremes

• Relative importance of model inputs in determining the variability of extremes $(x) = \int |f_{1}(x)|^{20\%} dx = \int |f_{1}(x)|^$

$$s(x_i) = \int |f_Y(y|Y > y^{90\%}) - f_{Y|X_i}(y|X_i, Y > y^{90\%})|dy$$

Monte Carlo Filtering

- Select the sample points verifying $Y > y^{90\%}$
- Induced correlation structure for $f_X(x|Y > y^{90\%})$
- Conditional samples generation (i.e. *f_Y*|*X_i*(*y*|*X_i*, *Y* > *y*^{90%})) might be difficult

Adaptation of importance measure

• Restrict the area calculation to the targeted region of the model output $s(x_i) = \int_{\Omega} |f_Y(y) - f_{Y|X_i}(y|X_i)| dy$

Merci de votre attention ...

